3.1 用树状图或表格求概率 第二课时

合集下载

北师大版九年级数学上册课件 3-1-2 利用概率判断游戏的公平性

北师大版九年级数学上册课件 3-1-2 利用概率判断游戏的公平性

1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
总共有36种可能的结果,每种结果出现的可能性相同.其中,和为7的
6 1
结果最多,有6种,其概率为
= ,所以如果我是游戏者,我会选择
36 6
数字7.
例3 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别
是1,2,···,6.试分别计算如下各随机事件的概率.
36
(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点
1
数之和等于12的这个事件发生的概率为 .
36
归纳总结
当一次试验要涉及两个因素(例如
掷两个骰子)并且可能出现的结果数目
较多时,为不重不漏地列出所有可能结
果,通常采用列表法.
例4 一只不透明的袋子中装有1个白球和2个红球,这些球
红2
(红2,白) (红2,红1)
(红1,红2)
归纳总结
什么时候用“列表法”方便,什么时候用“树形图”方便?
➢当一次试验涉及两个因素时,且可能出现的结果较多时
,为不重复不遗漏地列出所有可能的结果,通常用列表法.
➢当一次试验涉及3个因素或3个以上的因素时,列表法就
不方便了,为不重复不遗漏地列出所有可能的结果,通常
用树形图.
随堂练习
1.一个不透明的布袋中装有分别标有数字1,2,3,4

3.1用树状图或表格求概率(2)A (1)

3.1用树状图或表格求概率(2)A (1)

自学检测 :共10分钟 (此页3分钟)
2.一个均匀的小正方体,各面分别标有1~6六个数字, 求下列事件的概率: (1)随机掷这个小正方体,落地后朝上面数字是6的概率 是 1/6 ; (2)随机掷这个小正方体两次,两次落地后朝上面数字之 和为6的概率是 5/36.
3.袋中装有四个红色球和两个兰色球,它们除了颜色外都 相同(1)随机从中摸出一球,恰为红球的概率是 2/3 ; (2)随机从中摸出一球,记录下颜色后放回袋中,充分 混合后再随机摸出一球,两次都摸到红球的概率为 4/9; 2/5 (3)随机从中一次摸出两个球,两球均为红球的概率是
2、如图,小明和小红正在玩一个游 戏:每人先抛掷骰子,骰子朝上的数 字是几,就将棋子前进几格,并获得 格子中 的相应物品。现在轮到小明 掷,棋子在标有数字“1”的那一格, 小明能一次就获得“汽车”吗?小红 下一次抛掷可能得到”汽车”吗?她 下一次得到”汽车”的概率是多少? (选做)
4.完成课本63“做一做”
讨论、点拨、更正(8分钟)
p63“做一做”参考答案
4
讨论,更正,点拨
利用树状图或表格可以清晰地表 示出某个事件发生的所有可能出 现的结果;从而较方便地求出某 些事件发生的概率.
当堂训练 :共16分钟 1
D
2.(2013广东湛江)把大小和形状完全相同的6张卡片分成两组, 每组3张,分别标上数字1,2,3,将这两组卡片分别放入两个盒子 中搅匀,再从中各随机投取一张。 (1)试求取出的两张卡片数字之和为奇数概率 (2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡 片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明 理由。
1、随机掷一枚均匀的硬币两次,至少有一次正面朝上的 概率是多少?(先补全树状图,再完成填空)

3.1.2 用树状图或表格求概率(2)

3.1.2 用树状图或表格求概率(2)

新课推进
1、小明、小颖和小凡做“石头、剪刀、布”游 戏, 游戏规则如下:
由小明和小颖做“石头、剪刀、布”的游戏, 如果两 人的手势相同,那么小凡获胜;如 果两人手势不同, 那么按照“石头胜剪刀, 剪刀胜布,布胜石头”的规则决定小明和小颖 中的获胜者。
假设小明和小颖每次出这三种手势的可能性相同, 你认为这个游戏对三人公平吗?
4.【例2】小明和小红玩抛硬币游戏,连续抛两次.小明说:
“如果两次都是正面,那么你赢;如果两次是一正一反,那
1
1
么我赢.”小红赢的概率是 4 ,小明赢的概率是 2 ,据
此判断该游戏 不公平 (填“公平”或“不公平”).
课堂小结
通过本节课的学习你有什么收获?还有哪 些疑惑?
思考:用树状图或表格求概率时应注意什 么?
开始
小明 石头 剪刀

小颖 石头 剪刀 布 石头 剪刀 布 石头 剪刀 布
所有可能出现的结果 (石头、石头) (石头、剪刀) (石头、布) (剪刀、石头) (剪刀、剪刀)
(剪刀、布) (布、石头) (布、剪刀)
(布、布)
小明 石头
剪刀

小颖
石头 (石头、石头) (石头、剪刀) (石头、布)
剪刀 (剪刀、石头) (剪刀、剪刀)(剪刀、布)
1 用树状图或表格求概率
第2课时 用树状图或表格求概率(2)
北师大版 九年级上册
复习旧知
上节课我们通过了抛硬币的小实验了解了 利用树状图和列表的方法来求概率,请同 学们回顾下我们画树状图和列表的步骤和 方法。
随着试验可能性的增加,你还会继续画树状 图和列表吗?
这节课我们将继续学习用树状图或表格求概 率的有关内容。
解法2:列表

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案

第三章概率的进一步认识3.1 用树状图或表格求概率第 2 课时一、教学目标1.能运用画树状图和列表的方法计算一些简单事件的概率.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《石头、剪刀、布》图片、《用列举法求概率——列表法》微课.五、教学过程【复习引入】1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师出示问题,学生回忆上节课节课所学内容.设计意图:通过对上节课的复习帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?师生活动:教师出示问题,学生思考、讨论,教师适当引导,最后师生共同得出答案.解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状共同图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为31 93 =;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为31 93 =;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为31 93 =.因此,这个游戏对三人是公平的.师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.设计意图:本例题从理论上求出了在玩“石头、剪刀、布”的游戏时双方胜、平、负的概率,让学生进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.【典例精析】例小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?师生活动:教师找几名学生板演,讲解出现的问题.分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就最大.解:选择数字7;理由:列表如下:由表可知,共有36种可能的结果,每种结果出现的可能性相同,其中和为7的概率最大,概率为61366=,所以选择数字7获胜的概率最大.【课堂练习】1.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得的面朝上的点数之和是3的倍数的概率是().A .B .C .D .2.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P =_________.3.小莉和爸爸玩“锤子、剪刀、布”的游戏,每次用一只手可以出“锤子、剪刀、布”三种手势之一,规则是:锤子赢剪刀、剪刀赢布、布赢锤子.若两人出相同手势,则算打平.如果小莉这次出“布”手势,则小莉赢的概率是___________.4.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏________(填“公平”或“不公平”).5.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.师生活动:教师找几名学生板演,讲解出现的问题.6.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字1,2,3,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.参考答案1.A .2..3.13.4.不公平.5.解:将三张大小一样而画面不同的画片分别记为A ,B ,C ,将出现的可能结果列表如下:由表可知,出现的总结果有9种,其中,能拼成原来的一幅画的结果有(A 上,A 下),13165185613(B 上,B 下),(C 上,C 下)三种,所以所求的概率为3193. 解:列表分析如下:由列表可知,所有可能出现的结果有9种,其中第二次抽取的数字大于第一次抽取的数字的情况有3种,所以P (第二次抽取的数字大于第一次抽取的数字)==.设计意图:让学生加深对所学知识的理解.六、课堂小结1.用树状图或表格求概率注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(2)1.用树状图或表格求概率3913。

九年级数学上册第三章概率的进一步认识3.1用树状图或表格求概率第二课时全国公开课一等奖百校联赛微课赛

九年级数学上册第三章概率的进一步认识3.1用树状图或表格求概率第二课时全国公开课一等奖百校联赛微课赛
由图可知共有 8 种等可能的结果,其中 A,C 两个区域所涂颜色不相同 的有 4 种, 故 P(A,C 两个区域所涂颜色不相同)=4 = 1.
82
答案
7/7
第二课时
1/7
利用树状图或表格,我们能够不 重复 、不 遗漏 地列出全 部可能结果,从而比较方便地求出一些事件发生概率.
2/7
12345
1.如图,随机闭合开关S1,S2,S3中两个,则灯泡发光概率是( )
A.34
B.23Biblioteka C.13D.12B
关闭
答案
3/7
12345
2.有三张正面分别写有数-1,1,2卡片,它们后面完全相同,现将这三
选两数,与7组成“中高数”概率是( )
A.12
B.23
C.25
D.35
关闭
C
答案
5/7
12345
4.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间概
率为
.
关闭
2 3
答案
6/7
12345
5.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色, 每解个:画区出域树必状须图涂如色图而. 且只能涂一个颜色.请用列举法(画树状图或 关闭 列表),求A,C两个区域所涂颜色不相同概率.
张卡片后面朝上洗匀后随机抽取一张,将其正面数作为a值,再从剩
下两张卡片中随机抽一张,将其正面数作为b值,则点(a,b)在第二象
限概率为( )
A.16
B.13
C.12
D.23
关闭
B
答案
4/7
12345
3.若十位上数字比个位上数字、百位上数字都大三位数叫做中高
数.如796就是一个“中高数”.若十位上数字为7,则从3,4,5,6,8,9中任

用树状图或表格求概率 第二课时

用树状图或表格求概率  第二课时

丹东市第二十四中学 3.1用树状图或表格求概率第二课时主备:孙芬副备:曹玉辉李春贺审核:2014年8月31日一、学习准备:求概率的方法?二、学习目标:1、会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.三、自学提示:(一)自主学习小明、小颖和小凡三人做“石头、剪刀、布”的游戏。

游戏规则如下:小明、小颖和做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么就按“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖谁获胜。

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?(二)合作探究完成课本63页做一做练习:扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项。

(1)每位考生有选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率。

(友情提醒:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)四、学习小结:五、夯实基础:基础题:1、某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为.3、在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是..红球..的概率是__________.3、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白 色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗3. (2011山东威海,21,9分)甲、乙二人玩一个游戏,每人抛一个质地均匀的 小立方体(每个面分别标有数字1、2、3、4、5、6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个 游戏公平吗?试说明理由.六、能力提升:端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:•分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?布置作业: 【评价反思】。

新北师大版九年级数学上册第三章3.1用树状图或表格求概率第2课时利用概率判断游戏的公平性素材版

新北师大版九年级数学上册第三章3.1用树状图或表格求概率第2课时利用概率判断游戏的公平性素材版

第三章概率的进一步认识1用树状图或表格求概率第2课时游戏的公平性素材一新课导入设计置疑导入归纳导入复习导入类比导入图3-1-16如图3-1-16,小明、小亮和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小亮玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小亮中的获胜者.假设小明和小亮每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?[说明与建议] 说明:通过做游戏激发了学生学习的兴趣,一方面是引导学生进一步巩固用树状图或表格求概率的知识,另一方面是为学习第二节(用频率估计概率)埋下伏笔.建议:让三位学生做游戏,尽量次数多一些,其他同学统计结果,然后小组讨论,再让学生仿照上节课所学的用树状图或表格求概率的方法尝试解决上面的问题,并让学生从概率的角度解释上面的问题.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏.起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展它传到了欧洲,到了近现代逐渐风靡世界.简单明了的规则,单次玩法比拼运气,多回合玩法比拼心理博弈,使得“石头、剪刀、布”这个古老的游戏同时拥有“意外”与“技术”两种特性,深受世界人民喜爱.那么同学们想一想“石头、剪刀、布”有没有规则漏洞可钻呢?[说明与建议] 说明:从“石头、剪刀、布”这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率.建议:以讲故事的形式引出问题,自然衔接学生也便于接受,从而充分调动学生的求知欲和好奇心,为顺利完成判断游戏规则公平与否的依据做好铺垫.素材二教材母体挖掘62页例1小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.图3-1-17假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?【模型建立】 “石头、剪刀、布”这个游戏是公平的,是没有漏洞可钻的,也就是说对于参与的各方获胜的概率是相同的.实际上,在真正玩“石头、剪刀、布”时,双方做这三种手势的可能性不一定相同,每个人都有自己的习惯和偏好,本例中我们假设小明和小颖每次做这三种手势的可能性相同,如果没有这种假设后面的解法就缺乏理论依据.事实上,我们在将一个实际问题数学化时,往往不仅仅是一个抽象化的过程,而且也是一个理想化的过程.【变式变形】1.[常州中考] 一个不透明的箱子里共有3个球,把它们分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.[答案:(1)13 (2)19]2.亲爱的同学们,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A ,B ,C 三张除颜色以外完全相同的卡片,卡片A 两面均为红色,卡片B 两面均为绿色,卡片C 一面为红色,一面为绿色.(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0? (2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,则猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.[答案:(1)A(2)猜绿色正确率高一些.因为一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片朝上的一面是绿色.可列表格:朝上 B(绿1) B(绿2) C(绿) 朝下B(绿2)B(绿1)C(红)表格中1和2分别表示B 卡的两面.可见朝下一面的颜色有绿、绿、红三种可能,即P(绿色)=23,P(红色)=13,所以猜绿色的正确率高一些.] 3.[遵义中考] 小明、小军两同学做游戏,游戏规则:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中各取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?[答案:(1)略 (2)小明获胜的槪率为25,游戏不公平,对小军有利]素材三 考情考向分析[命题角度1] 用列表法或树状图求概率列表法和树状图法的优点是能把事件发生的每一种可能都具体表示出来,尤其是树状图法更能直观地表现出事物发生的每一种可能.利用表格可以有条理地排列试验结果,可以化抽象为直观,化复杂为简单,便于正确计算事件发生的概率,能提高计算的正确性,同时还可以丰富解决问题的策略.如习题3.2第4题,第6题.例 [武汉中考] 袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率. (2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.[答案:(1)①14 ②12 (2)23][命题角度2] 概率与代数、几何问题的结合新课标实施以来,概率问题成为新增的一道亮丽的风景,在具体情景中体会概率意义的同时,增加了同其他数学知识的联系,展示了数学的整体性.例 [陇南中考] 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标; (2)求点(x ,y)在函数y =-x +5图象上的概率.[答案:(1)(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) (2)13]素材四 教材习题答案P64随堂练习有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.解:13.P64习题3.21.准备两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1,2,3.从每组牌中各摸出一张牌. (1)两张牌的牌面数字和等于1的概率是多少? (2)两张牌的牌面数字和等于2的概率是多少? (3)两张牌的牌面数字和为几的概率最大? (4)两张牌的牌面数字和大于3的概率是多少? 解:(1)0;(2)19;(3)4;(4)23.2.经过某路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,求下列事件的概率:(1)两人都左拐;(2)恰好有一人直行,另一人左拐;(3)至少有一人直行.解:(1)19;(2)29;(3)59.3.掷两枚质地均匀的骰子,求下列事件的概率:(1)至少有一枚骰子的点数为1; (2)两枚骰子的点数和为奇数; (3)两枚骰子的点数和大于9;(4)第二枚骰子的点数整除第一枚骰子的点数. 解:(1)1136;(2)12;(3)16;(4)718.4.小明和小军做掷骰子游戏,两人各掷一枚质地均匀的骰子.(1)若两人掷得的点数之和为奇数,则小军获胜,否则小明获胜.这个游戏对双方公平吗?为什么? (2)若两人掷得的点数之积为奇数,则小军获胜,否则小明获胜.这个游戏对双方公平吗?为什么? 解:(1)公平,两人获胜的可能性相同;(2)不公平,两人获胜的可能性不相同.5.如图,小明和小红正在做一个游戏:每人先掷骰子,骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在轮到小明掷骰子,棋子在标有数字“1”的那一格,小明能一次就获得“汽车”吗?小红下一次掷骰子可能得到“汽车”吗?她下一次得到“汽车”的概率是多少?解:不能;可能,16.6.在本节课的“石头、剪刀、布”游戏中,小凡没有参与活动,有“任人宰割”的感觉,于是他们修改游戏规则如下:三人同时做“石头、剪刀、布”游戏,如果三人的手势都相同或三人的手势互不相同,那么三人不分胜负;如果有两个人的手势相同,那么按照“石头胜剪刀,剪刀胜布,布胜石头” 的规则决定胜负(有可能有两个胜者).这个游戏对三人公平吗?先算一算,再做一做.解:公平.素材五 图书增值练习素材六 数学素养提升赌博与概率论《重要的艺术》一书的作者、意大利医生兼数学家卡当,据说他曾进行过大量的赌博.他在赌博时研究不输的方法,实际是概率论的萌芽.据说卡当曾参加过这样的一种赌法:把两颗骰子掷出去,以每个骰子朝上的点数之和作为赌的内容.已知骰子两个骰子朝上的面共有36种可能,点数之和分别可为2~12共11种.从图中可知,7是最容易出现的和数,它出现的概率是366=61卡当曾预言说押7最好.现在看来这个想法是很简单的,可是在卡当的时代,应该说是很杰出的思想方法. 在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论.十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教.正是这封信使概率论向前迈出了第一步.帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题.于是,一个新的数学分支--概率论登上了历史舞台.概率论从赌博的游戏开始,完全是一种新的数学.现在它在许多领域发挥着越来越大,十分重要的作用.。

北师版九上数学3.1 用树状图或表格求概率(第二课时) 课件

北师版九上数学3.1 用树状图或表格求概率(第二课时) 课件

的概率是( D )
A.
3 8
B.
5 8
C.
2 3
D.
1 2
2. 小明、小颖、小华参加演讲比赛.原定出场顺序是小明第一个
出场,小颖第二个出场,小华第三个出场,为了比赛的公平
性,要求这三名选手用抽签的方式重新确定出场顺序,则抽签
1
后每名选手的出场顺序都发生变化的概率是 3 . ⁠
返回目录
数学 九年级上册 BS版
如图,小明和小红正在做一个游戏:每人轮流掷一枚骰子,骰 子朝上的数字是几,就将棋子前进几格,并获得格子中相应物 品.现在轮到小明掷骰子,棋子在标有数字“2”的那一格. (1)小明能一次就获得“汽车”吗?请说明理由.
返回目录
数学 九年级上册 BS版
(2)小红下一次掷骰子可能得到“汽车”吗?她下一次得到 “汽车”的概率是多少? 【思路导航】(1)确定棋子到“汽车”的位置需要几格, 即可判断;(2)只要小明和小红两人掷的骰子点数和为7, 小红即可得到“汽车”;通过列表可得所有等可能的结果 数,根据骰子点数和为7的结果数即可求出小红下一次得到 “汽车”的概率.
返回目录
数学 九年级上册 BS版
如图,有两个可以自由转动的转盘A , B ,每个转盘都被分成了 3等份,并在每份内标有数字.现进行如下操作:①分别转动转 盘 A , B ;②两个转盘都停止后,将两个指针所指份内的数字相 乘(若指针停在等分线上,那么重转一次,直到指针指向某一 份为止).
返回目录
数学 九年级上册 BS版
1个球是最好的放法.
返回目录
数学 九年级上册 BS版
演示完毕 谢谢观看
(4, 3)
4
(3, 4)
(4, 4)
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丹东市第二十四中学 3.1用树状图或表格求概率第二课时
主备:孙芬副备:曹玉辉李春贺审核:2014年8月31日
一、学习准备:
求概率的方法?
二、学习目标:
1、会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有
可能的结果,从而正确地计算问题的概率.
2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时
选用列表法,或画树形图求概率更方便.
三、自学提示:
(一)自主学习
小明、小颖和小凡三人做“石头、剪刀、布”的游戏。

游戏规则如下:
小明、小颖和做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么就按“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖谁获
胜。

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
(二)合作探究
完成课本63页做一做
练习:
扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心
球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项。

(1)每位考生有选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率。

(友情提醒:各种方
案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)
四、学习小结:
五、夯实基础:基础题:
1、某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当
你抬头看信号灯时,是黄灯的概率为.
3、在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、
大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是
..
红球
..的概率是__________.
3、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白 色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是1
4

则原来盒中有白色棋子( )
A .8颗
B .6颗
C .4颗
D .2颗
3. (2011山东威海,21,9分)甲、乙二人玩一个游戏,每人抛一个质地均匀的 小立方体(每个面分别标有数字1、2、3、4、5、6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个 游戏公平吗?试说明理由.
六、能力提升:
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,
特此设计了一个游戏,其规则是:•分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
布置作业: 【评价反思】。

相关文档
最新文档