点线面练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A

(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题

1.下列四个结论:

⑴两条直线都和同一个平面平行,则这两条直线平行。 ⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。 其中正确的个数为( )

A .0

B .1

C .2

D .3

2.下面列举的图形一定是平面图形的是( )

A .有一个角是直角的四边形

B .有两个角是直角的四边形

C .有三个角是直角的四边形

D .有四个角是直角的四边形 3.垂直于同一条直线的两条直线一定( )

A .平行

B .相交

C .异面

D .以上都有可能

4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,

,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是

( )

A .0

30 B . 090 C . 0

60 D .随P 点的变化而变化。 5.互不重合的三个平面最多可以把空间分成( )个部分 A .4 B .5 C .7 D .8

6.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ) A .90 B .60 C .45 D .30

二、填空题

1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。 2. 直线l 与平面α所成角为0

30,,,l A m A m αα=⊂∉ ,则m 与l 所成角的取值范围

是 _________ 3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为1234,,,d d d d ,则1234d d d d +++的值为。

4.直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,

AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠=。

5.下列命题中: (1)、平行于同一直线的两个平面平行;

(2)、平行于同一平面的两个平面平行;

(3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行. 其中正确的个数有_____________。 三、解答题

1.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .

H G F

E

D B A

C

2.自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。

(数学2必修)第二章 点、直线、平面之间的位置关系 [综合训练B 组] 一、选择题 1.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( ) A.16π B.20π

C.24π D.32π

2.已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥, 则EF 与CD 所成的角的度数为( )

A.90 B.45

C.60 D.30

3.三个平面把空间分成7部分时,它们的交线有( )

A.1条 B.2条 C.3条 D.1条或2条

4.在长方体1111ABCD A B C D -,底面是边长为2的正方形,高为4,

则点1A 到截面11AB

D 的距离为( ) A .

83 B . 38 C .43 D . 3

4

5.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点,

连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( ) A .

361a B .3123a C .3

6

3a D .3121a 6.下列说法不正确的....

是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;

B .同一平面的两条垂线一定共面;

C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;

D .过一条直线有且只有一个平面与已知平面垂直.

二、填空题

1.正方体各面所在的平面将空间分成_____________部分。

2.空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点,则BC 与AD 的 位置关系是_____________;四边形EFGH 是__________形;当___________时,四边形EFGH 是菱形;当___________时,四边形EFGH 是矩形;当___________时,四边形EFGH 是正方形

3.四棱锥V ABCD -中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V AB C --的平面角为_____________。

4.三棱锥,10,8,6,P ABC PA PB PC AB BC CA -=====则二面角 P AC B --的大小为____

5.P 为边长为a 的正三角形ABC 所在平面外一点且PA PB PC a ===,则P 到

AB 的距离为______。 三、解答题

1.已知直线//b c ,且直线a 与,b c 都相交,求证:直线,,a b c 共面。

2.求证:两条异面直线不能同时和一个平面垂直;

3.如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且

SM AM =ND

BN

, 求证://MN 平面SBC

(数学2必修)第二章 点、直线、平面之间的位置关系 [提高训练C 组] 一、选择题

1.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:

①若m

⊥α,n //α,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ

其中正确命题的序号是 ( )

A .①和②

B .②和③

C .③和④

D .①和④

2.若长方体的三个面的对角线长分别是,,a b c ,则长方体体对角线长为( )

A

C

相关文档
最新文档