直角三角形综合练习题
综合算式专项练习题直角三角形的边长关系
综合算式专项练习题直角三角形的边长关系在数学中,直角三角形是一种特殊的三角形,其中一个角为90度。
直角三角形的三条边分别被称为斜边、邻边和对边,它们之间存在着特定的关系。
本文将通过综合算式专项练习题的方式,探讨直角三角形的边长关系。
1. 练习题一:已知直角三角形的斜边长度为10,邻边长度为6,求对边长度。
设直角三角形的对边长度为x,根据勾股定理可以得到以下等式:x² + 6² = 10²x² + 36 = 100x² = 64x = 8因此,该直角三角形的对边长度为8。
2. 练习题二:已知直角三角形的邻边长度为5,对边长度为12,求斜边长度。
设直角三角形的斜边长度为y,根据勾股定理可以得到以下等式:5² + y² = 12²25 + y² = 144y² = 119因此,该直角三角形的斜边长度约为10.92。
3. 练习题三:已知直角三角形的对边长度为9,斜边长度为15,求邻边长度。
设直角三角形的邻边长度为z,根据勾股定理可以得到以下等式:9² + z² = 15²81 + z² = 225z² = 144z = 12因此,该直角三角形的邻边长度为12。
通过以上练习题的解答,我们可以总结出直角三角形边长之间的关系:- 斜边的长度可以通过求解勾股定理的方程得到。
- 邻边的长度可以通过已知斜边长度和对边长度,利用勾股定理求解。
- 对边的长度可以通过已知斜边长度和邻边长度,利用勾股定理求解。
在实际应用中,直角三角形的边长关系可以用于解决各种几何问题,例如测量难以直接获取的距离、计算斜面的倾斜度等。
综合算式专项练习题的直角三角形边长关系是通过勾股定理求解的。
根据已知条件,我们可以利用勾股定理的方程来计算未知边长。
直角三角形的边长关系在解决几何问题中具有重要的应用价值。
解直角三角形练习题
解直角三角形练习题一、选择题1. 在直角三角形中,若一个锐角的度数是45°,则另一个锐角的度数是()A. 45°B. 135°C. 90°D. 45°或135°2. 若直角三角形的两条直角边分别为3和4,则斜边的长度为()A. 5B. 6C. 7D. 83. 在直角三角形中,若斜边长为10,一直角边长为6,则另一直角边长为()A. 8B. 9C. 10D. 124. 已知直角三角形的斜边长为10,一个锐角的度数为30°,则该三角形的面积是()A. 25B. 30C. 50D. 100二、填空题1. 在直角三角形中,若一个锐角的度数是60°,则另一个锐角的度数是______。
2. 若直角三角形的两条直角边分别为5和12,则斜边的长度是______。
3. 在直角三角形中,若斜边长为13,一直角边长为5,则另一直角边长为______。
4. 已知直角三角形的斜边长为10,一个锐角的度数为45°,则该三角形的面积是______。
三、解答题1. 在直角三角形ABC中,∠C=90°,∠A=30°,AC=6,求BC和AB的长度。
2. 在直角三角形DEF中,∠F=90°,DF=5,EF=12,求∠D和∠E 的度数。
3. 已知直角三角形的斜边长为15,一个锐角的度数为60°,求该三角形的面积。
4. 在直角三角形XYZ中,∠Y=90°,∠X=45°,ZY=8,求XY和XZ的长度。
5. 已知直角三角形的斜边长为10,一直角边长为6,求另一直角边长及两个锐角的度数。
6. 在直角三角形LMN中,∠N=90°,∠L=30°,LN=9,求LM和MN的长度。
7. 已知直角三角形的面积为24,斜边长为10,求两个直角边的长度。
8. 在直角三角形PQR中,∠Q=90°,∠P=60°,PQ=8,求PR和QR的长度。
中考数学直角三角形的边角关系综合练习题及答案
中考数学直角三角形的边角关系综合练习题及答案一、直角三角形的边角关系1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1,∵△ABC ∽△BCD , ∴AB BC BD CD =,即111x x+=, 整理得:x 2+x-1=0, 解得:x 1=15-+,x 2=15--(负值,舍去), 则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=1515144151AE AB -++==-++, 在Rt △BCE 中,cosC=cos72°=151541EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH 的对角互补,那么四边形EFGH 的四个顶点E 、F 、G 、H 都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.【答案】(1)证明见解析,直径OP=2;(2)证明见解析,MN的长为定值,该定值为2;(3)①MN=;②证明见解析;(4)MN取得最大值2.【解析】试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.试题解析:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.考点:圆的综合题.5.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数6.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为32≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH∠33,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=503505033≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
直角三角形专题练习
直角三角形练习姓名一、选择题:1.以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,6,7C.9,40,41D.5,12,132.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.270°B.135°C.90°D.315°(第2题图) (第3题图)3.如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′4.如图,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm,那么AC长为().A.4cmB.5cmC.8cmD.34cm(第4题图) (第5题图) (第6题图)5.如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE ⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
其中结论正确的是()A.(1)(3)B.(2)(3)C.(3)(4)D.(1)(2)(4)6.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°二、填空题:7.一辆汽车沿30°角的山坡从山底开到山顶,共走了4000米,这座山高度为米.8.如图,在△ABC中,0030,90=∠=∠AC,BC=2,则AB= ,AC= .(第8题图)(第9题图)(第10题图)9.如图,在Rt ABC∆中,090,BAC AB AC∠==,分别过点,B C作经过点A的直线的垂线段BD,CE,若BD=3厘米,CE=4厘米,则DE的长为。
10.如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B 与点A重合,折痕为DE,则CD的长为 .11.如图,在ABC∆中,AB=AC,0120A∠=,D是BC上任意一点,分别做DE⊥AB于E,DF⊥AC于F,如果BC=20cm,那么DE+DF= cm.三、解答题:12.已知:△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,求DE的长.13.如图,在ABC△中,302B AC∠=︒=,,等腰直角三角形ACD的斜边AD在AB边上,求BC的长.B14.如图,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,BD = CD 。
初三数学上册综合算式专项练习题之直角三角形运算
初三数学上册综合算式专项练习题之直角三角形运算直角三角形是初中数学中非常重要的一个概念,它涉及到了三角函数的计算以及与之相关的各种运算。
综合算式是初中数学中的一项基础能力训练,通过综合运用已学的知识来解决问题。
本文将为大家提供一系列的综合算式专项练习题,以帮助大家更好地理解和掌握直角三角形的运算。
1. 已知一直角三角形的直角边长分别为3cm和4cm,求斜边的长度。
解答:根据勾股定理,斜边的长度可以通过勾股定理来计算:斜边长度= √(3² + 4²)= √(9 + 16)= √25= 5cm所以斜边的长度为5cm。
2. 已知一直角三角形的直角边长分别为5cm和12cm,求斜边的长度,并计算其面积。
解答:同样地,我们可以通过勾股定理来计算斜边的长度:斜边长度= √(5² + 12²)= √(25 + 144)= √169= 13cm斜边的长度为13cm。
而直角三角形的面积可以通过直角边的长度计算得到,即面积 = (直角边1 ×直角边2) / 2= (5 × 12) / 2= 30平方厘米所以其面积为30平方厘米。
3. 已知一直角三角形的斜边长为10cm,直角边为6cm,请计算斜边的正弦、余弦和正切值。
解答:根据正弦定理,正弦值可以通过斜边和直角边的比值来计算:正弦值 = 直角边 / 斜边= 6 / 10= 0.6根据余弦定理,余弦值可以通过斜边和直角边的比值来计算:余弦值 = 直角边 / 斜边= 6 / 10= 0.6根据正切定理,正切值可以通过直角边1和直角边2的比值来计算:正切值 = 直角边1 / 直角边2= 6 / 10= 0.6所以斜边的正弦、余弦和正切值分别为0.6、0.6和0.6。
4. 在一个直角三角形中,已知一条锐角的正弦值为0.8,求这个锐角的余弦值。
解答:根据正弦和余弦的定义,正弦值可以通过斜边和斜边的比值来计算,而余弦值可以通过直角边和斜边的比值来计算。
中考数学直角三角形的边角关系综合练习题附答案
中考数学直角三角形的边角关系综合练习题附答案一、直角三角形的边角关系1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形5.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33. 【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=3.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.6.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.7.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.8.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<;(3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或. 【解析】 【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OBBC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭21220233S PQ OP t t ∴=⋅=-+22202502(5),033333St t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t tt t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm . 【解析】 【分析】过点A 作AP ⊥CD 于点P ,交BC 于点Q ,由∠CQP =∠AQB 、∠CPQ =∠B =90°知∠A =∠C=60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ =BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(8+43)m . 【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE 即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴D E=B′E=x+8,∵∠BDE=30°,∴tan30°=38BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
第一章直角三角形练习题
第一章直角三角形练习题A. 基础概念1. 若直角三角形的两个直角边长分别为3cm和4cm,求斜边的长度。
2. 在直角三角形中,如果一个锐角的度数是30°,求另一个锐角的度数。
3. 若直角三角形的斜边长为10cm,一个锐角为60°,求该锐角所对的直角边长度。
4. 判断下列哪个选项不能构成直角三角形的三边长:(A)3, 4,5 (B)5, 12, 13 (C)8, 15, 17 (D)6, 8, 115. 在直角三角形中,如果斜边上的中线等于斜边的一半,那么这个三角形是什么三角形?B. 特殊角的三角函数1. 已知直角三角形中,一个锐角为45°,求该角的正弦值。
2. 若直角三角形的一个锐角为30°,求该角的余弦值。
3. 在直角三角形中,如果斜边长为2,一个锐角为60°,求该角的正切值。
4. 已知直角三角形的斜边长为10,一个锐角的正弦值为1/2,求这个锐角的度数。
5. 在直角三角形中,如果一个锐角的余弦值等于它的正切值,求这个锐角的度数。
C. 三角函数的应用1. 一个灯塔距离海岸线3公里,从灯塔顶部看到一艘船在正北方向,船与灯塔的水平距离为2公里,求船距离海岸线的距离。
2. 在直角三角形中,斜边长为13cm,一个锐角的正切值为3/4,求这个锐角的余弦值。
3. 一座山的高度为1800米,测得山顶与地面上某点的角度为15°,求该点到山顶的水平距离。
4. 在直角三角形中,如果一个锐角的正弦值和余弦值相等,求这个锐角的度数。
5. 一个旗杆的高度为15米,在旗杆顶部系一条绳子,绳子另一端固定在地面上,绳子长度为20米,求绳子与地面的夹角度数。
D. 三角形的边长关系1. 若直角三角形的斜边长为c,一个直角边长为a,求另一个直角边长b(用勾股定理表示)。
2. 已知直角三角形的一个直角边长为8cm,斜边长为10cm,求另一个直角边长。
3. 在直角三角形中,如果一个锐角的正弦值为0.6,斜边长为15cm,求这个锐角所对的直角边长度。
(完整版)初中解直角三角形练习题
解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 、都扩大2倍B 、都扩大4倍C 、没有变化D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形B 、直角三角形C 、钝角三角形D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32-|5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。
鲁教版七年级直角三角形练习50题及参考答案(难度系数0.62)
七年级直角三角形(难度系数0.62)一、单选题(共20题;共40分)1.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A. 5B.C. 5或D. 不确定【答案】C【考点】勾股定理2.图中字母所代表的正方形的面积为144的选项为()A. B. C. D.【答案】 D【考点】勾股定理的应用3.如图所示,在△ABC中,D为AB的中点,BE⊥AC,垂足为点E,若DE=4,AE=6,则BE的长度是()A. 10B. 2C. 8D. 2【答案】 D【考点】直角三角形斜边上的中线,勾股定理4.如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。
则A,B,C,D的面积的和等于( )A. 94m2 B. 52m2 C. 114m2 D. 3m2【答案】A【考点】勾股定理,等腰直角三角形5.将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A. 12cm≤h≤19cmB. 12cm≤h≤13cmC. 11cm≤h≤12cmD. 5cm≤h≤12cm【答案】C【考点】勾股定理6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A. 7B. 5C. 3D. 2【答案】B【考点】直角三角形全等的判定7.如图,小正方形边长为1,连接小正方形的三个顶点得△ABC,则AC边上的高是().A. 310√5 B. 32√2 C. 45√5 D. 35√5【答案】 D【考点】勾股定理8.以a.b.c为边的三角形是直角三角的为()A. a=2,b=3,c=4B. a=1,b= ,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【考点】勾股定理的逆定理9.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A. 3,4,5B. √3,√4,√5C. 6,8,10D. 9,12,15 【答案】B【考点】勾股定理的逆定理10.下列各组长度的线段能构成直角三角形的一组是( )A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,6【答案】A【考点】勾股定理的逆定理11.如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A. 1B. 2C. 3D. 4【答案】 D【考点】勾股定理,勾股定理的应用12.如图,△ABC中,∠ACB=90°,∠A=25°,点D为斜边AB上的中点,DE⊥CD交AC于点E,则∠AED的度数为()A. 105°B. 110°C. 115°D. 125°【答案】C【考点】直角三角形斜边上的中线13.如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A. 等于1米B. 大于1米C. 小于1米D. 以上都不对【答案】A【考点】勾股定理的应用14.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6。
直角三角形与勾股定理综合练习题
直角三角形与勾股定理综合练习题直角三角形和勾股定理是数学中重要的概念和定理,它们在许多实际问题中都有广泛的应用。
下面将通过一系列练习题来加深对直角三角形和勾股定理的理解和运用。
练习题一:已知一直角三角形的直角边长分别为3厘米和4厘米,求斜边的长度。
解答一:根据勾股定理,斜边的长度等于直角边长的平方和的平方根,即斜边长度为√(3^2+4^2)=√(9+16)=√25=5厘米。
练习题二:已知一个直角三角形的斜边长为10厘米,一直角边长为6厘米,求另一直角边的长度。
解答二:根据勾股定理,另一直角边的长度等于斜边长的平方减去已知直角边长的平方再开方,即另一直角边长度为√(10^2-6^2)=√(100-36)=√64=8厘米。
练习题三:已知一个直角三角形的两个直角边长分别为7厘米和24厘米,求斜边的长度。
解答三:根据勾股定理,斜边的长度等于直角边长的平方和的平方根,即斜边长度为√(7^2+24^2)=√(49+576)=√625=25厘米。
练习题四:已知一个三角形的三边长分别为5厘米、12厘米和13厘米,判断该三角形是否为直角三角形。
解答四:根据勾股定理,若三边长满足a^2+b^2=c^2,其中a、b为两个直角边长,c为斜边长,则该三角形为直角三角形。
对于给定的三边长5厘米、12厘米和13厘米,可以计算得到5^2+12^2=25+144=169=13^2,因此该三角形为直角三角形。
练习题五:已知一个三角形的三边长分别为8厘米、9厘米和10厘米,判断该三角形是否为直角三角形。
解答五:对于给定的三边长8厘米、9厘米和10厘米,计算得到8^2+9^2=64+81=145,但10^2=100,因此8^2+9^2≠10^2,不满足勾股定理的条件,所以该三角形不是直角三角形。
通过以上练习题,我们可以巩固直角三角形和勾股定理的知识。
直角三角形的斜边长可以通过勾股定理求得,已知两个直角边长可以判断一个三角形是否为直角三角形。
初二数学下册直角三角形综合练习题
初二数学下册直角三角形综合练习题直角三角形是初中数学中一个重要的概念,它的研究和应用都占据了数学课程的一席之地。
通过直角三角形的综合练习题,我们可以进一步加深对直角三角形相关知识的理解和掌握。
本文将为大家提供一些初二数学下册直角三角形的综合练习题,以便同学们更好地巩固所学知识。
1. 已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边长度是多少?解析:根据勾股定理可知,在直角三角形中,斜边的平方等于直角边的平方和。
设另一条直角边为x,则根据勾股定理可得:10² = 6² + x²。
求解得x=8cm,所以另一条直角边的长度为8cm。
2. 已知一条直角边长为12cm,另一条直角边长为16cm,求斜边的长度是多少?解析:同样使用勾股定理,设斜边的长度为y,则根据勾股定理可得:y² = 12² + 16²。
求解得y=20cm,所以斜边的长度为20cm。
3. 已知一条直角边为5cm,斜边为13cm,求另一条直角边的长度是多少?解析:同样使用勾股定理,设另一条直角边的长度为z,则根据勾股定理可得:13² = 5² + z²。
求解得z=12cm,所以另一条直角边的长度为12cm。
通过以上的三道练习题,我们可以看到在解决直角三角形综合问题时,常常运用勾股定理来解题。
勾股定理是直角三角形的基本定理,掌握好这个定理对于解决直角三角形相关问题非常重要。
在实际应用中,勾股定理经常被用于测量不易直接测量的距离,例如测量山的高度、河的宽度等等。
除了勾股定理,我们还可以运用正弦定理和余弦定理来解决一些特殊情况下的直角三角形问题。
正弦定理:在一个三角形中,各边的长度与其对应的正弦值之间有一定的关系。
对于直角三角形来说,正弦定理可以简化为:sinA = 直角边1/斜边,sinB = 直角边2/斜边。
余弦定理:在一个三角形中,各边的长度与其对应的余弦值之间有一定的关系。
鲁教版七年级直角三角形练习50题及参考答案(难度系数0.6)
七年级直角三角形(难度系数0.6)一、单选题(共15题;共30分)1.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有()①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周长等于BC的长.A. 0个;B. 1个;C. 2个;D. 3个.【答案】C【考点】翻折变换(折叠问题),等腰直角三角形2.下列命题中,正确个数是()①若三条线段的比为1:1:√2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A. 2个B. 3个C. 4个D. 5个【答案】A【考点】菱形的判定,矩形的判定,等腰直角三角形3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A. 4B. 5C. 6D. 7【答案】D【考点】直角三角形全等的判定,角平分线的性质4.如图3,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠ABE的度数是()A. 10°B. 15°C. 30°D. 45°【答案】B【考点】垂线,全等三角形的判定与性质,等腰直角三角形5.如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A. 60°B. 105°C. 120°D. 135°【答案】B【考点】旋转的性质,等腰直角三角形6.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A. 6.5cmB. 5cmC. 9.5cmD. 11cm【答案】B【考点】全等三角形的判定与性质,等腰直角三角形7.如图,已知AB=AD,∠BAD=∠CAE,则增加以下哪个条件仍不能判断△BAC≅△DAE的是()A. AC=AEB. BC=DEC. ∠B=∠DD. ∠C=∠E【答案】B【考点】直角三角形全等的判定8.如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【考点】平行线的性质,等腰直角三角形9.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A. 3,4,5B. 7,24,25C. 1,√2,√3D. 2,3,4【答案】 D【考点】勾股定理的逆定理10.△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC 交CF的延长线于点D,BD=2cm,则△ABE的面积为()A. 2cm2B. 4cm2C. 6cm2D. 8cm2【答案】B【考点】全等三角形的判定与性质,等腰直角三角形11.下列说法:①两边和其中一边的对角对应相等的两个三角形全等.②角的对称轴是角平分线③两边对应相等的两直角三角形全等④成轴对称的两图形一定全等⑤到线段两端距离相等的点在线段的垂直平分线上,正确的有()个.A. 2B. 3C. 4D. 5【答案】A【考点】直角三角形全等的判定,线段垂直平分线的性质,轴对称的性质,轴对称图形12.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A. 0B. 1C. √2D. √3【答案】C【考点】勾股定理,探索数与式的规律,有理数的除法13.如图,在5×5的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A. √12B. √13C. √14D. √15【答案】B【考点】勾股定理14.下列几组数能作为直角三角形的三边长的是()A. 2,2,√8B. √3,2,√5C. 9,12,18D. 12,15,20【答案】A【考点】勾股定理的逆定理15.如图为正方形网格,则∠1+∠2+∠3=()A. 105°B. 120°C. 115°D. 135°【答案】 D【考点】全等三角形的判定与性质,等腰直角三角形二、填空题(共16题;共20分)16.RtΔABC中,∠C=900,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC 上的点D处时,点C落在点E处,此时点E到直线BC的距离为________.【答案】2413【考点】三角形的面积,勾股定理,相似三角形的判定与性质,旋转的性质17.如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC的长为 ________【答案】12【考点】三角形的角平分线、中线和高,直角三角形斜边上的中线18.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为__.【答案】√262【考点】直角三角形斜边上的中线,勾股定理的逆定理19.小强想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度是________米.【答案】12【考点】勾股定理的应用20.如图所示的方格中,∠1+∠2+∠3=________度.【答案】135°.【考点】全等三角形的判定与性质,等腰直角三角形21.如图,将一副三角板和一张对边平行的纸条按下列方式摆放:含30°角的直角三角板的斜边与含45°角的直角三角板一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.【答案】135°【考点】平行线的性质,等腰直角三角形22.如图∠C=∠D=900,要使△ABC≌△BAD需要添加的一个条件是________.【答案】∠CAB=∠DBA(答案不唯一)【考点】直角三角形全等的判定23.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=________.【答案】1【考点】角平分线的性质,勾股定理的逆定理24.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.【答案】45【考点】全等三角形的性质,直角三角形全等的判定25.如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为________.【答案】4 √3【考点】等边三角形的性质,勾股定理,轴对称的应用-最短距离问题26.已知⊙O的直径CD为4,AC⌢的度数为80°,点B是AC⌢的中点,点P在直径CD上移动,则BP+AP 的最小值为________.【答案】2 √3【考点】勾股定理,垂径定理,轴对称-最短路线问题27.如图,四边形BCDE是正方形,数轴上点A表示的实数是________.【答案】1﹣√2【考点】实数在数轴上的表示,勾股定理28.如图,数轴上点A所对应的数是________.【答案】﹣√5【考点】实数在数轴上的表示,勾股定理29.如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为________.【答案】14cm【考点】全等三角形的性质,勾股定理,矩形的性质,平移的性质30.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________【答案】1【考点】勾股定理31.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan∠FBC的值为________【答案】13【考点】勾股定理三、解答题(共8题;共40分)32.如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
解直角三角形练习题
解直角三角形练习题解直角三角形练习题一、基础知识练习题:1. 在一个直角三角形ABC中,∠A = 90°, AB = 6cm, AC = 8cm,求BC的长度。
2. 若一个直角三角形的另外两个角的度数分别是30°和60°,求斜边的长。
3. 已知一个直角三角形的斜边长是10cm,一个锐角的度数是45°,求直角边的长度。
4. 在一个直角三角形PQR中,∠P = 90°, PQ = 5cm, QR = 13cm,求PR的长度。
5. 若一个直角三角形的直角边长分别是3cm和4cm,求斜边的长。
二、综合运用练习题:1. 一个直角三角形ABC,∠A = 90°, AB = x cm, AC = 8cm,BC = 10cm。
求x的值。
2. 已知一个直角三角形的斜边长是8cm,一个锐角的度数是30°,求直角边的长度。
3. 在一个直角三角形MNP中,∠N = 90°, MN = x cm, NP = 12cm, MP = 20cm。
求x的值。
4. 若一个直角三角形的直角边长分别是2x cm和3x cm,求斜边的长。
5. 已知一个直角三角形的斜边长是15cm,一个锐角的度数是60°,求直角边的长度。
三、挑战练习题:1. 在一个直角三角形DEF中,∠D = 90°, DE = 12cm, DF = x cm, EF = x + 2cm。
求x的值。
2. 若一个直角三角形的直角边长是4x cm和5x cm,求斜边的长。
3. 在一个直角三角形XYZ中,∠Z = 90°, XY = 10cm, XZ = 3x cm, YZ = 4x cm。
求x的值。
4. 已知一个直角三角形的斜边长是20cm,一个锐角的度数是45°,求直角边的长度。
5. 在一个直角三角形GHI中,∠G = 90°, GH = x cm, GI = 15cm, HI = 3x cm。
七年级数学下册直角三角形的边长关系综合练习题
七年级数学下册直角三角形的边长关系综合练习题直角三角形是一种特殊的三角形,其中一个角是直角(即为90度)。
在直角三角形中,边长之间存在着一些特殊的关系,我们可以通过运用一些定理和公式来求解直角三角形的边长。
本文将综合练习一些直角三角形的边长关系题目,帮助七年级学生加深对这些概念的理解和应用。
题目一:已知直角三角形ABC中,∠B = 90°,BC = 5cm,AC = 12cm,求AB的长度。
解析一:根据勾股定理,直角三角形中的两个直角边的平方和等于斜边的平方。
即AB² + BC² = AC²。
带入已知条件:AB² + 5² = 12²AB² + 25 = 144AB² = 144 - 25AB² = 119AB = √119因此,直角三角形ABC中,AB ≈ 10.92cm。
题目二:已知直角三角形XYZ中,∠Z = 90°,YZ = 9cm,XZ = 15cm,求XY的长度。
解析二:同样利用勾股定理,我们可以得到XY² + YZ² = XZ²。
带入已知条件:XY² + 9² = 15²XY² + 81 = 225XY² = 225 - 81XY² = 144XY = √144因此,直角三角形XYZ中,XY = 12cm。
题目三:已知直角三角形PQR中,∠R = 90°,PQ = 8cm,RP = 10cm,求RQ的长度。
解析三:应用勾股定理,我们有RQ² + PQ² = RP²。
带入已知条件:RQ² + 8² = 10²RQ² + 64 = 100RQ² = 100 - 64RQ² = 36RQ = √36因此,直角三角形PQR中,RQ = 6cm。
直角三角形练习题(含答案)
直角三角形练习题(含答案)题目一:已知直角三角形ABC,其中∠B = 90°,AB = 5 cm,BC = 12 cm。
请计算AC的长度。
解答:根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
根据已知条件,AB和BC分别为直角三角形ABC的两条直角边,可以带入勾股定理公式进行计算。
AC的长度可以计算如下:AC² = AB² + BC² = 5² + 12² = 25 + 144 = 169AC = √169 = 13 cm因此,AC的长度为13 cm。
题目二:直角三角形DEF中,∠D = 90°,DE = 8 cm,DF = 15 cm。
请计算EF的长度。
解答:根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
根据已知条件,DE和DF分别为直角三角形DEF的两条直角边,可以带入勾股定理公式进行计算。
EF的长度可以计算如下:EF² = DE² + DF² = 8² + 15² = 64 + 225 = 289EF = √289 = 17 cm因此,EF的长度为17 cm。
题目三:已知直角三角形GHI,其中∠G = 90°,GH = 9 cm,HI = 12 cm。
请计算GI的长度。
解答:根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
根据已知条件,GH和HI分别为直角三角形GHI的两条直角边,可以带入勾股定理公式进行计算。
GI的长度可以计算如下:GI² = GH² + HI² = 9² + 12² = 81 + 144 = 225GI = √225 = 15 cm因此,GI的长度为15 cm。
题目四:直角三角形JKL中,∠J = 90°,JK = 6 cm,KL = 8 cm。
直角三角形 练 习 题
直角三角形练习题(一)填空1.如图3-100,在直角三角形ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D点,AC=4厘米,则AD= ______ 厘米,AB= ______ 厘米.2.若直角三角形斜边与斜边中线之和是3厘米,那么斜边的长是 ______ 厘米.3.若一个三角形的一个角等于其他两个角的差,那么这个三角形是 ______ 三角形.4.在直角三角形中,若有一锐角是30°,而斜边与较小的直角边长之和是6厘米,那么斜边的中线是 ______ 厘米.5.已知在△ABC中,AB=AC=4厘米,∠A∶∠B=2∶5,过C点作△ABC的高CD,与AB交于D点,则CD= ______ 厘米.6.顶角为x°的等腰三角形一腰的高线与底边所成的角等于 ______ .7.若在直角三角形ABC中,∠C=90°,∠A+2∠B=105°,则∠B= ______ .8.如图3-101,已知D是直角三角形ABC中BC边的延长线上的一点,CD=AC,∠ACB=60°,则BC∶CD= ______ .9.如图3-102,已知在直角三角形ABC中,∠C=90°,CA=CB,AD平分∠BAC,DE⊥AB 于E点,BE=3厘米,则CD= ______ = ______ = ______ 厘米.10.等腰三角形一腰上的高是腰长的一半时,则底角的大小是 ______ .(二)选择11.如图3-103,已知△ABC中,∠B=∠C,CD⊥AB于D,那么下列两角关系正确的是[ ].A.∠A=∠B;B.∠A=∠ACD; C.∠A=∠DCB; D.∠A=2∠BCD.12.如图3-104,△ABC中,∠C=90°,AC=BC,∠CAD=∠EAD,DE⊥AB于E,且AB=6厘米,则△DEB的周长为 [ ].A.4厘米; B.6厘米;C.10厘米;D.以上全不对.(三)计算且AD=2厘米,求AB的长.14.如图3-105,已知∠C=90°,∠DBC=36°,且AD=DB,求∠A的大小.15.如图3-106,已知∠ABC=86°,∠C=90°,AB=BD=8厘米,CD=4厘米.求∠A的大小.16.如图3-107,已知D是CA延长线上一点,∠BDC=15°,AD=AB=4厘米,求BC的长.17.如图3-108,已知△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D点,交AB于E点,且BD=16厘米,求AC的长.18.如图3-109,已知∠ABC=∠ACB,CD∥AB,AD⊥CD19.如图3-110,已知△ABC中,∠ACB=90°,CD⊥AB于D点,BC=2BD,且BD=2厘米,求AD的长.20.如图3-111,AB=AC,FD⊥BC于D点,DE⊥AB于E点,∠AFD=155°,求∠EDF的大小.21.如图3-112,已知△ABC中,∠ACB=90°,∠A=25°,D是AB的中点,BE=BC,求∠DBE的大小.22.如图3-113,已知△ABC中,AD是高线,∠B=∠DAC=60°,DC=24厘米,求AB的长.23.如图3-114,已知AD是BC边上的高,BE是AC边上的中线,BC=8厘米,AC=3厘米,∠C=60°,求BD和DE的长.24.如图3-115,已知△ABC 中,∠ACB >90°,∠B=25°,CD ⊥BC 于点C ,BD=2AC ,点E 在BC 的延长线上,求∠ACE 的大小.25.如图3-116,在△ABC 中,∠C -∠B=∠A ,∠B=15°,AB 的中垂线交BC 于D 点,交AB 于E 点,BD=16厘米,求AC 的长.26.如图3-117,已知△ABC 中,AB=AC ,∠BAC=120°,DE 垂直平分AC 于E 点,DE=2厘米,求BC 的长.27.如图3-118,若在等边△ABC 的三边上各取一点M ,N ,P ,并有MN ⊥AC ,NP ⊥AB ,MP ⊥BC ,AB=3厘米,求MC 的长度.29.如图3-120,D 为直角三角形ABC 斜边上一点,DE ⊥BC 于E 点,BE=AC .若BD=21厘米,DE +BC=1厘米,试求∠B 的大小.30.如图3-121,已知∠C=90°,∠1=∠2,D到AB的距离是31.如图3-122,已知O是AB,AC边中垂线的交点,I是∠ABC,∠ACB平分线的交点,∠O+∠I=180°,求∠A的大小.(四)证明32.已知:如图3-123,在△ABC中,∠C=∠BDC=90°.求证:∠A=∠BCD.33.已知:如图3-124,AE⊥CE,AE平分∠CAB,CE平分∠ACD.求证:AB∥CD.34.已知:如图3-125,在△ABC中,∠BAC=90°,AD⊥BC于D点,BF是∠ABC的平分线,交AD于E点,交AC于F点.求证:AE=AF.35.已知:如图3-126,在△ABC中,∠ACB=2∠B,过点A作AD⊥AB,与BC的延长线交于D点.求证:36.已知:如图3-127,AF=AD,FD的延长线交BC于E,且FE⊥BC.求证:∠ADF+∠B=90°,AB=AC.37.已知:如图3-128,在△ABC中,BE,CF分别是△ABC的两条高线,在BE,CF的延长线上分别截BD=AC,CG=AB.求证:AD⊥AG.38.已知:如图3-129,∠ABC=2∠C,AD⊥BC于D点,E是AC的中点,ED的延长线交AB的延长线于F点.求证:BD=BF.39.已知:如图3-130,∠ACB=90°,CE⊥AB于E点,AD=AC,AF平分∠CAE且交CE 于F点.求证:FD∥CB.40.已知:如图3-131,在直角三角形ABC中,∠ACB=90°,AB=2AC,CD,CE分别是△ABC的中线和高线.求证:∠ACE=∠ECD=∠DCB.41.已知:如图3-132,△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC.求证:BD=2CD.42.已知:如图3-133,在△ABC中,AB=AC,BE⊥AC于E,CD⊥AB于D,BE,CD相交于G.求证:AG平分∠BAC.43.已知:如图3-134,△ABC为等腰直角三角形,∠ACB=90°,D为BC延长线上一点,CD=CE,E点在AC上,且BE的延长线交AD于F点.求证:BF⊥AD.44.已知:如图3-135,在直角三角形ABC中,AB=AC,∠A=90°,∠B的平分线BD交AC 于D点,从C点向BD的延长线作垂线,垂足为E.求证:BD=2CE.45.已知:如图3-136,在△ABC中,∠C=90°,AC=BC,M是AB的中点,D,E分别在CA,CB上,且CD=BE.求证:ME=MD,ME⊥MD.46.已知:如图3-137,D为等腰直角三角形ABC的斜边AB的中点,P为AB上任意一点,过P点作PE⊥AC,PF⊥BC,垂足分别为E,F.求证:ED⊥FD.47.已知:如图3-138,∠1=∠2,BD=DC.求证:AB=AC.48.已知:如图3-139,∠BAC=90°,AD⊥BC,∠1=∠2,EF⊥BC,FM⊥AC.求证:FM=FD.。
直角三角形练习题
直角三角形练习题一、选择题1. 在直角三角形中,若直角边长分别为3和4,则斜边长为:A. 5B. 7C. 8D. 92. 直角三角形的两条直角边分别为6和8,其面积为:A. 24B. 30C. 48D. 603. 如果一个直角三角形的斜边长为10,一条直角边长为6,则另一条直角边长为:A. 4B. 8C. 14D. 无法确定4. 直角三角形的周长是60,斜边长为25,一条直角边长为15,则另一条直角边长为:A. 15B. 20C. 25D. 无法确定5. 一个直角三角形的两条直角边的比为1:2,如果斜边长为5,则较短的直角边长为:A. 1B. 2C. 5D. 10二、填空题6. 直角三角形的斜边长为13,如果一条直角边长为5,则另一条直角边长为________。
7. 直角三角形的面积公式为________,其中a和b分别为两条直角边长。
8. 如果直角三角形的两条直角边长分别为x和y,斜边长为z,则根据勾股定理,有________。
9. 直角三角形的内角和为________度。
10. 若直角三角形的两条直角边长分别为7和24,则其周长为________。
三、计算题11. 已知直角三角形的两条直角边长分别为9和12,求其面积和周长。
12. 一个直角三角形的斜边长为17,一条直角边长为8,求另一条直角边长。
13. 一个直角三角形的周长为40,斜边长为15,如果一条直角边长为11,求另一条直角边长。
14. 已知直角三角形的斜边长为20,一条直角边长为16,求其面积。
15. 一个直角三角形的两条直角边长分别为a和b,斜边长为c。
如果a:b=3:4,c=10,求a和b的具体数值。
四、解答题16. 一个直角三角形的斜边长为26,一条直角边长为10,求该三角形的高。
17. 一个直角三角形的两条直角边长分别为15和20,求该三角形的内切圆半径。
18. 一个直角三角形的两条直角边长分别为x和y,斜边长为z。
如果x+y+z=60,且x^2+y^2=z^2,求x,y和z的具体数值。
中考数学直角三角形的边角关系综合练习题含详细答案
中考数学直角三角形的边角关系综合练习题含详细答案一、直角三角形的边角关系1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C 处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.如图,反比例函数() 0k y k x=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.(1)求k 的值及点B 的坐标;(2)求tanC 的值.【答案】(1)2k =,()1,2B --;(2)2.【解析】【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0k y k x=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.【详解】(1)∵点A (1,a )在2y x =上,∴a =2,∴A (1,2),把A (1,2)代入 k y x =得2k =, ∵反比例函数()0k y k x=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点,∴A B 、 两点关于原点O 中心对称,∴()12B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,∵90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1tanC tan AOD =∠===.【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.4.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是☉O 的切线;(2)若=,且OC=4,求PA 的长和tan D 的值.【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】试题分析: (1)连接OB ,先由等腰三角形的三线合一的性质可得:OP 是线段AB 的垂直平分线,进而可得:PA=PB ,然后证明△PAO ≌△PBO ,进而可得∠PBO=∠PAO ,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA 是⊙O 的切线;(2)连接BE ,由,且OC=4,可求AC ,OA 的值,然后根据射影定理可求PC 的值,从而可求OP 的值,然后根据勾股定理可求AP 的值.试题解析:(1)连接OB ,则OA=OB ,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG =3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3AG . 又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .6.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为13DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan3B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE3在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.7.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶ADAC =, ∴∠ACD =∠B =∠ADC ,∵∠FPC =∠B ,∴∠ACD =∠FPC ,∴∠APC =∠ACF ,∵∠FAC =∠CAF ,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG=225OP OG6+=,GD=222 3DE GE+=,∴PD=PG+GD=3102.【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.9.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =223()(2)1010m m +-=24410m m -+,2'ED =222438()()551010m m +++=232128510m m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E=2'ED 时,36+24410m m -+=232128510m m ++,解得:m =2105,此时D ′(6318551010m m ,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+232128510m m ++=24410m m -+,解得:m =8105-,此时D ′(6318551010m m ,-++)为(-6,2);③当2'A E +2'ED =2''A D 时,24410m m -++232128510m m ++=36,解得:m =8105-或m =105,此时D ′(6318551010m m ,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.10.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.(1)填空:点的坐标为 ,抛物线的解析式为 ; (2)当点在线段上运动时(不与点,重合),①当为何值时,线段最大值,并求出的最大值;②求出使为直角三角形时的值;(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.【答案】(1),;(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.【解析】【分析】(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【详解】解:(1)把点坐标代入直线表达式,解得:,则:直线表达式为:,令,则:,则点坐标为,将点的坐标代入二次函数表达式得:,把点的坐标代入二次函数表达式得:,解得:,故:抛物线的解析式为:,故:答案为:,;(2)①∵在线段上,且轴,∴点,,∴,∵,∴抛物线开口向下,∴当时,有最大值是3,②当时,点的纵坐标为-3,把代入抛物线的表达式得:,解得:或0(舍去),∴;当时,∵,两直线垂直,其值相乘为-1,设:直线的表达式为:,把点的坐标代入上式,解得:,则:直线的表达式为:,将上式与抛物线的表达式联立并解得:或0(舍去),当时,不合题意舍去,故:使为直角三角形时的值为3或;(3)∵,,在中,,则:,,∵轴,∴,若抛物线上有且只有三个点到直线的距离是,则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.当过点的直线与抛物线有一个交点,点的坐标为,设:点坐标为:,则:,过点作的平行线,则点所在的直线表达式为:,将点坐标代入,解得:过点直线表达式为:,将拋物线的表达式与上式联立并整理得:,,将代入上式并整理得:,解得:,则点的坐标为,则:点坐标为,则:,∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,即:过点与平行的直线与抛物线的交点为另外两个点,即:、,直线的表达式为:,将该表达式与二次函数表达式联立并整理得:,解得:,则点、的横坐标分别为,,作交直线于点,则,作轴,交轴于点,则:,,,则:,同理:,故:点,,,构成的四边形的面积为:6或或.【点睛】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.11.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan ∠AEC=3, CD=12125【解析】解:在RT △ACD 与RT △ABC 中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且CE=2 则k=2,AC=32 ∴RT △ACE 中,tan ∠AEC=ACEC=3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,CD=12125.12.在平面直角坐标系中,O 为坐标原点,点A (0,1),点C (1,0),正方形AOCD 的两条对角线的交点为B ,延长BD 至点G ,使DG=BD ,延长BC 至点E ,使CE=BC ,以BG ,BE 为邻边作正方形BEFG . (Ⅰ)如图①,求OD 的长及ABBG的值; (Ⅱ)如图②,正方形AOCD 固定,将正方形BEFG 绕点B 逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′. ①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形综合练习题
一、基础部分
1、已知Rt △ABC 中,∠A =35°,则∠B =
2、ΔABC 中,∠C =90°,AB =10,∠A =30°,则BC= ,AC=
3、ΔABC 中,∠C =90°,AB =10,BC=5,则∠B =
4、已知Rt △ABC 中,斜边AB=10cm ,则斜边上的中线的长为______
5、在Rt △ABC 中,∠C = 90°.
(1) 已知c = 25,b = 15,求a ;
(2) 已知a = 5,c = 9,求b ;
(3) 已知b = 5,c =15,求a .
6、根据下列条件判断△ABC 是不是直角三角形
(1) ∠A +∠B =∠C
(2) ∠A :∠B :∠C =3:4:7
(3) ∠A =21∠B =3
1∠C
7、判断由线段a ,b ,c 组成的三角形是不是直角三角形.
(1) a = 8,b = 15,c = 17;
(2) a = 10,b = 24,c = 25;
(3) a = 4,b = 5, c =41 .
8、如图,在△ABC 中,已知AB = 10,BD = 6, AD = 8,AC = 17.
(1)求DC 的长.
(2)判断⊿ABC 是否是直角三角形?
9、如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条件
或 . B
10、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB 的距离为()cm
11、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由
12、已知:如图,点D是△ABC的BC边上的中点,DE⊥AC于E,DF
⊥AB于F,且DE=DF.求证:△ABC是等腰三角形
二、应用部分
1、如图,一艘渔船以30 海里/h 的速度由西向东追赶鱼群. 在A处测得小岛C在船的北偏东60°方向;40 min 后,渔船行至B 处,此时测得小岛C 在船的北偏东30°方向. 已知以小岛C为中心,周围10 海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?
下午5时 早上10时
2.如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA =30°和∠DCB =60°,如果斑马线的宽度是AB =3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?
3、如图,早上10点小东测得某树的影长为2m ,到了下午5时又测得该树的影长为8m ,若两次日照的光线互相垂直,求树的高度.
4、有一个圆柱形水塔,高20cm,底面圆周长为60c ,如图所示,要从A 点环绕水塔建梯子,正好从A 点到对应正上方B 处,问梯子最短需要多少米?
5、如图,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为60°,求拉线CDE
的总长L (A 、
B
、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计)。
三、提高部分
B=45°,AC=23,求。