用树状图或表格求概率优秀教案

合集下载

用树状图和表格法求概率教案

用树状图和表格法求概率教案

用树状图和表格法求概率教案一、教学目标:1. 让学生掌握树状图和表格法的基本概念及应用。

2. 培养学生运用树状图和表格法求解概率问题的能力。

3. 培养学生分析问题、解决问题的能力。

二、教学内容:1. 树状图和表格法的定义及原理。

2. 树状图和表格法的绘制方法。

3. 树状图和表格法在求解概率问题中的应用。

三、教学重点与难点:1. 重点:树状图和表格法的绘制方法,及其在求解概率问题中的应用。

2. 难点:如何引导学生运用树状图和表格法分析问题,并求解复杂概率问题。

四、教学方法:1. 采用讲授法,讲解树状图和表格法的定义、原理及绘制方法。

2. 采用案例分析法,让学生通过实际案例体会树状图和表格法的应用。

3. 采用小组讨论法,引导学生分组讨论,共同解决问题。

4. 采用练习法,让学生在实践中巩固所学知识。

五、教学过程:1. 导入新课:通过一个简单的概率问题,引发学生对树状图和表格法的兴趣。

2. 讲解树状图和表格法的定义、原理及绘制方法。

3. 分析案例:举例讲解树状图和表格法在求解概率问题中的应用。

4. 小组讨论:让学生分组讨论,运用树状图和表格法分析问题。

5. 练习巩固:布置练习题,让学生在实践中运用树状图和表格法解决问题。

6. 总结反馈:对学生的练习情况进行点评,总结树状图和表格法的优点和注意事项。

7. 课后作业:布置课后作业,巩固所学知识。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,了解学生对树状图和表格法的掌握程度。

2. 练习题评价:对学生的练习题进行批改,评估学生运用树状图和表格法解决问题的能力。

3. 课后作业评价:查看学生的课后作业完成情况,检验学生对课堂所学知识的巩固程度。

七、教学资源:1. PPT课件:制作精美的PPT课件,展示树状图和表格法的定义、原理、绘制方法及应用案例。

2. 练习题库:准备一定数量的练习题,供学生在课堂练习和课后巩固使用。

北师大版九年级数学上册3.1用树状图或表格求概率教学设计

北师大版九年级数学上册3.1用树状图或表格求概率教学设计
北师大版九年级数学上册3.1用树状图或表格求概率教学设计
一、教学目标
(一)知识与技能
1.理解并掌握概率的基本概念,知道概率是描述随机事件发生可能性大小的数值。
2.学会使用树状图和表格列举所有可能的结果,并能运用概率公式计算简单事件的概率。
3.能够利用树状图和表格解决实际问题,提高解决问题的能力。
4.掌握如何判断事件的独立性,以及如何计算相互独立事件的概率。
三、教学重难点和教学设想
(一)教学重难点
1.重点:让学生掌握使用树状图和表格列举所有可能结果的方法,以及如何运用概率公式计算简单事件的概率。
难点:培养学生将实际问题转化为数学模型的能力,以及如何在实际问题中运用概率知识进行求解。
2.重点:让学生理解独立事件的定义,掌握相互独立事件的概率计算方法。
难点:引导学生运用独立事件的概率计算方法,解决实际问题。
3.小组合作,共同探究一个复杂的概率问题,例如“抛掷两枚骰子,求两个骰子点数和为7的概率”。要求学生在讨论过程中,充分运用所学知识,发挥团队协作精神,共同解决问题。
4.完成一份关于本节课学习心得的反思报告,内容包括:对本节课知识的理解、在解题过程中遇到的困难与解决方法、对概率学习的感悟等。通过反思,促使学生深入思考,提高自我认知。
本章节的教学设计旨在让学生掌握概率的基本概念和求解方法,提高他们解决实际问题的能力。在教学过程中,注重培养学生的学习兴趣、团队协作能力和自主学习能力,使他们形成正确的价值观,为将来的学习和生活打下坚实基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有初步的了解,但在具体问题分析和解决方法上仍需加强。他们在之前的学习中,已经接触过简单的概率计算,能够列举一些事件的可能结果,但对于复杂事件的概率求解,还需要进一步引导和训练。此外,学生在团队合作、问题探究等方面的能力有待提高。因此,在本章节的教学中,应注重以下几点:

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。

二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。

2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。

2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。

3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。

五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。

2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。

3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。

4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。

5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。

六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。

2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。

3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。

七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。

2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。

八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。

2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。

九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。

2022年北师版数学《用树状图或表格求概率》精品教案

2022年北师版数学《用树状图或表格求概率》精品教案

3.1 用树状图或表格求概率 第1课时 用树状图或表格求概率或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率 【类型一】 两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来. 解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:裤子上衣 蓝色 黑色 棕色 白色 (白,蓝) (白,黑) (白,棕) 米色(米,蓝)(米,黑)(米,棕)由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.第一次第二次白1白2红白1——(白2,白1)(红,白1)白2(白1,白2)——(红,白2)红(白1,红)(白2,红)——2种,所以P (两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次白1 白2 红 白1 (白1,白1) (白2,白1) (红,白1) 白2 (白1,白2) (白2,白2) (红,白2) 红(白1,红)(白2,红)(红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法样性,发展学生的创新意识.第1课时 定义与命题【知识与技能】 1.了解定义、命题的概念.2.能分清命题的组成,会判断一个命题的真假,学会用反例说明一个命题是假命题.【过程与方法】通过讨论、探究、交流等形式,使学生在辩论中获得知识体验. 【情感态度】在学习过程中培养学生敢于怀疑、大胆探究的品质. 【教学重点】命题的概念及真假的判断. 【教学难点】对于命题的条件和结论不十分明显,改写成“如果……那么……”形式.一、创设情境,导入新课(1)阅读新华社酒泉2013年6月11日这篇报导:神舟十号载人飞船于6月11日上午发射,……°,近地点高度为200千米,远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报道,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内永不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度).【教学说明】用熟悉的背景和提出的两个问题引入,为下面给出定义的概念得以顺理成章.二、思考探究,获取新知问题1:从以上两个问题中,你能得出什么是定义吗?并举例说明.【教学说明】通过思考、归纳得出定义的概念,并利用学生举例的形成加深对概念的理解与掌握.【归纳结论】证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.问题2:下面的语句中,哪些语句对事情做了判断?哪些没有?与同学们交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.【教学说明】通过讨论、交流让学生对命题形成初步认识,安排了不是命题的问题参入,让学生逐步体会一个句子是不是命题的关键是对一件事情是否作出判断.【归纳结论】判断一件事情的句子叫做命题.如果一个句子没有对某件事情作出任何判断,那么它就不是命题.问题3:观察下列命题,你能发现这些命题有什么共同的特征?与同学们交流.(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.【教学说明】学生通过观察、思考得出命题是由两部分组成的,并掌握它们各自的概念,进一步加深了命题的理解.“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.问题4:指出下列各命题的条件和结论,其中哪些命题是错误的?你是如何判断的?与同学们交流.(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.【教学说明】进一步加深对命题组成的理解,同时学会利用自己学的知识对命题做出正确的判断.【归纳结论】正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.三、运用新知,深化理解1.命题:“垂直于同一条直线的两条直线平行”的条件是,结论是.2=b2命题(填“真”或“假”).3.下列语句不是命题的有()个①相等的角是直角;②两点之间线段最短;③煤球是白色的;④连线A、B 两点.4.下列句子哪些是命题?是命题的判断真假.①对顶角相等;②画一个角等于已知角;③两直线平行,同位角相等;④a,b两直线平行吗?⑤鸟是动物;⑥若a2=4,求a的值;⑦若|a|=|b|,则a=b.【教学说明】由学生自主完成,通过练习,使学生对知识的理解由浅入深,从感性上升到理性,及时反馈,便于发现问题、解决问题、提高课堂效率.提高45分钟的质量.【答案】1.两条直线垂直于同一条直线,这两条直线平行;2.假;3.B;4.命题有:①③⑤⑦;真命题有:①③⑤;假命题有:⑦.四、师生互动,课堂小结1.师生共同回顾定义、命题、条件、结论、真命题、假命题和反例的概念等知识点.2.谈谈你对本节课的收获.【教学说明】使学生对本节课的知识有一个完整的认识,进一步形成知识网络.不断对知识进行提炼和归纳,有助于概念的理解.1.布置作业:习题7.2中的第1、2、3题.2.完成练习册中本课时相应练习.“如果……那么……”的形式有些困难,这方面有待今后不断强化提升.。

九年级上册数学《用树状图或表格求概率》教案-北师版

九年级上册数学《用树状图或表格求概率》教案-北师版

3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断, 发展建立数据分析观念;感受随机现象的特点。

2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果, 以及指定事件发生的所有可能结果, 了解事件的概率。

(二)数学思想方法(核心概念):本节课是简单的两步实验, 可以通过计算得到它的概率, 所渗透的数学思想是:转化、类比、在树状图中体会几何直观。

本节课的核心概念为: 模型思想、数据分析观念、应用意识。

二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时, 通过七年级下册“概率初步”的学习, 学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时, 事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。

学生已经获得概率的计算有两种方式:理论计算和试验估算。

本章第一节通过游戏活动, 让学生经历猜测、试验、收集数据、分析数据等活动过程, 然后学习计算这类事件发生概率的两种方法---画树状图和列表法。

本节共三课时, 第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境, 让学生经历利用画树状图和列表法求出概率并解决问题的过程。

(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件, 初步感受到数据的随机性, 并研究了一些简单随机事件发生的概率, 对一些现象做出了合理的解释, 对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性, 能理解在大量重复试验的基础上, 可用试验频率估计事件发生的概率。

2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时, 事件发生的频率稳定在相应概率的附近”, 初步体会概率是描述随机现象的数学模型, 实验的过程就是渗透“概率模型思想”的过程, 通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”, 具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

《用列表法或树状图法求概率》教学设计课标要求:能通过列表或画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。

教学目标1.会运用树状图和列表法列出简单事件发生的所有等可能的结果。

2.会运用树状图和列表法计算简单事件发生的概率.教学重点运用树状图和列表法计算事件发生的概率.教学难点树状图和列表法的运用方法.教学方法合作交流,共同探究.教学过程一.问题驱动(1)从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么你认为小明掷3次硬币还有其它结果吗?如果没有,请说明理由。

如果有,你能全部列举出来吗?二.真知来源于实践当试验次数很大时,一个事件发生频率稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.除此之外,还有别的方法吗?(1)在摸牌游戏中,有两张牌,两张中一张牌面数字是1.另一张牌面数字是2.从中任意摸出一张,如果摸得第一张牌的牌面的数字为1,那么放回之后摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第一张牌的牌面的数字为2呢?三.合作交流、构建知识:(20分钟)对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?(一)思考交流观点一:会出现三种可能:牌面数字和为2,牌面数字和为3,牌面数字和为4;每种结果出现的可能性相同.观点二:会出现四种可能:牌面数字为(1,1),牌面数字为(1,2),牌面数字为(2,1),牌面数字为(2,2).每种结果出现的可能性相同.(二)分别用树状图法和表格求概率(7分钟)开始第一张牌数字:12第二张牌数字:1212可能出现的结果 (1,1)(1,2)(2,1)(2,2)(解释(1,1)的表示方法-------有序----类似点坐标)第二张牌数字1 2第一张牌数字1 (1,1) (1,2)2 (2,1) (2,2)解:从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.总结出知识要点:利用树状图或表格,可以比较方便地求出某些事件发生的概率.(三)例题解析例1:小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?例题处理(解题过程略):(1)学生先尝试完成,然后2个学生用两种方法板演,师生共同订正(2)让学生根据例1自己设计问题考其他同学,其他学生解答三、拓展提高学以致用1.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么你认为小明掷3次硬币还有其它结果吗?如果没有,请说明理由。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。

举例说明概率的应用,如抛硬币、掷骰子等。

1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。

利用树状图展示样本空间和事件的关系。

第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。

示范绘制树状图,展示单次试验和多次试验的树状图。

2.2 利用树状图求概率教授如何通过树状图计算概率。

练习计算简单事件的概率。

第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。

示范绘制表格,展示单次试验和多次试验的表格。

3.2 利用表格求概率教授如何通过表格计算概率。

练习计算简单事件的概率。

第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。

利用树状图和表格展示独立事件的概率计算。

4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。

练习计算独立事件的概率。

第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。

利用树状图和表格展示条件概率的计算。

5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。

练习计算条件概率。

第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。

利用树状图和表格展示组合的计算。

6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。

利用树状图和表格展示排列的计算。

第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。

利用树状图和表格展示概率的加法规则的计算。

7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。

练习计算互斥事件的概率。

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。

本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。

二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。

但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。

因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。

三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。

2.能够灵活运用所学的知识来解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。

2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。

在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。

2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。

例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。

2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。

通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。

3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。

九年级数学上册教案:用树状图或表格求概率

九年级数学上册教案:用树状图或表格求概率

3.1 用树状图或表格求概率 第1课时 画树状图法和列表法用树状图和列表法计算涉及两步实验的随机事件发生的概率.(重点)阅读教材P60~61,完成下列问题:问题:甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5;从两个口袋中各随机取出1个小球.用列表法写出所有可能的结果.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I.从甲、乙、丙三个口袋中各随机取出1个小球.此时可以继续用列表法吗?你有没有更好的方法?与同学交流一下.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?活动1 小组讨论例 在抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?解:(1)可能出现正、反两种结果,它们发生的可能性相同. (2)可能出现正、反两种结果,它们发生的可能性相同.(3)可能出现正、反两种结果,发生的可能性相同,第一枚硬币反面朝上亦然.注意不重不漏地列出每一种可能发生的结果.活动2 跟踪训练1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .0 B.13C.23D .12.“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A.13 B.16C.19D.143.在x 2□2xy □y 2的□中,分别填上“+”或“-”,所得的代数式中,能构成完全平方式的概率是( )A .1 B.34C.12D.144.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车右转,一辆车左转.活动3 课堂小结本堂课你学到了哪些知识与方法?在运用时有哪些细节需要注意呢?【预习导学】1 23 (3,1) (3,2)4 (4,1) (4,2)5 (5,1) (5,2)【合作探究】活动2跟踪训练1.B 2.A 3.C 4.(1)127.(2)19.第2课时利用概率判断游戏的公平性1.进一步经历用树状图、列表法计算两步随机试验的概率.2.运用树状图法或列表法判断游戏的公平性.(重点)阅读教材P62~64,完成下列问题:自学反馈小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?活动1 小组讨论例小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同,其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布).所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为39=13. 因此,这个游戏对三人是公平的. 活动2 跟踪训练1.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( ) A.12 B.13C.23D.142.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A.23 B.12C.13D .13.如图所示,甲、乙两人玩游戏,他们准备了1个可以自由转动的转盘和一个不透明的袋子.转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.活动3 课堂小结1.一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能结果.2.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.【合作探究】活动2跟踪训练1.B 2.B3.(1)列表法:乒乓球数字转盘数字和-1 -2 -31 0 -1 -22 1 0 -13 2 1 0树状图:则甲获胜的概率为P(甲)=39=13;(2)不公平;乙获胜的可能性大.第3课时利用概率玩“配紫色”游戏借助于树状图、列表法计算随机事件的概率.提高在求概率时处理各种情况出现可能性不同时的能力.(重点)阅读教材P65~67,完成下列问题:自学反馈两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:“配紫色”转盘游戏分两步试验,第一次有4种可能结果,第二次有3种可能结果,故可利用列表法或画树状图来计算配成紫色的概率.(红,红)(红,蓝)(红,白)(绿,红)(绿,蓝)(绿,白)(黄,红)(黄,蓝)(黄,白)(蓝,红)(蓝,蓝)(蓝,白)请将结果填在下面的表格中:第二个转盘第一个转盘红 蓝 白 红 绿 黄 蓝活动1 小组讨论例 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其他都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球.求两次摸到的球的颜色能配成紫色的概率.解:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下: 红1 红2 白1 白2 蓝 红1 (红1,红1) (红1,红2) (红1,白1) (红1,白2) (红1,蓝) 红2 (红2,红1) (红2,红2) (红2,白1) (红2,白2) (红2,蓝) 白1 (白1,红1) (白1,红2) (白1,白1) (白1,白2) (白1,蓝) 白2 (白2,红1) (白2,红2) (白2,白1) (白2,白2) (白2,蓝) 蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种:(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2),所以P(能配成紫色)=425.活动2 跟踪训练1.如图转动两个盘当指针分别指向红色和蓝色时称为配紫色成功.如图转动两个盘各一次配紫色成功的概率是( )A.14B.13C.15D.162.小明所在的学校准备在国庆节当天举办-个大型的联欢会,为此小明设计了如图所示的A ,B 两个转盘和同学们做“配紫色”(红、蓝可配成紫色)的游戏,试问使用这两个转盘可以配成紫色的概率是________.3.转动下面的两个转盘各一次,将所转到的数字相加,它们的和是奇数的概率是________.4.如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数.同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是________.5.设计两个转盘进行“配紫色”游戏,使配得绿色的概率是16.(黄、蓝两色混合配成绿色)活动3 课堂小结1.用树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 2.“配紫色”游戏体现了概率模型的思想,它启示我们:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.【预习导学】 自学反馈(红,红) (红,蓝) (红,白) (绿,红) (绿,蓝) (绿,白) (黄,红) (黄,蓝) (黄,白) (蓝,红) (蓝,蓝) (蓝,白)【合作探究】 活动2 跟踪训练1.A 2.14 3.1325 4.165.如图.教学设计3.1 用树状图或表格求概率第三课时北师大版 | 九年级数学上 | 2018年10月 3.1.3《用树状图或表格求概率》教学设计一、教学目标:目标:经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作交流、思考问题的能力。

二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。

2. 教学难点:如何运用树状图和表格求复杂事件的概率。

三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。

2. 学生准备:笔记本、彩笔。

四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。

2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。

3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。

4. 练习环节:让学生独立完成练习题,巩固所学方法。

五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。

六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。

七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。

八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。

A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

用树状图或表格求概率优秀教案

用树状图或表格求概率优秀教案

用树状图或表格求概率(第一课时)教学目标:1.经历猜测收集数据分析数据等过程,进一步体验数据的随机性;2.能运用画树状图和表格求简单事件的概率;3.能利用概率解决一些实际问题,理解概率对生产生活的指导作用。

教学重点:能运用画树状图和表格求简单事件的概率。

教学时间:2课时课前准备:全班分为10个小组,每组抛两枚硬币100次,记录正面、反面、一正一反次数。

教学过程:一:设置情境引入课题1.抛一枚色子,点数是3的概率是2.抛一枚硬币,正面向上的概率是3.袋中有2个红球3个白球,从中任意摸出一个球是红球的概率是4.小强和小军做游戏,抛两枚硬币,如果两枚都是正面小强胜,如果一正一反小军胜,这个游戏公平吗?前三个问题复习回过以前学习内容,第四个问题为切入本节内容。

二:新课学习1.由第四问让学生充分思考讨论后,教师统计课前准备内容,得出三种情形的概率,结论和大部分学生思考产生冲突,激发学生学习兴趣。

抛两枚硬币有哪些可能性呢?你能列出来吗?正正,正反,反正,反反教师指出前三问是一步试验,第四问是两步试验,两步试验的可能性可以用表格和树状图解决。

(板书课题)本节课学习用表格求概率。

如这个问题可列表如下:2.例1 第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张相同的概率是多少?分析:这是几步试验?用什么方法解决?解:∵共有6种可能性,其中数字相同有两种,∴两张卡片上数字相同的概率是62=31。

3.变式练习:第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张卡片,卡片上分别标有数字2,3.从两个袋中各摸出一张卡片,两张卡片上数字之和是偶数的概率是多少?P (两张卡片上数字之和是偶数)=63=213做一做: 袋中有4个完全相同的小球,分别标有数字1,2,3,4,现从中摸出一个小球记下数字后放回袋中,再从中摸出一个小球记下数字,两次摸出的小球上数字相同的概率是多少? 一名学生板演,其余自练。

用树状图和表格法求概率教案

用树状图和表格法求概率教案

一、教学目标1. 让学生理解概率的基本概念,掌握用树状图和表格法求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 概率的基本概念。

2. 树状图法求概率。

3. 表格法求概率。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:概率的基本概念,树状图法求概率,表格法求概率。

2. 教学难点:树状图和表格法的绘制,实际问题中的概率计算。

四、教学方法1. 采用讲授法讲解概率的基本概念、树状图法和表格法。

2. 利用案例分析、小组讨论、动手实践等方式培养学生的实际应用能力。

3. 利用多媒体课件辅助教学,提高学生的学习兴趣。

五、教学过程1. 导入新课:通过讲解概率的定义和意义,引起学生对概率的兴趣。

2. 讲解概率的基本概念:必然事件、不可能事件、随机事件。

3. 讲解树状图法求概率:介绍树状图的绘制方法,举例讲解如何用树状图求概率。

4. 讲解表格法求概率:介绍表格的绘制方法,举例讲解如何用表格求概率。

5. 实践环节:让学生分组讨论,选取典型案例,运用树状图法和表格法求概率。

6. 总结提升:对所学内容进行总结,强调树状图法和表格法在实际问题中的应用。

7. 布置作业:让学生课后练习,巩固所学知识。

六、教学评价1. 评价学生对概率基本概念的理解程度。

2. 评价学生对树状图法和表格法求概率的掌握程度。

3. 评价学生运用概率知识解决实际问题的能力。

七、教学反思1. 反思教学过程中学生的参与程度,是否充分调动了学生的积极性。

2. 反思教学方法是否适合学生的学习需求,是否需要调整。

3. 反思教学内容是否全面,是否有需要补充或删减的部分。

八、教学拓展1. 引导学生探讨概率在生活中的应用,如彩票、赌博等。

2. 引导学生了解概率在其他学科领域的应用,如数学、物理等。

3. 引导学生关注概率在现代科技领域的发展,如、大数据等。

九、教学资源1. 多媒体课件:用于展示概率的基本概念、树状图和表格法。

3.1_用树状图或表格求概率(教案)

3.1_用树状图或表格求概率(教案)
4.数学抽象能力:培养学生将实际问题抽象为数学问题的能力,通过树状图和表格对事件进行抽象表示,理解事件之间的关联性。
5.数学表达能力:通过书写树状图和填写表格,提高学生的数学表达能力,使其清晰、准确地表达自己的思考过程。
本节课将紧密围绕新教材要求,注重培养学生的学科核心素养,提高他们的综合运用能力。
三、教学难点与重点
1.教学重点
(1)理解并掌握树状图和表格在求解概率问题中的应用。
(2)能够运用树状图和表格表示事件的所有可能结果,并进行概率计算。
(3)掌握单一事件和组合事件的概率计算方法。
举例:
-通过抛硬币、掷骰子等简单实例,让学生理解如何利用树状图和表格表示事件的所有可能结果。
-讲解并举例说明如何通过树状图和表格计算单一事件和组合事件的概率。
2.教学难点
(1)树状图的构建:学生在构建树状图时,可能难以把握事件之间的逻辑关系,导致树状图错误。
(2)表格的填写:学生在填写表格时,容易遗漏或重复计算某些结果,影响概率计算的正确性。
(3)条件概率的计算:对于涉及条件概率的问题,学生可能难以理解条件概率的概念,以及如何利用树状图和表格进行计算。
举例:
同学们,今天我们将要学习的是“3.1_用树状图或表格求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断某个事件发生概率的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子的概率、抽卡片的概率等。

用树状图或表格求概率获奖公开课教案

用树状图或表格求概率获奖公开课教案

3.1用树状图或表格求概率第 1 课时用树状图或表格求概率由图中可知共有 6 种可能,而白衣、黑1裤只有 1 种可能,概率为;解法 2:将可能出现的结果列表以下:1.会用画树状图或列表的方法计算简单裤子上衣白色随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏米色地列举事件发生的全部可能状况,会用概率的有关知识解决实质问题 .(难点)黑裤只有蓝色黑色棕色(白,蓝)(白,黑)(白,棕)(米,蓝)(米,黑)(米,棕)由表可知共有 6 种可能,而白衣、11 种可能,概率为6.一、情形导入游戏:小明对小亮说:“我向空中抛 2 枚相同的一元硬币,假如落地后一正一反,算我赢,假如落地后两面相同,算你赢 .”结果小亮欣然答应,请问:你感觉这个游戏公正吗?二、合作研究研究点:用树状图或表格求概率【种类一】两步决定的概率问题明华出门游乐时带了2 件上衣(白色、米色)和 3 条裤子(蓝色、黑色、棕色),他随意取出一件上衣和一条裤子恰巧是白色和黑色的概率是多少?分析:可采纳画树状图或列表法把全部的状况都列举出来 .解:解法 1:画树状图以下图:方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在全部结果中占的比值 .【种类二】两步以上决定的概率问题小可、子宣、欣怡三人在一同做游戏时,需要确立做游戏的先后次序,她们商定用“石头、剪子、布”的方式确立,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图剖析全部可能的结果,如图 .由树状图可知全部可能的结果有27 种,三人都出“剪子”的结果只有 1 种, 因此在一个回合中三个人都出“剪子”的概率为 271.方法总结: 当一次试验波及三个或更多的因素时, 为了不重不漏地列出全部可能的结果,往常采纳树状图 .【种类三】 有无放回试验一只箱子里共有3 个球,此中有 2个白球, 1 个红球,它们除了颜色外均相同 .( 1)从箱子中随意摸出一个球,不将它放回箱子,搅匀后再摸出一个球, 求两次摸出的球都是白球的概率;( 2)从箱子中随意摸出一个球,将它放回箱子, 搅匀后再摸出一个球,求两次摸出的球都是白球的概率 .分析: 题中( 1)( 2 )的差别在于第一次摸出的球能否放回了箱子.由题可知,第二次摸球时( 1 )的箱子中应减少第一次摸出 的那个球,那么还剩两个球能够摸,而( 2)的箱子中仍是有三个球能够摸 .因此,两个白球应当差别开来, 我们用 “ 白 1”“ 白 2”表示 .解:(1)列表以下:第一次序二次白 1 白 2白 1 ——(白 2,白 1)白 2 (白 1,白 2) ——红(白 1,红)(白 2,红)由上表可知,共有 6 种结果,且每种结果是等可能的, 此中两次摸出白球的结果有 2 种,因此 P (两次摸出的球都是白球) =2=1;63( 2)列表以下:第一次序二次白 1白 2白 1 (白 1,白 1) (白 2,白 1) 白 2 (白 1,白 2) (白 2,白 2) 红(白 1,红) (白 2,红)由上表可知,共有9 种结果,且每种结果是等可能的, 此中两次摸出白球的结 果有 4 种,因此 P (两次摸出的球都是白球) = 4 .9方法总结: 在试验中,常出现 “ 放回 ” 和 “ 不放回 ” 两种状况, 即能否重复进行的事件, 在求概率时要正确划分, 如利用列表法求概率时,不重复在列表中有空格, 重复在列表中则不会出现空格.三、板书设计画树状图法用树状图或表格求概率列表法经过与学生现实生活相联系的游戏为载体,培育学生成立概率模型的思想意识 . 在活动中进一步发展学生的合作沟通意识,提高学生对所研究问题的反省和拓展的能力,逐渐形成优秀的反省意识 . 鼓舞学生思想的多样性,发展学生的创新意识 . 别想一下造出海洋,一定先由小河川开始。

《用树状图或列表法求概率》优秀教案

《用树状图或列表法求概率》优秀教案

课题1 用树状图或表格求概率教学目标教学知识点:学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重点用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点正确地用列表法计算涉及两步实验的随机事件发生的概率.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏.二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 2 3 4 5 6相应的概率 5151515151]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用列表的方法求出将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?看一个常见的用两个转盘“配紫色”的游戏. 游戏者同时转动如下图中的两个转盘进行“配紫色”游戏,求游戏者获胜的概率.六、教学反思注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率。

用树状图或表格求概率教案市公开课一等奖省优质课获奖课件

用树状图或表格求概率教案市公开课一等奖省优质课获奖课件
出了蓝色,那么他就赢了,因为红色和蓝色在
一起配成了紫色.
红白
黄蓝 绿
A
B


第3页
(1)利用画树状图或列表方法表示游戏 全 部可能出现结果. (2)游戏者获胜概率是多少?
解:(1)对于转盘A,转出红色、白色可能性 是一样;对于转盘B,转出黄色、蓝色、绿
色可能性是一样,画树状图如图所表示.
第4页
树状图
假如一只小猫在如图所表示地板 上自由地走来走去,它最终停留在黑 砖上概率是多少?(图中每一块砖除颜 色外,完全相同)




返回首页
第2页
“配紫色”游戏
学习新知
小颖为学校联欢会设计了一个“配紫色” 游戏:下面是两个能够自由转动转盘,每个转 盘被分成面积相等几个扇形,游戏者同时转
动两个转盘,假如转盘A转出了红色,转盘B转
红色1 红色2 蓝色
红色
(红1,红)
(红2,红) (蓝,红)
蓝色
(红1,蓝)
(红2,蓝) (蓝,蓝)
蓝 红2
1200红1
蓝红
你认为谁做对?说说你理由.
第8页
解:小颖做法不正确,小亮做法正确.因为转 盘A中红色部分和蓝色部分面积不一样,所 以指针落在两个区域可能性不一样.而用
列表法求随机事件发生概率时,应注意各
直 (直,左) (直,直) (直,右)
右 (右,左) (右,直) (右,右)
这两辆汽车行驶方向共有9种等可能结果.
(2)由(1)易知最少有一辆汽车向左转结果
有5种,∴P(最少有一辆汽车向左转)=
5 9
第14页
2.一只不透明袋子中装有2个白球和1个黄球,
这些球除了颜色外都相同,搅匀后从中任意 摸出1个,记下颜色后不放回,搅匀后再从中 任意摸出1个球,请用列表方法求两次都摸出

用树状图或表格求概率优秀教案

用树状图或表格求概率优秀教案

用树状图或表格求概率【课时安排】3课时【教学目标】(一)知识与技能目标:1.进一步理解当试验次数较大时试验频率稳定于概率。

2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率。

(二)方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯。

(三)情感态度价值观。

积极参与数学活动,提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣。

发展学生初步的辩证思维能力。

【教学重点】借助树状图和列表法计算涉及两步试验的随机事件发生的概率。

【教学难点】理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。

正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率。

【教学过程】【第一课时】一、温故而知新,可以为师矣。

问题再现:小明和小凡一起做游戏。

在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。

(一)这个游戏对双方公平吗?(二)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。

三人决定一起做游戏,谁获胜谁就去看电影。

游戏规则如下:2.两次摸到不同颜色球的概率;3.只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。

如果是你,你如何选择?如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法。

用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率。

在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。

活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件。

教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用树状图或表格求概率
【课时安排】
3课时
【教学目标】
(一)知识与技能目标:
1.进一步理解当试验次数较大时试验频率稳定于概率。

2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率。

(二)方法与过程目标:
合作探究,培养合作交流的意识和良好思维习惯。

(三)情感态度价值观。

积极参与数学活动,提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣。

发展学生初步的辩证思维能力。

【教学重点】
借助树状图和列表法计算涉及两步试验的随机事件发生的概率。

【教学难点】
理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。

正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率。

【教学过程】
【第一课时】
一、温故而知新,可以为师矣。

问题再现:小明和小凡一起做游戏。

在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。

(一)这个游戏对双方公平吗?
(二)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?
遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。

三人决定一起做游戏,谁获胜谁就去看电影。

游戏规则如下:
2.两次摸到不同颜色球的概率;
3.只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。

如果是你,你如何选择?
如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法。

用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率。

在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。

活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件。

教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。

四、问渠哪得清如许,为有源头活水来。

1.本节课你有哪些收获?有何感想?
2.用列表法求概率时应注意什么情况?
【第二课时】
【教学目标】
1.通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法;
2.通过具体情境,感受一件事情公平与否在现实生活中广泛存在,体现数学的价值;
3.让学生掌握一定判断事件公平性的方法,提高其决策能力。

【教学重难点】
能用列表法或画树状图计算简单事件发生的概率。

【教学过程】
一、温故知新,做好铺垫。

提问:上节课,你学会了用什么方法求某个事件发生的概率?
二、创设情景,导入课题。

展示例题,引出新课:小明、小颖和小凡做“石头、剪刀、布”的游戏,规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者。

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
三、激发兴趣,探求新知。

小明和小军两人一起做游戏。

游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负。

如果你是游戏者,你会选择哪个数?
四、巩固基础,检测自我。

有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中。

分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。

【第三课时】
【教学目标】
一、知识与技能目标:
经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。

二、方法与过程目标:
鼓励学生思维的多样性,提高应用所学知识解决问题的能力。

【教学重点】
借助于树状图、列表法计算随机事件的概率。

【教学难点】
在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。

【教学过程】
一、利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;较方便地求出某些事件发生的概率。

用树状图和列表的方法求概率时,应注意各种结果出现能性务必相同。

二、自主学习,感受新知。

活动内容:“配紫色”游戏。

活动过程:
游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形。

游戏者同时转动两个转盘,如果转盘A转出了红色,
转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。

游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏。

相关文档
最新文档