用树状图或表格求概率

合集下载

《用树状图或表格求概率》概率的进一步认识

《用树状图或表格求概率》概率的进一步认识
事件:掷出1,掷出2,掷出3,掷出4,掷出5,掷出6。
概率:1/6,1/6,1/6,1/6,1/6,1/6。
表格的应用实例
• 另一个例子是在考虑两个独立事件同时发生的概率时,可以使用概率表来计算。例如,考虑两个独立事件A和B,事件A发 生的概率为0.5,事件B发生的概率为0.4。要计算两个事件同时发生的概率,可以制作一个简单的概率表
THANKS
感谢观看
树状图的应用实例
掷骰子:可以用来表示掷两个骰子的结果及其概 率。
彩票:可以用来表示中奖的概率及其分支(例如 特等奖、一等奖等)。
天气预报:可以用来表示各种天气状况的概率。
通过使用树状图,可以更直观地理解概率的计算 方法,并清晰地展示事件之间的相互关系和概率 分配。这对于解决复杂的问题和进行决策分析非 常有帮助。
为P(A|B)=P(AB)/P(B)。
独立事件概率
两个独立事件同时发生的概率等于 每个事件发生的概率的乘积。计算 公式为P(A∩B)=P(A)×P(B)。
互斥事件概率
两个互斥事件同时发生的概率等于 每个事件发生的概率的和。计算公 式为P(A∪B)=P(A)+P(B)。
02
用树状图求概率
树状图的基本原理
应用
在赌博、金融等领域有广 泛应用。
大数定律与中心极限定理
大数定律
当样本数量足够大时,随 机事件的频率接近其概率 。
中心极限定理
当样本数量足够大时,随 机变量的分布近似服从正 态分布。
应用
在统计学、金融等领域有 广泛应用。
05
概率模型的应用
金融风险管理
风险评估
概率模型可以用于评估潜在的风 险,例如在投资决策中,通过计 算可能结果的概率分布,可以更

3.1.1 用树状图或表格求概率 教案

3.1.1 用树状图或表格求概率 教案

1.通过抛硬币游戏,帮助学生了解计算一类事件发生等可能性的方法,体会概率的意义.2.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.3.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.重点1.会用树状图法和列表法求出简单事件发生的概率.2.会利用频率来估计概率.难点1.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.2.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.学情分析对于九年级学生来说,参与活动、利用实验解决数学问题已经不再陌生了,他们已经初步具备了利用实践操作来检验真知的能力.积极参与实验活动,从实验中体会和感受,可以有效帮助学生对这部分知识的理解和运用.教学建议1.概率涉及很多新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起紧密的联系.2.教师要引导学生将获得的新概念、新模型与已有的概念、模型进行对照、比较,找出它们之间的联系和区别,优化自己的认知结构.3.在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟模型提取的思维机制,获取模型选取的经验.感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高.本单元共用 3 课时教材第 60~62 页,本节课主要介绍用树状图或表格求概率和用频率估计概率.本节课的内容是在学生已经简单了解概率知识的基础上编排的一节课,意在通过树状图或表格计算出简单事件发生的概率,体会概率是描述不确定现象的数学模型,让学生了解事件发生的可能性及游戏规则的公平性,帮助学生澄清一些生活中的错误的经验.这部分内容有利于培养学生的随机概念,是义务教育阶段唯一培养学生从不确定的角度来观察世界的数学内容,学生明智地应付变化和不确定性,有助于学生理解社会,适应生活,教材从不同的情景出发,让学生感受用树状图或表格解决问题,进一步丰富学生对概率的认识,从而丰富学生的数学体验,提高分析问题、解决问题的能力.知识与能力1.用画树状图或表格的方法来列出简单随机事件所有等可能的结果,以及指定事件的所有结果.2.能通过画树状图或表格,求出简单事件发生的概率.过程与方法经历实验、列表、统计、运算等活动的过程,在活动中进一步发展学生合作交流的意识和能力,通过学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,提高学生分析问题和解决问题的能力.情感、态度与价值观1.培养学生实事求是的科学态度,发展学生合作交流的意识和能力.2.体会到根据实际情境设计出合理的模拟实验来研究问题的思维理念,积极参与数学活动.重点用树状图法和列表法求出简单事件发生的概率.难点根据问题的实际背景列举出所有等可能的结果.在引进表示一个事件发生的可能性大小的数是概率的基础上,引导学生利用已做过的实验的实验数据(稳定时的频率值)得到这些事件发生的概率,从而让学生明确只要确定事件发生的频率就可以得到事件发生的概率,最后从几个具体的实验操作求事件发生的概率.在教学过程中充分让学生自主思考、分析、实验、经历“猜测结果—进行实验—分析实验结果”的过程,满足学生的表现欲及探究欲.教师准备:多媒体课件.学生准备:练习本.一、创设情境、导入新课同学们,大家都听说过(或经历过)转盘游戏、摇号摸奖、买彩票获奖这类事情吧?1.说一说三种事件发生的概率和表示(1)必然事件发生的概率为 1,记作 P(必然事件)=1.(2)不可能事件发生的概率为 0,记作 P(不可能事件)=0.(3)若 A 为不确定事件,则 0<P(A)<1.2.等可能性事件的两个特征.(1)出现的结果有有限多个.(2)各结果发生的可能性相等.小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影,游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上, 则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.教师:有没有不重不漏地列出等可能结果的方法呢?今天我们来分析一下这个问题. (板书课题:用树状图或表格求概率)二、探索新知1.连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上、一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.通过大量重复试验发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡比较有利.2.探究用树状图法或表格计算概率.在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.我们通常借助树状图或表格列出所有可能出现的结果,如图所示或如表所示.教师:观察图或表,所有等可能性的结果有几种?分别是什么?他们每个人获胜的概率是多少呢?学生:总共有 4 种结果,且每种结果出现的可能性相同,分别为(正,正),(正, 反),(反,正),(反,反).则小明获胜的结果有 1 种:(正,正),所以小明获胜的概率是;小颖获胜的结果有 1 种:(反,反),所以小颖获胜的概率也是;小凡获胜的结果有 2 种:(正, 反)(反,正),所以小凡获胜的概率是 .教师:通过利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.(设计意图:教师引导学生对问题的解决进行回顾,让学生体会树状图或表格解决问题的优点.)三、课堂练习1.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A. B. C. D.2.某学校游戏节活动中,设计了一个有奖转盘游戏:如图,A 转盘被分成三个面积相等的扇形,B 转盘被分成四个面积相等的扇形,每一个扇形内都标有相应的数字.先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向下一区域内为止),然后.将两次记录的数据相乘.(1)请利用列表法求乘积结果为负数的概率;(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?A 盘B 盘四、课堂小结1.同学们,在生活中,你见过哪些现象运用了本节课的知识?2.我们如何运用本节课所学的概率知识来应对生活中出现的一些事情呢?(如识别骗子的游戏骗局等)(设计意图:师生共同探讨,用生活中的实例来深化学生对本课知识点的认识和理解.)教材第 62 页习题 3.1 第 2 题.本节内容跟实际生活经验较为接近,因此在教学设计中,我们从掷硬币游戏引入新课,让学生真切体验到学习数学的必要性和趣味性.最后在学生畅谈如何将本节课所学的概率知识运用到生活中去,如何使自己变得更有智慧,如何运用概率知识识破游戏骗局,减少做事情的盲目性中结束.学生的学习积极性较高,使他们真正体验到数学来源于实践又服务于实践的新课程理念.。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。

二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。

2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。

2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。

3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。

五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。

2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。

3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。

4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。

5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。

六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。

2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。

3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。

七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。

2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。

八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。

2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。

九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。

3.1《用树状图或表格求概率》

3.1《用树状图或表格求概率》

课题 3.1用树状图和表格求概率【学习目标】1. 学习用树状图和列表法计算涉及两步试验的随机事件发生的概率.2.培养学生合作交流的意识和能力.3.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.【学习重难点】重难点:能用列表法或画树状图计算简单事件发生的概率。

【自主预习】1、当一个事件满足什么条件条件时,可以用树状图或表格求概率?2、某同学掷一枚均匀的硬币,共掷了100次,正面朝上的次数是48次,下列说法正确的是()(A)正面朝上的频数是100 (B)正面朝上的频率是20.8%(C)正面朝上的频率是48% (D)以上都不对3、从甲、乙、丙中任选两名为代表,求甲被选上的概率.【合作探究】探究活动:用树状图和列表法计算概率例1、小明、小颖和小凡做“石头、剪刀、布”游戏。

游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?你还可以用别的方法来解答吗?做一做:小明和小军两人一起做游戏,游戏规则如下:每人从1,2….12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负。

如果你是游戏者,你会选择哪个数?【当堂检测】1、有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中。

分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。

2、准备两组相同的牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各摸出一张牌,称为一次试验。

(1)一次试验中两张牌的牌面数字和可能有哪些值?(2)你认为两张牌的牌面数字和为多少的概率最大?(3)请你估计,两张牌的牌面数字和等于5的概率是多少?(4)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于5的概率。

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案

北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。

本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。

二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。

但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。

因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。

三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。

2.能够灵活运用所学的知识来解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。

2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。

在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。

2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。

例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。

2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。

通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。

3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。

3.1.3用树状图或表格求概率(3)教案

3.1.3用树状图或表格求概率(3)教案

3. 1.3《用树状图或表格求概率(三)》教学设计叶邑镇初级中学赫耿学习目标:进一步经历用树状图、列表法计算随机实验的概率的过程.预习案:课前导学:1、自行阅读课本P65-67的内容;2、小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?尝试练习:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?学习案知识点拨:小颖做法如下图,并据此求出游戏者获胜的概率为21开始红蓝蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.(小组合作交流)指出“小颖的做法不正确,小亮的做法正确.而用列表法或者树状图求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.课内训练:一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。

求两次摸到的球的颜色能配成紫色的概率.反馈案:基础训练:1、 从1、2、3、4、5、6这六个数字中,先随意抽取一个,然后从剩下的五个数中再抽取一个,则两次抽到的数字之和为偶数的概率是__________;2、甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球。

用列表法写出所有可能的结果3、用如图所示的两个转盘进行配“紫色”游戏,其概率是多少?拓展提高:1、一个盒子中装有一个红球、一个白球。

用树状图或表格求概率

用树状图或表格求概率

条件概率计算
定义:在事件B发生的情况下,事件A发生的概率 公式:P(A|B) = P(AB) / P(B) 应用场景:在多个条件相互关联的情况下,计算某一事件发生的概率 注意事项:条件概率需要考虑各事件之间的关联性,避免独立性假设的错误
独立事件概率计算
定义:两个或多 个事件同时发生 的概率等于各事 件概率的乘积
概率定义
概率是描述随机 事件发生可能性 大小的数值
概率取值范围在0 到1之间
概率等于随机事 件发生次数与总 次数之比
概率越接近1,随 机事件发生的可 能性越大
概率计算公式
概率定义公式:P(A)=事件A发生的次数/所有可能事件的总数 条件概率公式:P(A|B)=P(A∩B)/P(B) 贝叶斯公式:P(A|B)=P(B|A)P(A)/P(B) 概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)
公式: P(A∪B∪C)=P( A)×P(B)×P(C)
应用场景:多个 独立因素共同影 响一个结果的情 况
注意事项:事件 之间必须相互独 立,否则计算结 果不准确
Part Three
表格计算概率
表格构建
确定事件和概率 列出所有可能的结果 计算每个结果的概率 构建表格并记录结果
事件概率计算
定义:表格计算概率是一种通过列出所有可能事件及其对应的概率来计算概率的方法。
概率值范围
概率值应在0到1 之间,包括0但不 包括1
概率值表示某一 事件发生的可能 性大小
概率值总和应为1, 即所有可能事件 的概率之和为1
概率值可以为小 数、分数或百分 数
概率的独立性
定义:两个事件之间没有相互影响,一个事件的发生与另一个事件的发生无关。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。

2. 培养学生运用概率知识解决实际问题的能力。

3. 培养学生合作交流、思考问题的能力。

二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。

2. 教学难点:如何运用树状图和表格求复杂事件的概率。

三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。

2. 学生准备:笔记本、彩笔。

四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。

2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。

3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。

4. 练习环节:让学生独立完成练习题,巩固所学方法。

五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。

六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。

七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。

八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。

A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。

3.1_用树状图或表格求概率(教案)

3.1_用树状图或表格求概率(教案)
4.数学抽象能力:培养学生将实际问题抽象为数学问题的能力,通过树状图和表格对事件进行抽象表示,理解事件之间的关联性。
5.数学表达能力:通过书写树状图和填写表格,提高学生的数学表达能力,使其清晰、准确地表达自己的思考过程。
本节课将紧密围绕新教材要求,注重培养学生的学科核心素养,提高他们的综合运用能力。
三、教学难点与重点
1.教学重点
(1)理解并掌握树状图和表格在求解概率问题中的应用。
(2)能够运用树状图和表格表示事件的所有可能结果,并进行概率计算。
(3)掌握单一事件和组合事件的概率计算方法。
举例:
-通过抛硬币、掷骰子等简单实例,让学生理解如何利用树状图和表格表示事件的所有可能结果。
-讲解并举例说明如何通过树状图和表格计算单一事件和组合事件的概率。
2.教学难点
(1)树状图的构建:学生在构建树状图时,可能难以把握事件之间的逻辑关系,导致树状图错误。
(2)表格的填写:学生在填写表格时,容易遗漏或重复计算某些结果,影响概率计算的正确性。
(3)条件概率的计算:对于涉及条件概率的问题,学生可能难以理解条件概率的概念,以及如何利用树状图和表格进行计算。
举例:
同学们,今天我们将要学习的是“3.1_用树状图或表格求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断某个事件发生概率的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子的概率、抽卡片的概率等。

用树状图或表格求概率

用树状图或表格求概率

用树状图求概率:当一次试验要涉及3个或更多的因素(例如从三个口袋中取球)时,为了不重不漏地列出所有可能的结果,通常采用树状图。

用表格求概率:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率。

当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用表格求概率。

例1、一个袋中有除颜色外其余特征均相同的4个珠子,其中2个白色,2个黑色,若从这个袋中任意取2个珠子,则其颜色不同的概率是______.例2、小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定,游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营.(1)用画树形图的方法表示三次抛掷硬币的所有结果;(2)小刚任意挑选两球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?例3、有四个除颜色外完全相同的小球,它们分别是黑色、蓝色、白色、红色,现从中任意抽取一个小球后,不放回,再随机抽取一个,则两次抽取的小球恰好一个是黑色、一个是红色的概率是________.例4、有四个除颜色外完全相同的小球,它们分别是黑色、蓝色、白色、红色,现从中任意抽取一个小球后,放回摇匀,再随机抽取一个,则两次抽取的小球恰好一个是黑色、一个是红色的概率是________.例5、大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.1、在4张卡片上分别写有1-4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_______.2、箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是_______.3、一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.4、完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率。

数学用树状图或表格求概率

数学用树状图或表格求概率
表格法
表格法是一种更为直观和简洁的方法,通过列出所有可能的结果和对应的概率,可以快速 地找到特定事件的概率。表格法的优点在于方便查找和计算,但需要注意的是,当事件的 可能性较多时,需要保证列表的完整性和准确性。
应用场景
树状图和表格法在各种概率计算场景中都有广泛的应用。例如,在统计学、决策分析、游 戏策略等领域中,都可以利用这两种方法来求解概率。通过学习和掌握这两种方法,可以 更好地理解和应用概率论的基本原理。
概率思维的培养
未来在教育和培训中,应该更加注重培养人们的概率思维。通过加强概率论的教育和培训,可以帮助人 们更好地理解和应用概率论的基本原理和方法,提高决策的科学性和准确性。
THANKS FORБайду номын сангаасWATCHING
感谢您的观看
02 树状图求概率
树状图的概念
树状图是一种图形化表示方法,用于 描述事件之间的因果关系或顺序关系 。在概率论中,树状图常用于表示多 个事件之间的概率关系。
树状图由节点和边组成,节点表示事 件,边表示事件之间的关系。
树状图的应用场景
排列组合问题
树状图可以用于解决排列和组合 问题,例如在组合数学中,通过 树状图可以直观地表示出不同组
实例二:抽签游戏
总结词
通过树状图或表格列出所有可能的结果,并计算每个结果的概率。
详细描述
抽签游戏也是一个常见的概率计算实例。假设有n个签,每个签被抽中的概率是 1/n。我们可以使用树状图或表格列出所有可能的结果(抽中或未抽中),并计 算每个结果的概率。
实例三:天气预报
总结词
通过树状图或表格列出所有可能的结果,并计算每个结果的概率。
合方式的数量。
概率计算
树状图可以用于计算多个事件同时 发生的概率,通过将每个事件的概 率相乘,可以得到最终的概率值。

3.1.1用树状图或表格求概率

3.1.1用树状图或表格求概率

1、本节课你有哪些收获?有何感想? 用列表法求随机事件发生的理论概率 (也可借用树状图分析)
2、用列表法求概率时应注意什么情况?
用列表法求概率时应注意各种情况发生的 可能性务必相同
作业: 习题3.1 1、2、3题。
只有一张电影票,通过做这样一个游戏,谁 获胜谁就去看电影。如果是你,你如何选择?
小明从一定高度随机掷一枚质地均匀的硬
币,他已经掷了两次硬币,结果都是“正面朝上 ”。那么,你认为小明第三次掷硬币时,“正面 朝上”与“反面朝上”的可能性相同吗?如果不 同,那种可能性大?说说你的理由,并与同伴交 流。
小明和小颖做掷骰子的游戏,规则如下: ① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子; ③ 如果同时掷得的两枚骰子点数之和,与谁所选 数字相同,那么谁就获胜. (1)在下表中列出同时掷两枚均匀骰子所有可能 出现的结果: (2)小明选的数字是5,小颖选的数字是6.如果 你也加入游戏,你会选什么数字,使自己获胜的 概率比他们大?请说明理由.
试验次数
200 300 400 500 …
两枚正面朝上的次数
两枚正面朝上的频率
两枚反面朝上的次数
两枚反面朝上的频率
一枚正面朝上、一枚反面朝上的次数
一枚正面朝上、一枚反面朝上的频率
(4)由上面的数据,请你分别估计“两枚正面朝 上”“两枚反面朝上”“一枚正面朝上、一枚反 面朝上”这三个事件的概率。由此,你认为这个 游戏公平吗?
想一想,我们刚才都经历了哪些过程?中我们发现,试验次数 较大时,试验频率基本稳定,而且在一般情况下, “一枚正面朝上。一枚反面朝上”发生的概率大 于其他两个事件发生的概率。所以,这个游戏不 公平,它对小凡比较有利。
在上面抛掷硬币试验中, (1)抛掷第一枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果?它们发生 可能性是否一样?如果第一枚硬币反面朝 上呢?

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。

用树状图或表格求概率

用树状图或表格求概率

5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
(3)随机从中一次摸出两个球,两球均为红球的概率是

2/5
1
2
3
4
5
6
1

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
练习:P64 知识技能第4(2)题
P65例题
第第二一个个
解:两个骰子的点数相同(记为事件A) 两个骰子点数之和是9(记为事件B) 至少有一个骰子的点数为2 (记为事件C)
∴P(A)=6/36=1/6 ∴ P(B)=4/36=1/9
∴ P(C)=11/36
练习:P64 知识技能第3题
小明和小军做掷骰子游戏,两人各掷一枚质地均匀的骰子,若两人掷得的点数之和为奇 数,则小军获胜,否则小明获胜,这个游戏对双方公平吗?为什么?
第二张牌的牌面的数 字
所有可能 出现的结果
1
2
(1,1) (2,3)
3
1
(1,2) (3,1)
2

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案

《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。

强调概率的取值范围:0≤P(A)≤1。

1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。

举例说明。

第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。

强调树状图的优点:直观、清晰。

2.2 树状图法求概率步骤一:画出树状图。

步骤二:统计符合条件的结果数。

步骤三:计算概率。

第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。

强调列表法的优点:简单、直观。

3.2 列表法求概率步骤一:列出所有可能的结果。

步骤二:统计符合条件的结果数。

步骤三:计算概率。

第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。

强调独立事件概率的乘法规则。

4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。

步骤二:计算每个独立事件的概率。

步骤三:将各独立事件的概率相乘。

第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。

强调互斥事件概率的加法规则。

5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。

步骤二:计算每个互斥事件的概率。

步骤三:将各互斥事件的概率相加。

本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。

希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。

强调条件概率的取值范围:0≤P(B|A)≤1。

6.2 条件概率的计算步骤一:计算事件A的概率P(A)。

步骤二:计算事件A和事件B发生的概率P(AB)。

步骤三:计算条件概率P(B|A)=P(AB)/P(A)。

第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,我们可以用树状图或表格 教师启发 表示所有可能出现的结果。
整理ppt
7
第二环节:一花独放不是春,百花齐放春满园
利用树状图或表格,我们可以不重复,不 教师启发 遗留地列出所有可能的结果,从而比较方
便地求出某些事件发生的概率。
整理ppt
8
第三环节:会当凌绝顶,一览众山小
活动内容1:
准备两组相同的牌,每组两张,两张牌的牌面数字 分别是1和2.从每组牌中各摸出一张牌,称为一次试验。 (1)一次试验中两张牌的牌面数字和可能有哪些值? (2)(同位合作试验)依次统计试验30次、60次、90 次的牌面情况,填写下表:
让我们小组交流一下自己的想法吧!
教师启发
整理ppt
6
第二环节:一花独放不是春,百花齐放春满园
探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现 “正面朝上”和“反面朝上”的概率相同。无论抛掷 第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现 “正面朝上”和“反面朝上”的概率也是相同的。所 以,抛掷两枚均匀的硬币,出现的(正,正)(正, 反)(反,正)(反,反)四种情况是等可能的。
在一个双 人游戏中, 你是怎样理 解游戏对双 方公平的?
教师启发
整理ppt
3
第一环节:温故而知新,可以为师矣
新问题:
小明、小凡和小颖都想去看 周末电影,但只有一张电影票。 三人决定一起做游戏,谁获胜谁 就去看电影。游戏规则如下:
连续抛掷两枚均匀的硬币, 如果两枚正面朝上,则小明获胜; 如果两枚反面朝上,则小颖获胜; 如果一枚正面朝上、一枚反面朝 上,小凡获胜。 你认为这个游戏公平吗?
整理ppt
9
第三环节:会当凌绝顶,一览众山小
活动内容2:一个盒子中装有一个红球、一个白球。
这些球除颜色外都相同,从中随机地摸出一个球,记 下颜色后放回,再从中随机摸出一个球。求: (1)两次都摸到红球的概率; (2)两次摸到不同颜色球的概率;
只有一张电影票,通过做这样一个 游戏,谁获胜谁就去看电影。如果是 教师启发 你,你如何选择?
整理ppt
10
第四环节:问渠哪得清如许 为有源头活水来
1、本节课你有哪些收获?有何感想?
2、用列表法求概率时应注意什么情况?
教师启发
学会了 明白了 懂得了
用列表法求随机事件发生的理论概率 (也可借用树状图分析)
用列表法求概率时应注意各种情况发生 的可能性务必相同
合作交流的重要性,体会到了一种精神: 就是要勇于暴露自己的思想
第三章 概率的进一步认识
3.1 用树状图或表格求概率(一)
整理ppt
1
同学们,你们准备好七了年级吗在?学习第六章
《概率初步》时,我们已 经通过试验、统计等活动 感受随机事件发生的频率 的稳定性即“当试验次数 很大时,事件发生的频率 稳定在相应概率的附近”; 了解到事件的概率,体会 到概率是描述随机现象的 数学模型。
本章我们将对概率做 进一步的研究。
整理ppt
2
第一环节:温故而知新,可以为师矣。
问题再现:
小明和小凡一起做游戏。在 一个装有2个红球和3个白球(每个 球除颜色外都相同)的袋中任意摸 出一个球,摸到红球小明获胜, 摸到白球小凡获胜。 (1)这个游戏对双方公平吗? (2)如果是你,你会设计一个 什么游戏活动判断胜负?
如果不公 平,猜猜谁 获胜的可能 性更大?
教师启发
整理ppt
4
第二环节:一花独放不是春,百花齐放春满园
教师启发
活动体会:从上面的试验中我们发现,试验次数较
大时,试验频率基本稳定,而且在一般情况下,“一枚 正面朝上。一枚反面朝上”发生的概率大于其他两个事 件发生的概率。所以,这个游戏不公平,它对小凡比较 有利。
整理ppt
5
第二环节:一花独放不是春,百花齐放春满园
深入探究:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (2)抛掷第二ቤተ መጻሕፍቲ ባይዱ硬币可能出现哪些结果? 它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果?它们发生 可能性是否一样?如果第一枚硬币反面朝 上呢?
整理ppt
11
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
相关文档
最新文档