用树状图或表格求概率

合集下载

3.1用树状图和表格求概率

3.1用树状图和表格求概率
牌面的数字
所有可能 (1,1) (1,2) (1,3) (2,1) (2,2)
出现的结果 (2,3) (3,1) (3,2) (3,3)
第二张牌的牌面数字
1
2
3
第一张牌的牌面数字

1
(1,1) (1,2) (1,3)

2
(2,1) (2,2) (2,3)

3
(3,1) (3,2) (3,3)
“石头剪刀布”游戏


A盘
蓝 黄
绿
B盘
第一步 第二步
“配紫色”游戏
解:所有可能出现的结果 如下:
红白
A盘
黄蓝 绿
B盘
第二个 转盘
第一个 转盘

黄 (红,黄)
蓝 (红,蓝)
绿 (红,绿)

(白,黄)
(白,蓝)
(白,绿)
总共有6种结果,每种结果出现的可能性相同,而可以配成 紫色的结果有1种:(红,蓝),因此游戏者获胜的概率为 1/6。
蓝红
用树状图和列表的方法求概率时应 注意各种结果出现的可能性务必相 同.
探究三
准备两组相同的牌,每组三张,三张牌面的数字 分别是1、2、3.从两组牌中各摸出一张为一次 试验,你能列出所有可能出现的结果吗?
1
1
2
2
3
3
第一组
第二组
开始

第一张牌的
1
2
牌面的数字
3
状 图
第二张牌的 1 2 3 1 2 3 1 2 3
解:
开始
A同学
石头
剪刀

B同学
石 剪布石 剪布石 剪布
头刀

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。

二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。

2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。

2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。

3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。

五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。

2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。

3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。

4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。

5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。

六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。

2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。

3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。

七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。

2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。

八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。

2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。

九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。

最新版初中数学教案《用树状图或表格求概率》精品教案(2022年创作)

最新版初中数学教案《用树状图或表格求概率》精品教案(2022年创作)

第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率一、新课导入1.课题导入:〔1〕想一想,小学里我们学过的加法运算律有哪些?〔2〕这些运算律在有理数的加法中是否还适用呢?我们先来进行以下两道计算,再答复这个问题.30+(-20),(-20)+30.上面两个算式中交换了加数的位置,两次所得的和相同吗?加法运算律在有理数运算中还适用吗?这就是今天要学习的内容——有理数加法运算律.2.三维目标:〔1〕知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.〔2〕过程与方法①培养学生的观察能力和思维能力.②经历有理数的运算律的应用,领悟解决问题应选择适当的方法.〔3〕情感态度在数学学习中获得成功的体验.3.学习重、难点:重点:有理数加法运算律及运用.难点:运算律的灵活运用.二、分层学习1.自学指导:〔1〕自学内容:探究有理数加法的交换律和结合律.〔2〕自学时间:5分钟.〔3〕自学要求:运用计算、类比来验证归纳加法的运算律在有理数加法中的运用.〔4〕探究提纲:①刚刚通过计算知道30+(-20)和(-20)+30相等,同学们再算一算以下各式:a.〔-8〕+〔-9〕=-17;〔-9〕+〔-8〕=-17.b.4 +〔-8〕=-4;〔-8〕+4=-4.根据计算结果你可发现:〔-8〕+〔-9〕=〔-9〕+〔-8〕,4 +〔-8〕=〔-8〕+4(填“>〞“<〞或“=〞)由此可得a+b=b+a,这种运算律称为加法交换律.即两个数相加,交换加数的位置,和不变.②计算:a.[8+(-5)]+(-4),8+[(-5)+(-4)];b.[(-12)+20]+(-8),(-12)+[20+(-8)]. 比较a、b两题计算结果,你能得出什么结论?〔仿照1〕,分别用文字和含字母的等式写出你的结论.a.[8+(-5)]+(-4)=-1,8+[(-5)+(-4)]=-1.b.[(-12)+20]+(-8)=0,(-12)+[20+(-8)]=0.根据a、b两题计算结果,可发现[8+(-5)]+(-4)=8+[(-5)+(-4)],[(-12)+20]+(-8)=(-12)+[20+(-8)],由此可得,〔a+b〕+c=a+〔b+c〕,这种运算律称为加法结合律.即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.2.自学:同学们结合探究提纲进行探究学习.3.助学:〔1〕师助生:①明了学情:了解学生的探究过程及探究结论,关注他们认识过程中的疑点问题.②差异指导:a.指导那些对有理数加法法那么还不熟的学生;b.指导表达有困难的学生归纳出相应的结论.〔2〕生助生:生生互动讨论交流解决自学中的疑问.4.强化:〔1〕加法的交换律.(文字、字母表述)加法的结合律.(文字、字母表述)〔2〕在有理数加法运算中,运用加法交换律和结合律可使运算更加简便.1.自学指导:〔1〕自学内容:教材第19页例2到第20页“练习〞之前的内容.〔2〕自学时间:5分钟.〔3〕自学要求:仔细阅读例2的解答过程,弄清每一步的目的和依据分别是什么.认真阅读例3的解答过程,通过例3两种解法的比照,体会有理数加法运算律的作用.〔4〕自学参考提纲:①例2中是怎样使计算简化的?根据是什么?例2中,把正数和负数分别相加,从而使计算简化.这样做的依据是加法的交换律和结合律.②仿例2计算:a.23+(-17)+6+(-22);b.(-2)+3+1+(-3)+2+(-4)a.23+(-17)+6+(-22)=23+6+[(-17)+(-22)]=29+(-39)=-10b.(-2)+3+1+(-3)+2+(-4)=3+1+2+[(-2)+(-3)+(-4)]=6+(-9)=-3③想一想,要解决例3中的问题,你有几种计算方法?再把自己的想法与同伴交流一下.解法一的解题思路是怎样的?这种思路大家以前就会吗?方法一:直接用加法算出10袋小麦的总质量,再减去10袋小麦的标准质量得出超出或缺乏的局部.方法二:先算出每袋小麦超出或缺乏的局部,再求和算出10袋总计超出或缺乏的局部.④例3中10袋小麦重量数与哪个数字比较接近?解法二中运用了哪些运算律?与解法一比较,哪种方法较好?好在哪里?10袋小麦重量数与90比较接近.解法二中运用了加法的交换律和结合律.解法二较好,使运算更简便.⑤某学习小组五位同学某次数学测试成绩〔分〕为83、76、94、88、74,该班全体同学测试的平均分为80分,问这五位同学的平均分超出全班平均分是多少分?用两种方法解答.解法一:先计算这5个人的平均分是多少分:〔83+76+94+88+74〕÷5=83,再计算超过平均分多少分:83-80=3.解法二:每个人的分数超过平均分的记为正数,低于平均分的记为负数,那么5个人对应的数分别为:+3,-4,+14,+8,-6.[〔+3〕+〔-4〕+〔+14〕+〔+8〕+(-6)]÷5=3.答:这五位同学的平均分超出全班平均分3分.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:了解学生对这两个例题的思路是否理解.②差异指导:对学困生启发指导.〔2〕生助生:学生通过讨论交流解决自学中的疑难问题.4.强化:〔1〕a.使用运算律使计算简便的常用方法:正数与正数相结合,负数与负数相结合;互为相反数的相结合.b.例3中解法1的方法:实际总量-按标准算总量;解法2的方法:先算每袋超〔或少〕标准量多少?再求总超〔或少〕标准总量多少?〔2〕加法运算律在有理数运算中的作用及使用方法.〔3〕练习:计算:①1+(-12)+13+(-16);②314+(-235)+534+(-825)答案:①23;②-2.三、评价1.学生的自我评价〔围绕三维目标〕:自我总结本节课学习的收获与困惑.2.教师对学生的评价:〔1〕表现性评价:对学生学习中的行为表现进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学内容,学生在小学时已接触过并且带有技巧性,是学生比较喜欢的知识,教学时可依据这些特点,由教师设计现实情境,引导学生带着新奇去自主发现与交流,从而获取知识和技巧.对学生在自主探索形成的认识中缺乏的地方,教师可在指导学生解决实际问题时,针对性的补充与拓展,训练时还可采用抢答等形式,由学生自己做出评判.一、根底稳固〔70分〕1.〔30分〕-12+14+(-25)+(+310)运用运算律计算恰当的是〔A〕A.[(-12+14)]+[(-25)+(+310)]B. [14+(-25)]+[(-12)+(+310)]C. (-12)+ [14+(-25)]+(+310)2.〔40分〕计算.〔1〕5+(-6)+3+9+(-4)+(-7);〔2〕(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;〔3〕(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7);〔4〕12+(-23)+45+(-12)+(-13).解:〔1〕原式=5+3+9+[(-6)+(-4)+(-7)]=17+(-17)=0;(2)原式=[(-0.8)+0.8]+1.2+3.5+[(-0.7)+(-2.1)]=0+4.7+(-2.8)=1.9;(3)原式=[(-6.8)+(-3.2)]+425+635+[(-5.7)+(+5.7)]=(-10)+11+0=1;〔4〕原式=12+(-12)+(-23)+(-13)+45=0+(-1)+45=-15.二、综合应用〔20分〕3.〔10分〕食品店一周中各天的盈亏情况如下(盈余为正):132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周中总的盈亏情况如何?解:132+〔-12.5〕+〔-10.5〕+127+〔-87〕+136.5+98=383.5(元),即一周盈利383.5元.4.〔10分〕有8筐白菜,以每筐25kg为标准,超过的千克数记作正数,缺乏的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?解:1.5+〔-3〕+2+〔-0.5〕+1+〔-2〕+〔-2〕+〔-2.5〕+25×8=194.5〔千克〕. 答:这8筐白菜一共194.5千克.三、拓展延伸〔10分〕5.〔10分〕〔1〕计算以下各式的值.①(-2)+(-2);②(-2)+(-2)+(-2);③(-2)+(-2)+(-2)+(-2);④(-2)+(-2)+(-2)+(-2)+(-2).〔2〕猜测以下各式的值:(-2)×2;(-2)×3;(-2)×4;(-2)×5.你能进一步猜出一个负数乘一个正数的法那么吗?解:〔1〕①-4;②-6;③-8;④-10.(2)(-2)×2=-4,(-2)×3=-6,(-2)×4=-8,(-2)×5=-10负数乘正数的法那么:符号取负号,再把两数的绝对值相乘.。

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。

本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。

二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。

但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。

因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。

三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。

2.能够灵活运用所学的知识来解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。

2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。

在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。

2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。

例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。

2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。

通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。

3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。

3.1.3用树状图或表格求概率(3)教案

3.1.3用树状图或表格求概率(3)教案

3. 1.3《用树状图或表格求概率(三)》教学设计叶邑镇初级中学赫耿学习目标:进一步经历用树状图、列表法计算随机实验的概率的过程.预习案:课前导学:1、自行阅读课本P65-67的内容;2、小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?尝试练习:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?学习案知识点拨:小颖做法如下图,并据此求出游戏者获胜的概率为21开始红蓝蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.(小组合作交流)指出“小颖的做法不正确,小亮的做法正确.而用列表法或者树状图求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.课内训练:一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。

求两次摸到的球的颜色能配成紫色的概率.反馈案:基础训练:1、 从1、2、3、4、5、6这六个数字中,先随意抽取一个,然后从剩下的五个数中再抽取一个,则两次抽到的数字之和为偶数的概率是__________;2、甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球。

用列表法写出所有可能的结果3、用如图所示的两个转盘进行配“紫色”游戏,其概率是多少?拓展提高:1、一个盒子中装有一个红球、一个白球。

用树状图或表格求概率

用树状图或表格求概率

条件概率计算
定义:在事件B发生的情况下,事件A发生的概率 公式:P(A|B) = P(AB) / P(B) 应用场景:在多个条件相互关联的情况下,计算某一事件发生的概率 注意事项:条件概率需要考虑各事件之间的关联性,避免独立性假设的错误
独立事件概率计算
定义:两个或多 个事件同时发生 的概率等于各事 件概率的乘积
概率定义
概率是描述随机 事件发生可能性 大小的数值
概率取值范围在0 到1之间
概率等于随机事 件发生次数与总 次数之比
概率越接近1,随 机事件发生的可 能性越大
概率计算公式
概率定义公式:P(A)=事件A发生的次数/所有可能事件的总数 条件概率公式:P(A|B)=P(A∩B)/P(B) 贝叶斯公式:P(A|B)=P(B|A)P(A)/P(B) 概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)
公式: P(A∪B∪C)=P( A)×P(B)×P(C)
应用场景:多个 独立因素共同影 响一个结果的情 况
注意事项:事件 之间必须相互独 立,否则计算结 果不准确
Part Three
表格计算概率
表格构建
确定事件和概率 列出所有可能的结果 计算每个结果的概率 构建表格并记录结果
事件概率计算
定义:表格计算概率是一种通过列出所有可能事件及其对应的概率来计算概率的方法。
概率值范围
概率值应在0到1 之间,包括0但不 包括1
概率值表示某一 事件发生的可能 性大小
概率值总和应为1, 即所有可能事件 的概率之和为1
概率值可以为小 数、分数或百分 数
概率的独立性
定义:两个事件之间没有相互影响,一个事件的发生与另一个事件的发生无关。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作交流、思考问题的能力。

二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。

2. 教学难点:如何运用树状图和表格求复杂事件的概率。

三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。

2. 学生准备:笔记本、彩笔。

四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。

2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。

3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。

4. 练习环节:让学生独立完成练习题,巩固所学方法。

五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。

六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。

七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。

八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。

A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

《用树状图或表格求概率》第1课时示范课教学设计【数学九年级上册北师大】

《用树状图或表格求概率》第1课时示范课教学设计【数学九年级上册北师大】

《用树状图或表格求概率》教学设计第1课时一、教学目标1.会用画树状图或列表的方法计算简单随机事件发生的概率.2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况.3.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率之间的关系.4.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重难点重点:会用画树状图或列表的方法计算简单随机事件发生的概率.难点:能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题,学生思考后回答问.抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:问题:你认为正面朝上和反面朝上的可能性相同吗?预设:相同.小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:【操作】教师活动:通过让学生亲自动手试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,通过足够多次试验,得出试验的频率就趋于稳定.(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:思考:抛掷硬币应注意什么问题?预设:在掷硬币时,要注意在一定的高度任意抛出,以保证随机性.友情提示:在一次试验中,第1枚硬币正面朝上、第2枚硬币正面朝上,结果可记为(正,正);第1枚硬币正面朝上、第2枚硬币反面朝上,结果可记为(正,反);第1枚硬币反面朝上、第2枚硬币正面朝上,结果可记为(反,正);第1枚硬币反面朝上、第2枚硬币反面朝上,结果可记为(反,反).(2) 5个同学为一个小组,把5个人的试验数据汇总,得到小组试验(100次)结果.(3) 依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折线统计图.(4) 由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率.由此,你认为这个游戏公平吗?预设:“两枚正面朝上”的概率为14,“两枚反面朝上”的概率为14,“一枚正面朝上、一枚反面朝上”的概率为1 2 .追问:你发现了什么?预设:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【议一议】教师活动:引导学生对所做试验进行分析,体会两步试验的等可能性,引出计算其概率的两种方法:画树状图和列表.在上面抛掷硬币试验中,(1) 抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?预设:可能出现正面朝上或反面朝上,发生的可能性一样.(2) 掷第二枚硬币可能出现哪些结果?它们出现的可能性是否一样?预设:可能出现正面朝上或反面朝上,发生的可能性一样.(3) 在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?预设:无论第一枚硬币是正面朝上还是反面朝上,第二枚硬币可能出现的结果都是一样的即正面朝上或反面朝上,它们发生的可能性也是一样的.请将各自的试验数据汇总后,填写下面的表格:追问:你发现了什么?预设:由于硬币质地均匀.因此掷第一次硬币出现“正面朝上”和“反面朝上”的概率相同;无论掷第一次硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.【探究】抛掷两枚均匀的硬币,出现的(正,正)、(正,反)、(反,正)、(反,反)四种情况是等可能的.因此,我们可以用树状图或表格表示所有可能出现的结果.树状图:上图像一棵横倒的树,我们就把它叫做树状图.用列表格的方法列举所有可能出现的结果:从树状图和表格我们都可以看出:总共有4 种结果,每种结果出现的可能性相同.其中,小明获胜的结果有 1 种:(正,正),所以小明获胜的概率为14;小颖获胜的结果有 1 种:(反,反),所以小颖获胜的概率为14;小凡获胜的结果有 2 种:(正,反)、(反,正),所以小凡获胜的概率是12.因此,这个游戏对三人是不公平的.【归纳】利用树状图或表格,我们可以不重复,不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.注意:用画树状图或列表的方法求概率时,应注意各种结果出现的可能性务必相同.【典型例题】法一:画树状图如图所示:由图中可知共有4种等可能结果,而白.衣、黑裤只有1种可能,概率为14法二:将可能出现的结果列表如下:由图中可知共有4种等可能结果,而白衣、黑裤只有1种可能,概率为1.4教师给出练习,随时观察学生完成情况并(1) 一次试验中两张牌的牌面数字和可能为2,3和4.(2)共有4种结果,每种结果出现的可能性相同,两张牌的牌面数字和等于2的结果有一种:(1,1),等于3的结果有两种:(1,2)、(2,1),等于4的结果有一种:(2,2).因此,两张牌的牌面数字和等于3的概率最大.(3)两张牌的牌面数字和等于3的概率是1 2 .2.解:画树状图如图所示:(1)由图中可知共有4种等可能结果,两次都摸到红球只有1种可能,概率为14.(2)由图中可知共有4种等可能结果,两次摸到不同颜色的球只有2种可能,概率为1 2 .思维导图的形式呈现本节课的主要内容:教科书第62页习题3.1第3题.。

用树状图或表格求概率优秀教案

用树状图或表格求概率优秀教案

用树状图或表格求概率(第一课时)教学目标:1.经历猜测收集数据分析数据等过程,进一步体验数据的随机性;2.能运用画树状图和表格求简单事件的概率;3.能利用概率解决一些实际问题,理解概率对生产生活的指导作用。

教学重点:能运用画树状图和表格求简单事件的概率。

教学时间:2课时课前准备:全班分为10个小组,每组抛两枚硬币100次,记录正面、反面、一正一反次数。

教学过程:一:设置情境引入课题1.抛一枚色子,点数是3的概率是2.抛一枚硬币,正面向上的概率是3.袋中有2个红球3个白球,从中任意摸出一个球是红球的概率是4.小强和小军做游戏,抛两枚硬币,如果两枚都是正面小强胜,如果一正一反小军胜,这个游戏公平吗?前三个问题复习回过以前学习内容,第四个问题为切入本节内容。

二:新课学习1.由第四问让学生充分思考讨论后,教师统计课前准备内容,得出三种情形的概率,结论和大部分学生思考产生冲突,激发学生学习兴趣。

抛两枚硬币有哪些可能性呢?你能列出来吗?正正,正反,反正,反反教师指出前三问是一步试验,第四问是两步试验,两步试验的可能性可以用表格和树状图解决。

(板书课题)本节课学习用表格求概率。

如这个问题可列表如下:2.例1 第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张相同的概率是多少?分析:这是几步试验?用什么方法解决?解:∵共有6种可能性,其中数字相同有两种,∴两张卡片上数字相同的概率是62=31。

3.变式练习:第一个袋中有三张卡片,卡片上分别标有数字1, 2,3,第二个袋中有两张卡片,卡片上分别标有数字2,3.从两个袋中各摸出一张卡片,两张卡片上数字之和是偶数的概率是多少?P (两张卡片上数字之和是偶数)=63=213做一做: 袋中有4个完全相同的小球,分别标有数字1,2,3,4,现从中摸出一个小球记下数字后放回袋中,再从中摸出一个小球记下数字,两次摸出的小球上数字相同的概率是多少? 一名学生板演,其余自练。

3.1_用树状图或表格求概率(教案)

3.1_用树状图或表格求概率(教案)
4.数学抽象能力:培养学生将实际问题抽象为数学问题的能力,通过树状图和表格对事件进行抽象表示,理解事件之间的关联性。
5.数学表达能力:通过书写树状图和填写表格,提高学生的数学表达能力,使其清晰、准确地表达自己的思考过程。
本节课将紧密围绕新教材要求,注重培养学生的学科核心素养,提高他们的综合运用能力。
三、教学难点与重点
1.教学重点
(1)理解并掌握树状图和表格在求解概率问题中的应用。
(2)能够运用树状图和表格表示事件的所有可能结果,并进行概率计算。
(3)掌握单一事件和组合事件的概率计算方法。
举例:
-通过抛硬币、掷骰子等简单实例,让学生理解如何利用树状图和表格表示事件的所有可能结果。
-讲解并举例说明如何通过树状图和表格计算单一事件和组合事件的概率。
2.教学难点
(1)树状图的构建:学生在构建树状图时,可能难以把握事件之间的逻辑关系,导致树状图错误。
(2)表格的填写:学生在填写表格时,容易遗漏或重复计算某些结果,影响概率计算的正确性。
(3)条件概率的计算:对于涉及条件概率的问题,学生可能难以理解条件概率的概念,以及如何利用树状图和表格进行计算。
举例:
同学们,今天我们将要学习的是“3.1_用树状图或表格求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断某个事件发生概率的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子的概率、抽卡片的概率等。

用树状图或表格求概率获奖公开课教案

用树状图或表格求概率获奖公开课教案

3.1用树状图或表格求概率第 1 课时用树状图或表格求概率由图中可知共有 6 种可能,而白衣、黑1裤只有 1 种可能,概率为;解法 2:将可能出现的结果列表以下:1.会用画树状图或列表的方法计算简单裤子上衣白色随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏米色地列举事件发生的全部可能状况,会用概率的有关知识解决实质问题 .(难点)黑裤只有蓝色黑色棕色(白,蓝)(白,黑)(白,棕)(米,蓝)(米,黑)(米,棕)由表可知共有 6 种可能,而白衣、11 种可能,概率为6.一、情形导入游戏:小明对小亮说:“我向空中抛 2 枚相同的一元硬币,假如落地后一正一反,算我赢,假如落地后两面相同,算你赢 .”结果小亮欣然答应,请问:你感觉这个游戏公正吗?二、合作研究研究点:用树状图或表格求概率【种类一】两步决定的概率问题明华出门游乐时带了2 件上衣(白色、米色)和 3 条裤子(蓝色、黑色、棕色),他随意取出一件上衣和一条裤子恰巧是白色和黑色的概率是多少?分析:可采纳画树状图或列表法把全部的状况都列举出来 .解:解法 1:画树状图以下图:方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在全部结果中占的比值 .【种类二】两步以上决定的概率问题小可、子宣、欣怡三人在一同做游戏时,需要确立做游戏的先后次序,她们商定用“石头、剪子、布”的方式确立,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图剖析全部可能的结果,如图 .由树状图可知全部可能的结果有27 种,三人都出“剪子”的结果只有 1 种, 因此在一个回合中三个人都出“剪子”的概率为 271.方法总结: 当一次试验波及三个或更多的因素时, 为了不重不漏地列出全部可能的结果,往常采纳树状图 .【种类三】 有无放回试验一只箱子里共有3 个球,此中有 2个白球, 1 个红球,它们除了颜色外均相同 .( 1)从箱子中随意摸出一个球,不将它放回箱子,搅匀后再摸出一个球, 求两次摸出的球都是白球的概率;( 2)从箱子中随意摸出一个球,将它放回箱子, 搅匀后再摸出一个球,求两次摸出的球都是白球的概率 .分析: 题中( 1)( 2 )的差别在于第一次摸出的球能否放回了箱子.由题可知,第二次摸球时( 1 )的箱子中应减少第一次摸出 的那个球,那么还剩两个球能够摸,而( 2)的箱子中仍是有三个球能够摸 .因此,两个白球应当差别开来, 我们用 “ 白 1”“ 白 2”表示 .解:(1)列表以下:第一次序二次白 1 白 2白 1 ——(白 2,白 1)白 2 (白 1,白 2) ——红(白 1,红)(白 2,红)由上表可知,共有 6 种结果,且每种结果是等可能的, 此中两次摸出白球的结果有 2 种,因此 P (两次摸出的球都是白球) =2=1;63( 2)列表以下:第一次序二次白 1白 2白 1 (白 1,白 1) (白 2,白 1) 白 2 (白 1,白 2) (白 2,白 2) 红(白 1,红) (白 2,红)由上表可知,共有9 种结果,且每种结果是等可能的, 此中两次摸出白球的结 果有 4 种,因此 P (两次摸出的球都是白球) = 4 .9方法总结: 在试验中,常出现 “ 放回 ” 和 “ 不放回 ” 两种状况, 即能否重复进行的事件, 在求概率时要正确划分, 如利用列表法求概率时,不重复在列表中有空格, 重复在列表中则不会出现空格.三、板书设计画树状图法用树状图或表格求概率列表法经过与学生现实生活相联系的游戏为载体,培育学生成立概率模型的思想意识 . 在活动中进一步发展学生的合作沟通意识,提高学生对所研究问题的反省和拓展的能力,逐渐形成优秀的反省意识 . 鼓舞学生思想的多样性,发展学生的创新意识 . 别想一下造出海洋,一定先由小河川开始。

用树状图或表格求概率

用树状图或表格求概率

用树状图求概率:当一次试验要涉及3个或更多的因素(例如从三个口袋中取球)时,为了不重不漏地列出所有可能的结果,通常采用树状图。

用表格求概率:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率。

当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用表格求概率。

例1、一个袋中有除颜色外其余特征均相同的4个珠子,其中2个白色,2个黑色,若从这个袋中任意取2个珠子,则其颜色不同的概率是______.例2、小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定,游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营.(1)用画树形图的方法表示三次抛掷硬币的所有结果;(2)小刚任意挑选两球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?例3、有四个除颜色外完全相同的小球,它们分别是黑色、蓝色、白色、红色,现从中任意抽取一个小球后,不放回,再随机抽取一个,则两次抽取的小球恰好一个是黑色、一个是红色的概率是________.例4、有四个除颜色外完全相同的小球,它们分别是黑色、蓝色、白色、红色,现从中任意抽取一个小球后,放回摇匀,再随机抽取一个,则两次抽取的小球恰好一个是黑色、一个是红色的概率是________.例5、大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.1、在4张卡片上分别写有1-4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_______.2、箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是_______.3、一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.4、完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率。

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

§3. 用树状图或表格求概率

§3. 用树状图或表格求概率

§3.1 用树状图或表格求概率教学目标1、经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和水平。

通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计某一事物发生的概率2、经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和水平3、能使用树状图和列表法计算简单事件发生的概率教学重点和难点重点:使用树状图和列表法计算简单事件发生的概率难点:使用树状图和列表法计算简单事件发生的概率教法:学法:教学过程设计一、从学生原有的认知结构提出问题现实生活当中,我们常常遇到一些概率的问题,如买彩票等游戏,都需要一些概率的知识。

通过求某事件发生的概率,指导我们做出抉择。

这节课,我们来学习求概率。

二、师生共同研究形成概念1、频数、频率与概率频数是指每个对象出现的次数。

频率是指每个对象出现的次数与总次数的比值。

概率表示一个事件在实验中发生的可能性的大小的数,概率的值大于等于0,小于等于1。

频数与频率都能反映每个对象出现的频繁水准,频数是某个对象出现的次数,是个数,而频率是每个对象出现的次数与总次数的比,是比值。

频率是在实验的基础上一个事件发生的次数与总实验次数的比,而概率是从理论上推算事件发生的可能性,两者的意义不同,一个事件的发生有随机性,所以通常情况下不等于概率,仅仅实验次数越多,频率越趋向于概率。

一个事件发生的频率在概率的附近上下波动,多次实验的频率接近概率。

☆做一做书本扑克游戏通过这个试验活动,探索出“试验次数很大时试验的频率渐趋稳定”这个规律,然后通过与旧知识类比,得出频率稳定值与理论概率之间的关系。

此游戏让学生小组内完成。

☆议一议书本P 158 议一议通过上面图表的交流与研讨,能够发现它的规律。

☆做一做书本P 做一做进一步汇总试验数据,检验上面的估计,让学生进一步体会频率的稳定性。

2、试验数据与理论概率为了考查频率与概率之间的关系,我们要做一系列的实验,随着实验次数的增加,我们可使用折线统计图,随时记录下频率随实验次数的变化而变化的情况。

人教版苏科版初中数学—概率的进一步认识(经典例题)

人教版苏科版初中数学—概率的进一步认识(经典例题)

班级小组姓名成绩(满分120)一、用树状图或表格求概率(一)用树状图或表格求概率(共4小题,每题3分,题组合计12分)例1.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.13 B.19 C.12 D.23例1.变式1.小颖有红色、黄色、白色的三件运动上衣和白色、灰色两条运动短裤.若任意选取一件上衣和短裤进行组合,则恰好是“衣裤同色”的概率是.例1.变式2.5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地点的概率是()A.19 B.13 C.23 D.29例1.变式3.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和引体向上、1分钟跳绳(二选一)中选择两项.(1)每位考生有种选择方案;(2)用画树状图或列表的方法求小明与小刚选择两种方案的概率.(友情提醒:各种方案用A、B、C …或①、②、③…等符号来代表可简化解答过程)例2.学生甲与学生乙玩一种转盘游戏.下图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A.14 B.12C.34 D.56例2.变式1.利用下面的几组转盘做“配紫色”的游戏,用列表法求出“配紫色”成功的概率.(注:红蓝即可配成紫色)例2.变式2.已知|a|=2,|b|=5,求|a+b|的值为7的概率.例2.变式3.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在一层书架上,其中恰好摆成“上、中、下”顺序的概率是()A.16 B.19 C.14 D.15例3.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计小明射击一次击中靶子的概率是()A.38%B.60%C.约63%D.无法确定例3.变式1.如下图所示,两个转盘,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是()A.14 B.625C.15 D.325例3.变式2.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等.A.①②B.②③C.①③D.①②③例3.变式3.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是()A.至少有两名学生生日相同B.不可能有两名学生生日相同C.可能有两名学生生日相同,但可能性不大D.可能有两名学生生日相同,且可能性很大(一)用树状图或表格求概率(共4小题,每题3分,题组合计12分)例4.在一个不透明的盒子中装有8个白球和若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23.则黄球的个数为()A.2B.4C.12D.16例4.变式1.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5B.m=n=4C.m+n=4D.m+n=8例4.变式2.同时抛掷两枚均匀的骰子,两枚骰子的点数之和是8的概率为()A.536 B.14 C.136 D.112例4.变式3.一个盒子中装有3个红球和2个白球,这些球除颜色外都相同,从中随机摸出2个球,则2个球不同色的概率是()A.35 B.13 C.16 D.56(二)用树状图法或列表法分析游戏的公平性(共4小题,每题3分,题组合计12分)例5.甲、乙两人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落地后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个游戏公平吗?试说明理由.例5.变式1.小明和小亮用如图所示两个转盘(每个转盘被分成四个面积相等的扇形)做游戏.转动两个转盘各一次,如果两次数字之和为奇数,则小明胜,否则,小亮胜,这个游戏公平吗?答:(填“公平”或“不公平”).A盘B盘例5.变式2.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.例5.变式3.将背面完全相同、正面分别写有数字-2、1、-4的三张卡片混合后,小峰从中随机抽取一张,把卡片上的数字作为积的一个因数.将形状、大小完全相同,分别标有数字-1、3、4的三个小球混合后,小华随机抽取一个,把小球上的数字作为积的另一个因数,然后计算这两个数的乘积.(1)请用列表或画树状图的方法求出两个数的乘积是非负数的概率;(2)小峰和小华做游戏,规则是:若这两数的积是非负数,则小峰赢;否则小华赢.你认为这个游戏公平吗?请说明理由,如果不公平,请你修改游戏规则,使游戏公平.(三)解决较为复杂的概率题(共4小题,每题3分,题组合计12分)例6.将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A、B都在甲组的概率是多少?例6.变式1.在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.例6.变式2.为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的摸球游戏:在一个不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其他没有任何区别.摸球之前将袋内的小球搅匀.甲先摸两次,每次摸出一个球(第一次摸后不放回).把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球.如果甲摸出的两个球都是红色,甲得1分,否则甲得0分.如果乙摸出的球是白色,乙得1分,否则乙得0分.得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图的方法求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平.例6.变式3.如下图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.二、用频率估计概率(一)频率与概率的关系(共4小题,每题3分,题组合计12分)例7.关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.当试验次数很大时,频率稳定在概率附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等例7.变式1.某人在做掷硬币试验时,投掷m次,正面朝上有n次(即正面朝上的频率是P=n m).则下列说法中正确的是()A.P一定等于1 2B.P一定不等于1 2C.多投一次,P更接近1 2D.投掷次数逐渐增加,P稳定在12附近例7.变式2.抛掷两枚质地均匀的硬币,当抛掷多次以后,出现两个反面的频率大约稳定在() A.25% B.50%C.75%D.100%例7.变式3.掷一颗质地均匀的骰子2400次,向上一面的点数为3点的次数大约是()A.400次B.600次C.1200次D.2400次(一)频率与概率的关系(共4小题,每题3分,题组合计12分)例8.已知抛一枚质地均匀的硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚质地均匀的硬币2次必有1次正面朝上B.连续抛一枚质地均匀的硬币10次都可能正面朝上C.大量反复抛一枚质地均匀的硬币,平均100次可能出现正面朝上50次D.通过抛一枚质地均匀的硬币确定谁先发球的比赛规则是公平的例8.变式1.从某玉米种子中抽取6批在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.850.7450.8150.7930.8020.801根据以上数据可以估计该玉米种子发芽的概率约为(精确到0.1).例8.变式2.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12B.9C.4D.3例8.变式3.在一个暗箱里放有m个除颜色外其他完全相同的球,这m个球中红球有5个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出m大约是()A.20B.15C.12D.10(二)用稳定的频率值估计事件发生的概率(共4小题,每题3分,题组合计12分)例9.下表中是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷次数出现正面的频数出现正面的频率5120%503162%30013545%80040851%3200158049.4%6000298049.7%9999500650.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次时,得到次反面,反面出现的频率是;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得次正面,正面出现的频率是;那么,也就是说机器人抛掷完9999次时,得到次反面,反面出现的频率是;(3)请你估计一下,抛这枚硬币,正面出现的概率是.例9.变式1.一只不透明的袋中有若干个白球,另外放入5个黑球,从袋中任意摸出一球,记下颜色后再放回去.重复这样的试验共300次,结果有50次出现黑球,则袋中有个白球.例9.变式2.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多,做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼一共大约有多少条?(2)估计这个鱼塘可产这种鱼多少千克?例9.变式3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率mn0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近于;(2)假如你摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球各有多少个.(二)用稳定的频率值估计事件发生的概率(共4小题,每题3分,题组合计12分)例10.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可以估计袋中约有红球个.例10.变式1.某种油菜籽在相同的条件下发芽实验的结果如下表:那么这种油菜籽发芽的概率是(结果精确到0.01).概率的进一步认识经典例题第11页共11页例10.变式2.一学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:(1)请求出a 的值;(2)画出该学生进球次数的频率分布折线图;例10.变式3.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表.解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。

强调概率的取值范围:0≤P(A)≤1。

1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。

举例说明。

第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。

强调树状图的优点:直观、清晰。

2.2 树状图法求概率步骤一:画出树状图。

步骤二:统计符合条件的结果数。

步骤三:计算概率。

第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。

强调列表法的优点:简单、直观。

3.2 列表法求概率步骤一:列出所有可能的结果。

步骤二:统计符合条件的结果数。

步骤三:计算概率。

第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。

强调独立事件概率的乘法规则。

4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。

步骤二:计算每个独立事件的概率。

步骤三:将各独立事件的概率相乘。

第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。

强调互斥事件概率的加法规则。

5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。

步骤二:计算每个互斥事件的概率。

步骤三:将各互斥事件的概率相加。

本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。

希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。

强调条件概率的取值范围:0≤P(B|A)≤1。

6.2 条件概率的计算步骤一:计算事件A的概率P(A)。

步骤二:计算事件A和事件B发生的概率P(AB)。

步骤三:计算条件概率P(B|A)=P(AB)/P(A)。

第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



(正,正) (正,反) (反,正) (反,反)


解:总共有4种可能的结果,(1)朝上的面一正、一 反的结果有2种:(反,正)、(正,反),概率是1/2 (2)至少有一次正面朝上的结果有3种:(正,正),(正, 反),(反,正),概率是3/4.
思考讨论 袋中装有四个红色球和两个兰色球, 它们除了颜色外都相同; (1)随机从中摸出一球,恰为红球的
从上面的树状图或表格可以看出: (1)在摸牌游戏中,一次试验可能出现的 结果共有4种:(1,1),(1,2),(2,1),(2,2), (2)每种结果出现的可能性相同.也就是 说,每种结果出现的概率都是1/4. (3)两张牌面数字之和是2、3、4的概率 分别是1/4、1/2、1/4
提示 用树状图或表格可以清晰 地表示出某个事件所有可能 出现的结果,从而使我们较 容易求简单事件的概率.
1 2
1 2
第一组
第二组
问题探究
用树状图来研究上述问题
开始
第一张牌的 牌面的数字
1 1 2 1
2 2
第二张牌的 牌面的数字
所有可能出 (1,1) (1,2) (2,1) (2,2) 现的结果
用表格来研究上述问题
第二张牌的牌面数字 第一张牌的牌面数字
1
2
1 2
(1,1) (1,2) (2,1) (2,2)
初中数学资源网
∴ P(B)=4/36=1/9

练习:P64 知识技能第3题
初中数学资源网

小明和小军做掷骰子游戏,两人各掷一 枚质地均匀的骰子,若两人掷得的点数 之和为奇数,则小军获胜,否则小明获 胜,这个游戏对双方公平吗?为什么?
初中数学资源网
问题深入
准备两组相同的牌,每组三张,三张牌面的 数字分别是1、2、3.从两组牌中各摸出一 张为一次试验,上述结果又会是怎样呢?
1 2 3
1 2 3
第一组
第二组
开始
第一张牌的 牌面的数字 第二张牌的 牌面的数字
1
2 3 1 2 3 1
3
树 状 图
1
2
2
3
(2,2)
所有可能 (1,1) (1,2) (1,3) (2,1) 出现的结果 (2,3) (3,1) (3,2) (3,3)
事件A可能出现的结果数 P(A)= 所有可能出现的结果数
3.求事件发生的常用一种方法就是将所有可能的 结果都列出来,然后计算所有可能出现的结果总 数及事件中A可能出现的结果数,从而求出所求事 件的概率。 4.在求概率时,我们可用“树状图”或“列表法” 来帮助分析。
实践与猜想
准备两组相同的牌,每组两张,两张 牌面的数字分别是1和2.从两组牌中 各摸出一张为一次试验.
初中数学资源网
第 第 一个 二个
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
1 2 3 4 5 6
解:两个骰子的点数相同(记为事件A)∴P(A)=6/36=1/6 两个骰子点数之和是9(记为事件B) 至少有一个骰子的点数为2 (记为事件C) ∴ P(C)=11/36
第二张牌的牌面数字 第一张牌的牌面数字
1 (1,1)
2 (1,2)
3 (1,3)
1
2
3
(2,1) (3,1)
(2,2) (3,2)
(2,3) (3,3)
表 格
例题欣赏 例1 随机掷一枚均匀的硬币两次, (1)朝上的面一正、一反的概率是多少? (2)至少有一次正面朝上的概率是多少?
正 开始 反
概率是 2/3 ; (2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 ; (3)随机从中一次摸出两个球,两球 均为红球的概率是 。
(2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 4/9 ;
红球 红球 红球 红球 兰球 兰球 1 2 3 4 5 6
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
3
4 5 6
(6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
练习1:袋子里有2个黄球和1个白球,每次从中 摸出2个,摸到一黄一白的机会是多少?
练习2:从分别标有1、2、3、4的四张卡片中,抽 一张卡片,又抽一张: (1)共有多少种可能? (2)抽到号数相同的卡片的概率? (3)抽到号数和为5的概率?
初中数学资源网
例1、同时掷两个质地均匀的骰子,计 算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子点数之和是9 (3)至少有一个骰子的点数为2
分析:这里涉及到两个因素,所以先用树状图或 列表法把所有可能的结果列举出来,然后再分析 每个事件所包含的可能结果种数即可求出相应事 件的概率
1.用树状图或 表格求概率
生活中,有些事情我们先能肯定它一定会 发生,这些事情称为 必然事件
有些事情我们先能肯定它一定不会发生, 这些事情称为 不可能事件 有些事情我们事先无法肯定它会不会 发生,这些事情称为 不确定事件
2.概率的计算: 一般地,若一件实验中所有可能结果出现 的可能性是一样,那么事件A发生的概率为

练习:P64 知识技能第4(2) 题
初中数学资源网
P65例题
初中数学资源网
第二次摸球号 第一次摸球号
1
2
3
4
5
6
1Hale Waihona Puke 2 3 4(1,1) (1,2) (1,3)(1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4)(2,5) (2,6) (3,1)(3,2) (3,3) (3,4) (3,5) (3,6) (4,1)(4,2) (4,3)(4,4)(4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
5
6
(3)随机从中一次摸出两个球, 两球均为红球的概率是 2/5 。
红球 1 红球 2 红球 3
1 2
红球 4
3 4
兰球 5
5
兰球 6
6
第二次摸球号 第一次摸球号
1 2
(1,1) (1,2) (1,3)(1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4)(2,5) (2,6) (3,1)(3,2) (3,3) (3,4) (3,5) (3,6) (4,1)(4,2) (4,3)(4,4)(4,5) (4,6)
相关文档
最新文档