北师大版用树状图或表格求概率

合集下载

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教学设计

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教学设计

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教学设计一. 教材分析《用树状图或表格求概率(三)》这一节内容,是在学生已经掌握了概率的基本概念,以及如何用树状图和表格表示概率的基础上进行讲解的。

本节课主要让学生学会如何运用树状图和表格求解复杂事件的概率,进一步培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对概率概念和简单的概率计算已经有所了解。

但是,对于如何利用树状图和表格求解复杂事件的概率,部分学生可能会感到困惑。

因此,在教学过程中,教师需要引导学生逐步掌握方法,提高学生的动手操作能力和逻辑思维能力。

三. 教学目标1.让学生掌握用树状图和表格求解复杂事件概率的方法。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:如何用树状图和表格表示复杂事件概率。

2.难点:如何引导学生运用树状图和表格求解复杂事件概率。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生独立思考和探究;通过案例分析,让学生直观地理解概率计算过程;通过小组合作学习,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备相关案例和练习题。

2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)教师通过一个简单的概率案例,引导学生回顾已学的概率知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示一个具体的复杂事件,让学生尝试用树状图或表格表示其概率。

学生在独立思考和探究的过程中,教师给予适当的引导和指导。

3.操练(10分钟)教师给出几个不同类型的复杂事件,让学生分组进行讨论,运用树状图和表格求解其概率。

学生在动手操作的过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师挑选几组学生的作品,进行讲解和评价,让学生明确正确的方法和思路。

同时,教师给出一些拓展问题,让学生进一步加深对概率计算的理解。

北师大版九年级数学上册3.1用树状图或表格求概率教学设计

北师大版九年级数学上册3.1用树状图或表格求概率教学设计
北师大版九年级数学上册3.1用树状图或表格求概率教学设计
一、教学目标
(一)知识与技能
1.理解并掌握概率的基本概念,知道概率是描述随机事件发生可能性大小的数值。
2.学会使用树状图和表格列举所有可能的结果,并能运用概率公式计算简单事件的概率。
3.能够利用树状图和表格解决实际问题,提高解决问题的能力。
4.掌握如何判断事件的独立性,以及如何计算相互独立事件的概率。
三、教学重难点和教学设想
(一)教学重难点
1.重点:让学生掌握使用树状图和表格列举所有可能结果的方法,以及如何运用概率公式计算简单事件的概率。
难点:培养学生将实际问题转化为数学模型的能力,以及如何在实际问题中运用概率知识进行求解。
2.重点:让学生理解独立事件的定义,掌握相互独立事件的概率计算方法。
难点:引导学生运用独立事件的概率计算方法,解决实际问题。
3.小组合作,共同探究一个复杂的概率问题,例如“抛掷两枚骰子,求两个骰子点数和为7的概率”。要求学生在讨论过程中,充分运用所学知识,发挥团队协作精神,共同解决问题。
4.完成一份关于本节课学习心得的反思报告,内容包括:对本节课知识的理解、在解题过程中遇到的困难与解决方法、对概率学习的感悟等。通过反思,促使学生深入思考,提高自我认知。
本章节的教学设计旨在让学生掌握概率的基本概念和求解方法,提高他们解决实际问题的能力。在教学过程中,注重培养学生的学习兴趣、团队协作能力和自主学习能力,使他们形成正确的价值观,为将来的学习和生活打下坚实基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有初步的了解,但在具体问题分析和解决方法上仍需加强。他们在之前的学习中,已经接触过简单的概率计算,能够列举一些事件的可能结果,但对于复杂事件的概率求解,还需要进一步引导和训练。此外,学生在团队合作、问题探究等方面的能力有待提高。因此,在本章节的教学中,应注重以下几点:

北师大版数学九年级上册 用树状图或表格求概率

北师大版数学九年级上册  用树状图或表格求概率

第三章概率的进一步认识1 用树状图或表格求概率第1课时用树状图或表格求概率(1)1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算简单事件发生的概率.【教学难点】运用树状图和列表法计算简单事件发生的概率.一、情境导入,初步认识问题1:求概率的基本步骤是什么?问题2:列举一次试验的所有可能结果时,学过哪些方法?【教学说明】对以前所学方法的步骤进行归纳,温故以利知新.二、思考探究,获取新知自主学习:阅读课本P148,这个游戏为什么对三人不公平?请相互交流.【教学说明】通过自主学习、相互交流可提高学生自学的能力.探究甲乙两地之间有A和B两条道路,小亮从甲地到乙地,大刚从乙地到甲地,二人同时出发.如果每人从A和B两条道路中都任选一条,那么他们途中相遇的概率是多少?思考以下问题:小亮从甲地到乙地,有几条路可走,大刚从乙地到甲地,有几条路可走?如果小亮选了A道路,那么这时大刚选的有可能是哪条路?同样,如果小亮选的是B呢?什么情况下,他们才能相遇?小亮走的道路可能是A或B,当小亮选A时,大刚可能是A或B;当小亮选B时,大刚也可能是A或B,画图如下:【归纳结论】上图像一棵横倒的树,我们叫它树状图.由上图可知,所有等可能性的结果共有4种:AA,AB,BA,BB.其中两人相遇的情况有2种,即AA,BB.由已学过的的概率计算方法,可得P(相遇)=2/4=1/2 .所以,他们途中相遇的概率是1/2 .上表中的第一行表示小亮走道路A或B的两种可能,第一列则表示大刚走道路A或B的两种可能,从而在表中列出了本题所有等可能的4种结果,其中二人相遇的结果有两种,即:可得P(相遇)=2/4=1/2.【教学说明】设计探究学习活动,有利于向学生展示解决问题的不同策略,真正体会解决问题的过程,培养学生的创新精神和克服困难的勇气.三、运用新知,深化理解1.在A、B两个盒子里都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少?解法1:画树状图从A盒或B盒中任取一张卡片,上面有数字0或1的可能性相等,由树状图可以看出,两张卡片上的数字之积共有4种等可能的结果,其中两数之积为0的结果有3种,于是P(积为0)= 3/4.解法2:完成下表:由上表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.所以P(积为0)=3/4.2.把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).解:画树状图:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.列表如下:由上表可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.3.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知摸到一红一白两球的概率是______.解答:(1)红白白(2)4/9【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结通过本节课的学习你有什么收获?还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题3.1”中第1、2题.2.完成练习册中相应练习.在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性,以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.第2课时用树状图或表格求概率(2)1.会运用树状图和列表法计算事件发生的概率.2.经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算事件发生的概率.【教学难点】树状图和表格法的运用方法.一、情境导入,初步认识(1)从黑桃1和2中摸一张牌,摸到几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸到红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?【教学说明】学生交流讨论,利用上节课所学知识解答.二、思考探究,获取新知探究 1 若同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?可能出现的结果(1,1)(1,2)(2,1)(2,2).从上面的树状图可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2)而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.探究2 小颖设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.(指针指在分界线上则重转)用树状图来说明:用表格来说明:所以,配成紫色的概率P(配成紫色)=3/6=1/2,所以游戏者获胜的概率为1/2.【教学说明】思考讨论,由两位学生板书展示他们的思维过程.通过学生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.三、运用新知,深化理解1.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数恰好是13的概率.解:(1)P(抽到奇数)=3/4;(2)解法一:列表所以组成的两位数恰好是13的概率P=2/12=1/6.解法二:树状图所以组成的两位数恰好是13的概率P=2/12=1/6.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片上分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)的方法计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?解:(1)利用列表法得出所有可能的结果,如下表:由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率P(甲获胜)=5/16.(2)这个游戏对双方不公平,因为甲获胜的概率P(甲获胜)=5/16,乙获胜的概率P(乙获胜)=11/16,5/16≠11/16,所以,游戏对双方是不公平的.3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)1/4(2)正确画出树状图(或列表),图略(表略).任意闭合其中两个开关的情况共有1/2种,其中能使小灯泡发光的情况有6种,所以小灯泡发光的概率是1/2.【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结1.本节课你有哪些收获?有何感想?2.用树状图或表格求概率时应注意什么情况?1.布置作业:教材“习题3.2”中第1 、3题.2.完成练习册中相应练习.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在解决问题的过程中培养学习兴趣和解题能力.。

北师大版数学九年级上册3用树状图或表格求概率1教案与反思

北师大版数学九年级上册3用树状图或表格求概率1教案与反思

3.1用树状图或表格求概率第1课时用树状图或表格求概率1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率【类型一】两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来.解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为1 6;解法2:将可能出现的结果列表如下:由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为1 6 .方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为1 27 .方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】有无放试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=错误!未定义书签。

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

第三章概率的进一步认识3.1 用树状图或表格求概率第 2 课时一、教学目标1.能运用画树状图和列表的方法计算一些简单事件的概率.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《石头、剪刀、布》图片、《用列举法求概率——列表法》微课.五、教学过程【复习引入】1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师出示问题,学生回忆上节课节课所学内容.设计意图:通过对上节课的复习帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?师生活动:教师出示问题,学生思考、讨论,教师适当引导,最后师生共同得出答案.解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状共同图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为31 93 =;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为31 93 =;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为31 93 =.因此,这个游戏对三人是公平的.师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.设计意图:本例题从理论上求出了在玩“石头、剪刀、布”的游戏时双方胜、平、负的概率,让学生进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.【典例精析】例小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?师生活动:教师找几名学生板演,讲解出现的问题.分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就最大.解:选择数字7;理由:列表如下:由表可知,共有36种可能的结果,每种结果出现的可能性相同,其中和为7的概率最大,概率为61366=,所以选择数字7获胜的概率最大.【课堂练习】1.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得的面朝上的点数之和是3的倍数的概率是().A .B .C .D .2.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P =_________.3.小莉和爸爸玩“锤子、剪刀、布”的游戏,每次用一只手可以出“锤子、剪刀、布”三种手势之一,规则是:锤子赢剪刀、剪刀赢布、布赢锤子.若两人出相同手势,则算打平.如果小莉这次出“布”手势,则小莉赢的概率是___________.4.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏________(填“公平”或“不公平”).5.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.师生活动:教师找几名学生板演,讲解出现的问题.6.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字1,2,3,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.参考答案1.A .2..3.13.4.不公平.5.解:将三张大小一样而画面不同的画片分别记为A ,B ,C ,将出现的可能结果列表如下:由表可知,出现的总结果有9种,其中,能拼成原来的一幅画的结果有(A 上,A 下),13165185613(B 上,B 下),(C 上,C 下)三种,所以所求的概率为3193. 解:列表分析如下:由列表可知,所有可能出现的结果有9种,其中第二次抽取的数字大于第一次抽取的数字的情况有3种,所以P (第二次抽取的数字大于第一次抽取的数字)==.设计意图:让学生加深对所学知识的理解.六、课堂小结1.用树状图或表格求概率注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(2)1.用树状图或表格求概率3913。

九年级数学上册 3.1.1 用树状图或表格求概率教案 (新版)北师大版

九年级数学上册 3.1.1 用树状图或表格求概率教案 (新版)北师大版

课题:3.1.1用树状图或表格求概率教学目标:1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,积累数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系.3.会用列表或画树状图等方法计算简单事件发生的概率.4.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.教学重点与难点:重点:用列表或画树状图等方法计算简单事件发生的概率.难点:用列表或画树状图等方法列举简单事件发生的所有结果.课前准备:多媒体课件、学生课前做抛硬币试验并记录试验数据.教学过程:一、温故而知新活动内容:(多媒体出示)思考下列问题:1.小明和小颖一起做游戏。

在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小颖获胜。

(1)这个游戏对双方公平吗?(2)如果是你,你会设计一个什么游戏活动判断胜负?2.抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?分别是什么?每一种结果出现的可能性相同吗?正面朝上反面朝上3.小颖小明和小凡都想去看周末的电影,但只有一张电影票,三人决定一起做游戏谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币.若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上一枚反面朝上则小凡获胜.你认为这个游戏公平吗?处理方式:第1、2个问题由学生口答,第3个问题可找2—3人回答,并适当阐述理由,根据学生回答情况适时引入新课并板书课题.设计意图:使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同.同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容.二、百花齐放春满园活动内容1:(多媒体出示)同学们,请将你们课前的试验数据汇总表进行分析,根据汇总过程及结果你会有什么发现?请把你的发现与大家交流一下.(附:试验数据表格)表格一:表格二:表格三:师:通过大量试验及数据分析我们发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡有利.处理方式:所同学在课前将小组内的试验数据进行整理汇总,并根据汇总结果分析游戏是否公平?课堂上让学生适当交流通过实验发现的结论,然后通过提问的形式让学生展示自己的试验心得及发现的结论.设计意图:本环节的设置,让学生在试验活动中,积累活动经验,通过试验数据的整理汇总,初步感受游戏的不公平性,并对频率与概率的关系有个初步的了解.活动内容2:在这个问题情境中,小明、小颖和小凡获得电影票的概率究竟是多大?请同学们思考如下问题:(多媒体出示自主探究题目)师:经过同学们的认真思考及讨论,我们知道了无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.根据同学们自己列举的图示,我们改进之后可以形成如下形式:(利用多媒体出示以下内容)处理方式:学生结合自主探究题目,独自思考2分钟左右后在小组内进行讨论交流;然后利用幻灯片对第1、2题找1—2生进行回答,第三题在学生回答后提出“你能否尝试用图形表示它们的结果?”,在学生思考讨论后,根据巡查中学生出现的情况,找3---4个学生在黑板上展示其讨论结果.对学生在黑板上展示的讨论结果中出现的问题,进行针对性的修改,并利用多媒体展示规范的利用“树状图”或“列表法”列举所有可能出现的结果.设计意图:这一环节,学生实践的基础上,进行深入的探索,从感性认知上升为理性思维,从而更深刻的认识到抛掷一枚均匀的硬币“正面朝上”和“反面朝上”的可能性是相同的;第三问的设计先让学生尝试用图形表示出现的结果,既激发学生的探索欲望,又为下一步的教学作铺垫.然后通过多媒体的直观展示,让学生更加深刻的理解如何利用“树状图”或“列表法”列举一个事件发生的所有结果.三、学贵于行之活动内容1:我们已经能够利用“树状图”或“列表法”来列举一个事件发生所可能出现的所有结果,你能利用所学知识帮助小颖解决这个问题吗?请同学们仔细审题,完整的写下你的答案.(多媒体出示学以致用题目)处理方式:找2生在黑板上进行展示,其他学生在练习本上处理,然后针对学生出现的问题,进行纠正,在解题过程中,要特别强调列表或树状图后文字语言的描述,从而使解题过程更加规范.设计意图:本环节的设计既让学生练习了用“树状图”或“列表法”求概率的方法,同时又规范了用“树状图”或“列表法”求概率的解题步骤.四、问渠那得清如许,为有源头活水来师:同学们,知识的积累、能力的提升在于及时的总结.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.你又有哪些困惑,提出来让大家来帮你解决.学生间畅谈自己本节课的收获及困惑.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、操千曲而后晓声师:通过本节课的学习,同学们的收获一定很多!收获的质量如何呢?请完成下面的达标检测题.(多媒体出示)1.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上 C .掷2次必有1次正面朝上 D .不可能10次正面朝上2.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.23D.143.从两组牌面分别是1,2的牌中各摸一张牌,则其牌面数字之和为3的概率为()A.13B.14C.12D.154.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会相同,小红希望上学时经过每个路口都是绿灯,出现这种情况的概率是()A.12B.14C.1 D.0处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、学而时习之必做题:习题3.1 第1,2题.选做题:小明和小颖做掷骰子的游戏,规则如下:1.游戏前,每人选一个数字:2.每次同时掷两枚均匀骰子;3.如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.板书设计:学生展示区。

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。

本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。

二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。

但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。

因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。

三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。

2.能够灵活运用所学的知识来解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。

2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。

在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。

2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。

例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。

2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。

通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。

3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率教案

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率教案

第三章 概率的进一步认识教案第1课时 用树状图或表格求概率教案1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率 【类型一】 两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来. 解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:裤子上衣 蓝色 黑色 棕色 白色 (白,蓝) (白,黑) (白,棕) 米色(米,蓝)(米,黑)(米,棕)由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:第一次第二次白1 白2 红 白1 —— (白2,白1)(红,白1) 白2 (白1,白2) —— (红,白2)红(白1,红)(白2,红)——由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次白1 白2 红 白1 (白1,白1) (白2,白1) (红,白1) 白2 (白1,白2) (白2,白2) (红,白2) 红(白1,红)(白2,红)(红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.。

北师版九年级上册 3.1用树状图和表格求概率

北师版九年级上册   3.1用树状图和表格求概率

2
3
(2,1) (3,1)
(2,2) (3,2)
(2,3) (3,3)
列 表 法
学以致用 (2010· 无锡中考题)假如你仅有一天的时间参 加上海世搏会,上午从A-中国馆,B-日本馆, C-美国馆中任意选择一处参观,下午从D-韩 国馆,E-英国馆,F-德国馆中任意选择一处 参观. (1)请用树状图或列表的方法,分析并写出你所 有可能的参观方式(用字母表示即可). (2)求出你上午和下午恰好都参观亚洲国家馆的 概率.
事件的概率的方法 叫列表法。
探究一
随机掷一枚均匀的硬币两次,至少有一次正面朝上 的概率是多少?
解:所有可能出现的结果如下:
正 (正,正) (正,反) (反,正) (反,反)

开始 反 正 反

总共有4种结果,每种结果出现的可能性相同,而至少 有一次正面朝上的结果有3种:(正,正),(正,反),(反,正 ),因此至少有一次正面朝上的概率是3/4.
1200


对此你有什么评论?
“配紫色”游戏的变异
解:所有可能出现的结果如下:
红色 蓝色
(红1,蓝) (红2,蓝) (蓝,蓝)
蓝 红
蓝 红2
红色1
红色2 蓝色
(红1,红) (红2,红) (蓝,红)
1200
红1
总共有6种结果,每种结果出现的可能性相同,而 可以配成紫色的结果有3种:(红1,蓝)(红2, 蓝),(蓝,红)因图 法
第一张牌的 牌面的数字
第二张牌的 牌面的数字 所有可能出 现的结果
开始 1 2
1
2
1
2
(1,1) (1,2) (2,1) (2,2)
从上面的树状图可以看出,一次试验可能出现的结 果有4种:(1,1),(1,2),(2,1),(2,2),而且每种结 果出现的可能性相同.也就是说,每种结果出现的 概率都是1/4.

北师大版九年级数学课件-用树状图或表格求概率

北师大版九年级数学课件-用树状图或表格求概率

如果不公 平,猜猜誰 獲勝的可能 性更大?
教師啟發
第二環節:一花獨放不是春,百花齊放春滿園
活動內容:
(1)每人拋擲硬幣20次,並記錄 每次試驗的結果,根據記錄填寫 下麵的表格:
拋擲硬幣 應注意什麼 問題?
教師啟發
第二環節:一花獨放不是春,百花齊放春滿園
活動內容:
(2)5個同學為一個小組,依次累計各組的試驗數據, 相應得到試驗100次、200次、300次、400次、500 次……時出現各種結果的頻率,填寫下表,並繪製成 相應的折現統計圖。
大時,試驗頻率基本穩定,而且在一般情況下,“一 枚正面朝上。一枚反面朝上”發生的概率大於其他兩 個事件發生的概率。所以,這個遊戲不公平,它對小 凡比較有利。
第二環節:一花獨放不是春,百花齊放春滿園
深入探究:在上面拋擲硬幣試驗中,
(1)拋擲第一枚硬幣可能出現哪些結果? 它們發生的可能性是否一樣? (2)拋擲第二枚硬幣可能出現哪些結果? 它們發生的可能性是否一樣? (3)在第一枚硬幣正面朝上的情況下, 第二枚硬幣可能出現哪些結果?它們發生 可能性是否一樣?如果第一枚硬幣反面朝 上呢?
因此,我們可以用樹狀圖或表格 教師啟發 表示所有可能出現的結果。
第二環節:一花獨放不是春,百花齊放春滿園
利用樹狀圖或表格,我們可以不重複,不
教師啟發
遺留地列出所有可能的結果,從而比較方 便地求出某些事件發生的概率。
第三環節:會當淩絕頂,一覽眾山小
活動內容1:
準備兩組相同的牌,每組兩張,兩張牌的牌面數字 分別是1和2.從每組牌中各摸出一張牌,稱為一次試驗。 (1)一次試驗中兩張牌的牌面數字和可能有哪些值? (2)(同位合作試驗)依次統計試驗30次、60次、90 次的牌面情況,填寫下表:

北师大九年级上册 3.1.2 用树状图或表格求概率 教学设计

北师大九年级上册 3.1.2 用树状图或表格求概率 教学设计

3.1.2用树状图或表格求概率教学设计人民喜爱.那么同学们想一想“石头、剪刀、布”有没有规则漏洞可钻呢?如果三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪刀、布”的方式确定,那么在一个回合中,三个人都出“剪刀”的概率是多少?问题1:这个游戏是几步试验完成?问题2:每种都有几个可能性?问题3:一共有多少种可能性?下面让我们一起来研究。

例 1 小明、小颖和小凡做“石头、剪刀、布”游戏。

游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布)所以小凡获胜的概率为:31 = 93小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为:31=93;小颖胜小明的结果有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为:31 = 93你能用列表法来解决这个问题吗?解:利用表格列出所有可能的结果:【做一做】小明和小军两人一起做游戏。

游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数字等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负。

如果你是游戏者,你会选择哪个数?方法指导:这个问题看上去复杂,实际上等同于:两人各掷一次均匀的骰子,将两人掷得的点数相加,点数之和为几的概率最大?所以掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大。

利用列表法列出所有可能出现的结果:从表格中,能看出和为7出现的次数最多,所以选择7,概率最大!【想一想】这个题目用树状图合适吗?解:因为小明和小军掷骰子出现的可能性相同,所以可以利用树状图列出所有可能出现的结果:共有36种等可能的结果.和为7出现的次数最多,所以得到点数之和是7的概率最大;所以一般来说,选择7这个数获胜的可能性最大.123456123456小明小军234567345678456789567891067891011789101112。

3.1用树状图或表格求概率(放回型或独立型)课件++2023—2024学年北师大版数学九年级上册

3.1用树状图或表格求概率(放回型或独立型)课件++2023—2024学年北师大版数学九年级上册

(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程).
解:画树状图为:
共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果数为4,所以抽得的2张卡片上的数字之和为3的倍数的概率 .
片,卡片除正面图案不同外,其余均相同,其中两张正面印有冰墩墩图案,一张正面印有雪容融图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张都是冰墩墩卡片的概率是__.
5.(2022·珠海市一模)某品牌免洗洗手液按剂型分为凝胶型、液体型、泡沫型三种型号(分别用 , , 依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是__;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
解:树状图如下:
由上可得,一共有12种等可能性,其中一定有乙的可能性有6种,故一定有乙的概率是 .
10.如图,正方形的边长为2,中心为 ,从 , , , , 五点中任取两点.
(1)求取到的两点间的距离为2的概率;
解:从 , , , , 五点中任取两点,所有等可能出现的结果有: , , , , , , , , , ,共有10种,满足两点间的距离为2的结果有 , , , 这4种,则 两点间的距离为 .
(2)求取到的两点间的距离为 的概率;
共有6种等可能的结果,它们为 , , , , , .
(2)求点 在 轴上的概率.
[答案] 点 在 轴上的结果数为3, 点 在 轴上的概率 .第2课 用树状图或表格求概率 (不放回型)

2024年北师大版九年级上册教学第三章 概率的进一步认识用树状图或表格求概率

2024年北师大版九年级上册教学第三章 概率的进一步认识用树状图或表格求概率

第1课时用树状图或表格求概率课时目标1.经历猜测、设计试验方案、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,积累数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.学习重点能运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.学习难点理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.课时活动设计复习回顾1.小明和小凡一起做游戏.在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜.(1)这个游戏对双方公平吗?解:不公平.(2)在一个双人游戏中,你是怎样理解游戏对双方是否公平?如果是你,你会设计一个什么样的游戏活动判断胜负?解:双方获胜的概率相同才算公平.我会设计一个袋中装有2个红球和2个白球的游戏,每个球除颜色外都相同,从袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜.(设计游戏不唯一)2.小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?如果不公平,猜猜谁获胜的可能性更大.引导学生展开讨论.设计意图:使学生再次体会“游戏对双方是否公平”的意义,并由学生用自己的语言描述出“游戏公平”的含义是游戏的双方获胜的概率要相同.同时,巧妙的利用一个“如果是你,你会设计一个什么样的游戏活动判断胜负?”的问题,引发学生的思考,激发学生参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容.探究新知(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:抛掷的结果两枚正面朝上两枚反面朝上一枚正面朝上、一枚反面朝上频数频率(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验200次、300次、400次、500次……时的试验结果,填写下表,并绘制成相应的折线统计图.试验次数200300400500…两枚正面朝上的次数两枚正面朝上的频率两枚反面朝上的次数两枚反面朝上的频率一枚正面朝上、一枚反面朝上的次数一枚正面朝上、一枚反面朝上的频率(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率.由此,你认为这个游戏公平吗?深入探究:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:抛掷第一枚硬币抛掷第二枚硬币正面朝上的次数正面朝上的次数反面朝上的次数反面朝上的次数正面朝上的次数反面朝上的次数通过上面的试验可以发现抛掷第一枚硬币时出现“正面朝上”的概率约为0.50,抛掷第二枚硬币时出现“正面朝上”的概率约为0.50.表格中的数据支持你的猜测吗?探究体会:由于硬币是均匀的,因此抛掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.所以,连续抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的.因此,我们可以用下面的树状图或表格表示所有可能出现的结果:第二枚硬币第一枚硬币正反正(正,正)(正,反)反(反,正)(反,反)总共有4种结果,每种结果出现的可能性相同.14;14;24=12.因此,这个游戏对三人是不公平的.设计意图:让学生亲自经历对随机现象的探索过程,亲自经历猜测、设计试验方案、试验、收集试验数据、分析试验结果等活动过程,以获得事件发生的概率,进一步体验数据的随机性.巩固训练活动1:小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:(方法一)在一次试验中,上衣和裤子搭配有4种等可能的情况:红色上衣+黑色裤子;红色上衣+白色裤子;白色上衣+黑色裤子;白色上衣+白色裤子.而白色上衣和白色裤子的情况有1种,因此,恰好是白色上衣和白色裤子的14.(方法二)可以用树状图来表示.总共有4种可能的结果,每种结果出现的可能性相同.其中恰好是白色上衣和白色裤子的结果有1种:(白,白).因此,恰好是白色上衣和白色裤子的概率为14.(方法三)上衣和裤子颜色搭配有4种等可能的情况,可以列表来表示.上衣的颜色红白裤子的颜色黑(红,黑)(白,黑)白(红,白)(白,白)总共有4种结果,每种结果出现的可能性相同,其中,恰好是白色上衣和白色裤子的结果有1种:(白,白).14.活动2:一个盒子中装有一个红球、一个白球.这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求:(1)两次都摸到红球的概率;(2)两次摸到不同颜色球的概率;(3)只有一张电影票,小明和小颖通过做这样一个游戏,谁获胜谁就去看电影.如果是你,你如何选择?解:由题意,画树状图如下:总共有4种可能的结果,每种结果出现的可能性相同.(1)两次都摸到红球的结果有1种:(红,红).所以两次都摸到红球的概率为14.(2)两次都摸到不同颜色球的结果有两种:(红,白)(白,红).所以两次都摸到24=12.(3)两次摸到相同颜色球则小明去,两次摸到不同颜色球则小颖去(答案不唯一).设计意图:通过上面两个活动,分别用列表法和画树状图法分析上衣和裤子搭配的可能的情况,两次在盒中摸球可能的情况,计算涉及两步试验的随机事件发生的概率,巩固所学的知识.课堂小结1.本节课你有哪些收获?有何感想?2.用列表法求概率时应注意什么情况?设计意图:通过对本节课的回顾反思,培养学生反思的习惯,加深学生对本节知识的理解和熟练应用.课堂8分钟.1.教材第62页习题3.1第1,3题.2.七彩作业.第1课时用树状图或表格求概率分析方法:1.列表法.2.画树状图法.教学反思第2课时利用概率判断游戏的公平性课时目标1.通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.3.让学生掌握一定的判断游戏公平性的方法,提高其决策能力.学习重点利用概率判断游戏的公平性.学习难点用适当的方法求事件发生的概率.课时活动设计复习回顾上节课,你学会了用什么方法求某个事件发生的概率?设计意图:回顾上节课所学内容,为这节课计算概率作铺垫.情境引入“石头、剪刀、布”是广为流传的游戏,游戏时,小明每次做“石头”“剪刀”“布”三种手势中的一种,他做出“石头”手势的概率为13.设计意图:通过学生熟悉的游戏引入本课的学习主题,借助计算概率分析游戏的公平性,感受概率的应用价值.探究新知小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有339=13;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜39=13;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获39=13.因此,这个游戏对三人是公平的.设计意图:通过利用画树状图法检验游戏是否公平,提高学生对求概率方法的熟练程度,规范书写步骤.典题精讲小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?解:选择7,理由:列表如下:第二次掷得的点数123456第一次掷得的点数123456723456783456789456789105678910116789101112由表格可知,共有36种可能的结果,每种结果出现的可能性相同,其中点数之和为7的有6种,是最多的,∴P(点数之和为7)=636=16.所以游戏者事先选择数字7获胜的可能性较大.设计意图:本环节的设置,开放性更强,让学生在问题中寻找解决方案.加强用列表法和画树状图求概率的能力,从中也体会出本题因为结果较多,使用列表法更好一些,感受这两种求概率方法的优劣.巩固训练有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.解:用A,a分别表示第1张的上、下部分,用B,b分别表示第2张的上、下部分,用C,c分别表示第3张的上、下部分.画树状图如下:共有9种可能的结果,每种结果出现的可能性相同,其中恰好能拼成原来一幅画的结果有3种:(A,a)(B,b)(C,c).因此两张恰好能拼成原来一幅画的概率为39=13.设计意图:让学生自主选择合适的方式求事件发生的概率,加强对利用画树状图法和列表法求概率的理解.进一步感受概率存在的普遍性,消除对新知的恐惧感.课堂小结今天这节课学习了什么?你掌握了什么?设计意图:帮助学生掌握求概率的方法,掌握数学知识.课堂8分钟.1.教材第64页习题3.2第1,2,3题.2.七彩作业.第2课时利用概率判断游戏的公平性利用概率判断游戏的公平性的一般方法:1.运用列表法或画树状图法分析事件发生的可能情况;2.计算事件发生的概率;3.比较概率的大小关系;4.作出判断.教学反思第3课时利用概率玩转盘游戏课时目标1.经历利用画树状图法和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及培养学生及时反思的习惯.2.鼓励学生思维的多样性,提高运用所学知识解决实际问题的能力.学习重点借助画树状图、列表法计算随机事件的概率.学习难点在利用画树状图法或列表法求概率时,各种结果出现的可能性必须相同.课时活动设计情境引入“配紫色”游戏.小颖为学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?解:(1)所有可能出现的结果共有6种,树状图和表格分别如下(选择其中一种即可):B盘黄色蓝色绿色A盘红色(红,黄)(红,蓝)(红,绿)白色(白,黄)(白,蓝)(白,绿)(2)由(1)可得,共有6种结果.每种结果出现的可能性相同.其中游戏者获胜的结果有116.设计意图:通过这个转盘“配紫色”游戏,让学生再次经历利用画树状图或列表法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同,培养学生运用所学知识解决问题的能力.探究新知如果把转盘变成如图所示的转盘进行“配紫色”游戏.(1)利用画树状图或列表法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?12;小亮则先把转盘A的红色区域分成2等份,分别记作“红色1”“红色2”,12.B盘红色蓝色A盘红色1(红1,红)(红1,蓝)红色2(红2,红)(红2,蓝)蓝色(蓝,红)(蓝,蓝)你认为谁做得对?说说你的理由.(小组合作交流)小颖的做法不正确,小亮的做法正确.通过合作交流,学生会发现A盘中蓝色区域和红色区域的面积不同,因而指针落在这两个区域的可能性不同.而用列表法或画树状图法求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.而小亮的做法把左边转盘中的红色区域分成2等份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色”“红色1”“红色2”三个区域的等可能性,因此是正确的.设计意图:通过辨析小亮和小颖方法的正确性,加深学生对等可能性的认识,明确在利用画树状图或列表的方法求概率时,各种结果出现的可能性必须相同.典例精讲例一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求两次摸到的球的颜色能配成紫色的概率.解:把两个红球分别记为“红1”“红2”,两个白球分别记为“白1”“白2”,则列表如下:第二次红1红2白1白2蓝第一次红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,蓝)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,蓝)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,蓝)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,蓝)蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)总共有25种可能的结果,每种结果出现的可能性相同,两次摸到的球的颜色能配成紫色的结果共4种:(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配425.设计意图:通过对典型例题的分析,进一步让学生体会等可能事件概率的求法,突破了本节课的难点.巩固训练1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成面积相等的三个扇形.请求出配成紫色的概率.解:列表如下,A盘红蓝白B盘红(红,红)(红,蓝)(红,白)黄(黄,红)(黄,蓝)(黄,白)蓝(蓝,红)(蓝,蓝)(蓝,白)由表格可得,一共有9种结果,每种结果出现的可能性相同,其中可以配成紫色的结果有2种:(红,蓝)(蓝,红),所以P(配成紫色)=29.2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为13.(答案不唯一,老师引导学生做一做)设计意图:通过这两个课堂练习检验学生上课掌握情况,特别是第2题有一定难度,在设计时注意指针指向每种颜色的可能性是一样的.课堂小结1.利用画树状图法和列表法求概率时应注意什么?2.你还有哪些收获和疑惑?设计意图:培养学生及时反思的习惯,归纳本节课的收获.这种习惯不仅有助于学生深入理解课堂内容,而且能够提高他们独立思考和自主学习的能力.课堂8分钟.1.教材第68页习题3.3第1,2,3题.2.七彩作业.第3课时利用概率玩转盘游戏转盘游戏:1.转盘被分成面积相等的扇形.2.转盘被分成面积不相等扇形.教学反思。

北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率

北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率

用树状图或表格求概率学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率. 难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎩必然事件事件确定事件不可能事件概率随机事件列表法概率计算树状图法用频率估计概率一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况(不重不漏). 二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是: (1)某次试验仅涉及两个因素; (2)可能出现的结果数目较多. 用树状图与表格求概率的联系与区别 联系:用树状图或表格求概率的共同前提是: (1)各种情况出现的可能性是相等的; (2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏. 区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.(2,3)考点1 用树状图求概率【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行 (2)两辆车右转,一辆车左转 (3)至少有两辆车左转在用树形图树形图与具【变式2】 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?练1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上的数字之积为偶数的概率是( )A.14B.12C.34D.56练2.某中学为迎接建党九十八周年,举行了以“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A.12B.13C.14D.16练3.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.12练4.有两部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择一部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果).考点2 用表格求概率【例2】同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2.【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4 游戏转盘B游戏转盘A A练1.某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的同学恰为一男一女的概率是( )A.13B.23C.49D.59练2.小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.16练3.今年某市为创评“全国文明城市”,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的三张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________.(2)请用列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.考点3. 频率估计概率类型【例3】在一个不透明的袋子里装有3个黑球和若干个白球,它们除颜色不同外其余都相同.在不允许将球倒出来数的前提下,小明为估计袋中白球个数,采用如下办法:从中随机摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色……不断重复上述过程,小明共摸球1000次,其中200次摸到黑球.根据上述数据,小明估计袋子中白球有________个.【变式1】为了估计湖里有多少条鱼,先从湖里捕捞100条鱼做上标记,然后放回湖里去,经过一段时间,带有标记的鱼完全混合于鱼群后,第二次再捕捞125条,发现其中2条有标记,那么由此可估计湖里大约有___________条鱼【变式2】在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A 、15个B 、20个C 、30个D 、35个练1.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .练2.一只不透明的袋中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和.记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:0.34 0.330.33 解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.练3.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 ( )个黄球.考点4. 几何频率【例4】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.练1.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.练2.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A .21B.32 C .43 D .54练3.为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域内的频率稳定在常数0.25附近,请你估计不规则区域的面积.【当堂检测】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?第4题图3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6. 在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,它们的材质、形状、大小等完全相同,小凯从布袋里随机取出1个小球,记下数字为x,小敏从剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点P的坐标(x,y).(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.【演练方阵】一、填空题:1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 . 二、选择题:1、同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4) 2、 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)正数的概率为( )A .18B .16C .14D .123.从长为3,5,7,10是( )A .14B .12C .34D .1三、解答题:1、有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2、有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?3. 在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.4. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.甲乙。

北师大版九年级数学上册:3.1用树状图或表格求概率(教案)

北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
2.教学难点
-难点内容:理解并正确应用树状图和表格列举所有可能结果。
-突破方法:通过直观的图形展示和步骤分解,帮助学生理解树状图的构建过程,以及表格的填写方法。
-举例解释:在掷骰子的问题中,如何通过树状图将每次掷出的可能结果清晰展示出来,以及如何用表格形式列出所有组合。
-难点内容:计算简单事件的概率。
北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
一、教学内容
北师大版九年级数学上册:3.1用树状图或表格求概率。本节课主要围绕以下内容展开:
1.理解概率的定义,掌握用树状图和表格列举所有可能结果的方法。
2.利用树状图和表格求简单事件的概率。
3.掌握如何利用概率的性质求解实际问题。
内容包括但不限于:列举所有可能结果的方法,树状图的构建,表格的设计,概率的计算,以及如何应用概率知识解决实际问题。通过本节课的学习,使学生能够熟练运用树状图和表格求概率,提高解决问题的能力。
关于学生小组讨论环节,我觉得自己在引导和启发方面还有待提高。有时候,同学们在讨论过程中可能会偏离主题,我没有及时把他们引导回来。在今后的教学中,我需要更加关注学生的讨论进度,适时给出建议和指导,帮助他们聚焦问题的关键点。
最后,我觉得在课堂总结环节,可以更多地让同学们参与进来。例如,让他们回顾今天学到的知识点,并尝试用自己的话进行总结。这样既能检验他们对知识的掌握程度,也能提高他们的语言表达能力。
其次,在讲解重点和难点时,我尽量用简单明了的语言和具体的例子进行解释。但观察同学们的反应,我觉得可能还需要进一步简化讲解,突出关键步骤,让他们更容易理解和掌握。
此外,实践活动中的小组讨论环节,同学们表现得非常积极,提出了很多有创意的想法。但在分享成果时,有些小组的表达不够清晰,可能是因为他们对问题的理解还不够深入。为了提高同学们的表达能力,我计划在接下来的课程中,多增加一些小组内的讨论和展示环节,鼓励他们多思考、多表达。

北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计

北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计

北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计一. 教材分析《树状图或表格求简单事件的概率》是北师大版数学九年级上册的一节内容。

本节课的主要内容是让学生掌握利用树状图或表格求简单事件的概率的方法。

通过学习本节课,学生能够理解概率的基本概念,学会使用树状图或表格来求解事件的概率,为后续学习更复杂的概率问题打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的数学概念和运算规则有一定的了解。

但是,学生在学习概率这一概念时,可能会感到较为抽象和难以理解。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,并通过树状图或表格的形式来进行分析和计算。

三. 教学目标1.知识与技能:让学生掌握利用树状图或表格求简单事件的概率的方法,并能够运用到实际问题中。

2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:让学生体验到数学与生活的紧密联系,激发学生对数学学习的兴趣。

四. 教学重难点1.重点:让学生掌握利用树状图或表格求简单事件的概率的方法。

2.难点:如何引导学生从实际问题中抽象出概率模型,并运用树状图或表格来进行分析和计算。

五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生从实际问题中抽象出概率模型。

2.启发式教学法:在教学过程中,教师引导学生进行自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.直观教学法:通过树状图或表格的展示,使学生更加直观地理解和掌握概率的计算方法。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示树状图或表格的例子。

2.教学素材:准备一些实际问题,作为学生练习的题目。

3.学生活动材料:准备一些纸张,供学生绘制树状图或表格。

七. 教学过程1.导入(5分钟)教师通过生活实例的引入,引导学生思考事件的概率问题。

例如,抛硬币实验,让学生思考抛两次硬币,正面向上的概率是多少。

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
P(小玲获胜) = P(数学课代表获胜)
41 =
1
4
P(老段获胜) = 2

(正,反) (反,反)
总共有4种结果,每种结果出现的可能性相同。 其中,小玲获胜的结果有1种:(正,正),
所以小玲获胜的概率是1|4; 老段获胜的结果有1种:(反,反), 所以老段获胜的概率是1|4; 课代表获胜的结果有2种:(正,反),(反,正) 所以课代表获胜的概率是2|4. 因此,这个游戏对三人是不公平的。
新问题:数学课代表宋健全、小玲、老段三个人 都想去参观铁人纪念馆和历史博物馆,但只有 一个名额。三人决定一起做游戏,谁获胜谁去。
游戏规则如下:连续抛掷两枚均匀的硬币, 如果两枚正面朝上,则数学课代表宋健全获胜; 如果两枚反面朝上,则小玲获胜;如果一枚正 面朝上、一枚反面朝上,老段获胜。
你认为这个游戏公平吗?
我们班数学课代表和小玲都想参加学校组织的参观大 庆市铁人纪念馆和历史博物馆活动,但名额只有一个,两 人决定一起做游戏,谁获胜谁去,游戏规则如下:
在一个袋子中装有3个白球和2个黑球共5个球,每个球 除颜色以外都相同,从袋子中任意摸出一个球.若摸到白球, 则数学课代表获胜 ;若摸到黑球,则小玲获胜 。
你能用图形表示它们的结果吗?(画图)
树状图
第一枚硬币 第二枚硬币 所有可能出现结果
解:
正 正
反 开始
正 反
1
P(小玲获胜) =
4
P(数学课代表获胜)
1 P(老段获胜) = 2
反 1 = 4
(正,正) (正,反) (反,正) (反,反)
列表格
解: 第一枚硬币第二枚硬币 正


(正,正) (反,正)
你认为这个游戏公平吗?
如果游戏不公平,请你设计一个游戏使其公平: 1、生活中我们玩的游戏有哪些? 2、利用下列物件设计一个游戏规则: (1)两枚质地均匀的硬币 (2)4张扑克(每2张一模一样) (3)4个乒乓球(除颜色外均相同) (4)2枚骰子(质地均匀)
3、总结:为了保证游戏公平,设计规则 则时,要使各种情况出现的可能性相同
利用树状图或表格,可以不重复、
不遗漏地列出所有可能的结果
数学老师每周一早上都要从泰
康乘车赶到敖林学校上班,路上要 经过2个红绿灯(不考虑黄灯)路口, 假设每个路口红灯和绿灯亮的时间 相同,那么老师从家出发到学校, 至少遇到一次红灯的概率是多少? 不遇红灯的概率是多少?
在上面问题中,当其它条件不 变的情况下,经过3个路口时
求:至少遇到一次红灯的概率是多 少?
不遇到红灯的概率是多少?
师友分享本节课的收 获、感悟与相互评价。
布置作业:
1、课时精炼P65--P66 2、预习下节课内容
下课了!
结束寄语
•学无止境 •没有最好,只有更好
如果不公平,猜猜谁获胜的可能性更大?
在上面掷硬币的实验中, (1)掷第一枚硬币可能出现哪些结果?
它们发生的可能性是否一样? (2)掷第二枚硬币可能出现哪些结果?
它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下,
第二枚硬币可能出现哪些结果? 它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?
引入:
同学们,你的人生理想是什么?

很多人的想法是:我想中500万, 我想考清华,同学们你们知道成功概率有多 大吗?哪个更容易呢?揭示课题
Байду номын сангаас题:
敖林西伯学校要在今年六月份组织学生 参观大庆市铁人纪念馆和历史博物馆,但 只给我们八年级二班一个名额,我们班学 生总数是32人,那么从中抽取1人,抽到 数学课代表的概率是多少?
相关文档
最新文档