大学物理10.1法拉第电磁感应定律

合集下载

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律(法拉第电磁感应定律)一般指电磁感应定律
本词条由“科普中国”科学百科词条编写与应用工作项目审核。

电磁感应定律也叫法拉第电磁感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象,例如,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,产生的电流称为感应电流,产生的电动势(电压)称为感应电动势 [1]。

电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。

右手定则内容:伸平右手使拇指与四指垂直,手心向着磁场的N极,拇指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。

楞次定律指出:感应电流的磁场要阻碍原磁通的变化。

简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。

[1]
感应电动势的大小由法拉第电磁感应定律确定;e(t) = -n(dΦ)/(dt)。

对动生的情况也可用E=BLV来求。

[1]
中文名
电磁感应定律
外文名
Faraday law of electromagnetic induction
别名
法拉第电磁感应定律
表达式
e=-n(dΦ)/(dt)
提出者
纽曼和韦伯
提出时间
1831年8月
适用领域
工程领域
应用学科
物理学、电磁学
时域表达式
e(t) = -n(dΦ)/(dt)
复频域公式
E = -jwnΦ (E和Φ是矢量)。

电磁感应中的法拉第电磁感应定律详解

电磁感应中的法拉第电磁感应定律详解

电磁感应中的法拉第电磁感应定律详解电磁感应是电磁学中的重要概念,它描述了磁场和电场之间的相互作用。

其中,法拉第电磁感应定律是电磁感应的基本原理之一。

本文将详解法拉第电磁感应定律的原理和应用。

1. 法拉第电磁感应定律的基本原理法拉第电磁感应定律是英国物理学家迈克尔·法拉第于1831年提出的,它描述了磁场变化引起的感应电动势。

根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中将产生感应电动势。

这个电动势的大小与磁通量变化的速率成正比。

具体而言,设一个导体线圈置于磁场中,当磁场的磁通量发生变化时,线圈中将产生感应电动势。

这个电动势可以通过以下公式表示:ε = -N(dΦ/dt)其中,ε表示感应电动势,N表示线圈的匝数,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁通量变化的方向相反。

2. 法拉第电磁感应定律的应用法拉第电磁感应定律在现代科技中有广泛的应用。

以下将介绍几个常见的应用。

2.1 电磁感应发电机电磁感应发电机是利用法拉第电磁感应定律发电的装置。

它由转子和定子组成,转子上有一组线圈,当转子旋转时,线圈中的磁通量发生变化,从而产生感应电动势。

这个感应电动势通过导线输出,供应电力。

2.2 变压器变压器是利用法拉第电磁感应定律调整电压的装置。

它由两个线圈组成,一个为输入线圈,另一个为输出线圈。

当输入线圈中的电流发生变化时,产生的磁场会感应输出线圈中的感应电动势,从而调整输出电压。

2.3 感应加热感应加热是利用法拉第电磁感应定律实现加热的技术。

通过在导体中通电,产生交变电流,从而在导体中产生交变磁场。

当另一个导体置于磁场中时,会感应出电流,从而产生热量。

3. 法拉第电磁感应定律的局限性虽然法拉第电磁感应定律在许多领域有广泛的应用,但它也有一些局限性。

3.1 自感应自感应是指当导体中的电流发生变化时,导体本身会产生感应电动势。

这种感应电动势会阻碍电流的变化,从而产生自感应现象。

自感应的存在会导致电磁设备的能量损耗。

大学物理中的电磁感应法拉第电磁感应定律的研究

大学物理中的电磁感应法拉第电磁感应定律的研究

大学物理中的电磁感应法拉第电磁感应定律的研究大学物理中的电磁感应:法拉第电磁感应定律的研究在大学物理学中,电磁感应是一个重要的概念。

而法拉第电磁感应定律是电磁感应的基础原理之一,已经被广泛应用于现代科技领域。

本文将详细介绍法拉第电磁感应定律的研究,以及其在实际应用中的重要性。

1. 法拉第电磁感应定律的提出与表达法拉第电磁感应定律是由英国物理学家迈克尔·法拉第在19世纪初提出的。

该定律描述了磁场变化引发感应电流的现象。

根据法拉第电磁感应定律,当导体内的磁通量发生变化时,导体中将产生感应电动势。

该定律可用以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的微分运算。

2. 研究法拉第电磁感应定律的重要实验为验证法拉第电磁感应定律,科学家们进行了一系列实验。

其中最具代表性的实验是法拉第的电磁感应实验。

他将一个线圈与一个磁铁放在一起,并使磁铁相对线圈运动。

通过观察电流表的示数,可以发现当磁铁相对线圈运动时,电流表的指针会发生偏转,表明在线圈中产生了感应电流。

这一实验结果验证了法拉第电磁感应定律的正确性。

3. 法拉第电磁感应定律的应用法拉第电磁感应定律在现代科技领域有着广泛的应用。

以下是一些典型应用案例:3.1 发电机发电机利用法拉第电磁感应定律将机械能转化为电能。

当导体线圈处于磁场中,并通过旋转或震动等方式改变磁通量时,感应电动势被激发,从而在导线中产生电流。

这一电流可以被用来驱动设备或供电。

发电机是现代发电设备中最基本的部分之一。

3.2 变压器变压器也是基于法拉第电磁感应定律的原理。

当交流电通过一个线圈时,线圈中的磁场随之变化,从而导致磁通量的变化。

根据法拉第电磁感应定律,变化的磁通量会在另一个线圈中诱发感应电动势。

通过绕制不同匝数的线圈,可以实现电压的升降变换。

3.3 感应炉感应炉是利用法拉第电磁感应定律的产物之一。

感应炉通过交变磁场产生感应电流,并利用感应电流中的焦耳热来加热物体。

法拉第 电磁感应定律

法拉第 电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是物理学中的重要定律之一,它揭示了电磁现象中的一种基本关系。

在生活和工作中,电磁感应定律有许多重要的应用,如发电机、变压器等。

本文将详细介绍法拉第电磁感应定律的背景、原理和应用,以帮助读者更好地理解和应用这一定律。

首先,我们来了解一下法拉第电磁感应定律的背景。

19世纪初,英国物理学家迈克尔·法拉第进行了一系列关于电磁感应的实验。

他发现,当导体运动穿过磁场或磁场变化时,导体中就会产生感应电流。

根据这个实验现象,法拉第提出了电磁感应定律。

接下来,我们来了解法拉第电磁感应定律的原理。

法拉第电磁感应定律的核心思想是:当电磁感应发生时,感应电动势的大小正比于磁场的变化率。

具体而言,感应电动势的大小等于磁场变化率的负数与导体回路中的电流之积。

根据法拉第电磁感应定律的公式,我们可以推导出导体中感应电流的大小。

感应电流的大小等于导体中感应电动势和电阻之比。

在实际应用中,为了增大感应电流的大小,我们可以选择导体的材质、改变导体的形状和尺寸等。

除了原理,法拉第电磁感应定律还有一些重要的应用。

其中,最常见的应用之一就是发电机。

发电机利用磁场变化产生的感应电动势驱动电子流动,从而生成电流。

发电机的工作原理就是基于法拉第电磁感应定律的。

此外,变压器也是利用法拉第电磁感应定律的重要应用之一。

变压器通过改变输入线圈和输出线圈的匝数比,来实现输入电压和输出电压的变换。

这个过程中,根据法拉第电磁感应定律,变压器的工作原理也可以解释为线圈中的磁场变化产生感应电动势的过程。

除了上述应用,法拉第电磁感应定律还广泛应用于物理实验、电磁学研究、电磁感应传感器等领域。

例如,在物理实验中,我们可以利用法拉第电磁感应定律来观测磁场对导体的作用;在电磁学研究中,我们可以利用法拉第电磁感应定律来研究磁场对电流的影响等等。

综上所述,法拉第电磁感应定律是电磁学中的重要定律,其在生活和工作中有着广泛的应用。

通过研究法拉第电磁感应定律,我们可以更好地理解电磁现象,从而应用于实际问题中。

法拉第电磁感应定律剖析

法拉第电磁感应定律剖析

法拉第电磁感应定律剖析法拉第电磁感应定律是物理学中关于电磁感应现象的一个基本定律,由英国物理学家迈克尔·法拉第于1831年提出。

它揭示了磁场变化引起的感应电动势,为电磁感应现象的解释提供了重要的理论基础。

本文将对法拉第电磁感应定律进行深入剖析,探讨其原理和应用。

1. 法拉第电磁感应定律的表达式根据法拉第电磁感应定律,当导体中的磁通量发生变化时,会在导体两端产生感应电动势。

具体表达式为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,dt表示时间的微元。

负号表示感应电动势的方向与磁通量变化的方向相反。

该定律形象地揭示了磁场变化对电动势的影响。

2. 法拉第电磁感应定律的原理解析法拉第电磁感应定律的成立基于磁场变化引起的电磁感应现象。

当导体中的磁场发生变化时,磁场的变化会导致导体内部电荷的运动,进而产生感应电动势。

这一现象可以通过电磁感应实验来验证。

在一个简单的实验中,将一个导线圈置于一个磁场中,当改变磁场的强度或导线圈与磁场的相对运动时,导线圈的两端就会产生感应电动势。

这可以通过连接一个电流表来观察到电流的变化。

根据法拉第电磁感应定律的表达式,可以得知感应电动势的大小与磁通量的变化率成正比。

当磁通量变化率较大时,感应电动势也会相应增大。

而当磁通量变化率相对较小或趋于零时,感应电动势的大小也会减小或趋于零。

3. 法拉第电磁感应定律的应用分析法拉第电磁感应定律广泛应用于各个领域,尤其在发电和变压器等电力工程中起着重要作用。

在发电机中,利用旋转的磁场线圈和导线之间的相对运动,通过电磁感应原理产生感应电动势,从而将机械能转化为电能。

这是一种重要的能量转换方式,广泛应用于各种发电设备中。

在变压器中,法拉第电磁感应定律也扮演着关键的角色。

当交流电通过输入线圈时,由于磁场的变化,输出线圈中也会产生感应电动势,从而实现电能的传输和变压。

这种原理被广泛应用于电力输送和电子设备中。

此外,法拉第电磁感应定律还应用于感应加热、电磁炉、感应炉等领域。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学的基础定律之一,它描述了导体中感应电动势与导体上的磁场变化之间的关系。

该定律由英国物理学家迈克尔·法拉第于1831年提出,经过实验证实并被广泛应用。

本文将介绍法拉第电磁感应定律的原理、公式以及实际应用。

一、定律原理法拉第电磁感应定律是指当导体中的磁通量发生变化时,导体中会感应出电动势和感应电流。

磁通量是一个衡量磁场穿过一个给定表面的大小的物理量。

当磁通量改变时,导体中的自由电子会受到磁力的作用而发生运动,从而产生电流。

这种现象被称为电磁感应。

二、定律公式根据法拉第电磁感应定律,感应电动势(ε)与磁通量变化速率(dΦ/dt)成正比。

其数学表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,单位为伏特(V);dΦ/dt表示磁通量的变化速率,单位为韦伯/秒(Wb/s)。

根据右手定则,可以确定感应电动势的方向。

当磁场的变化导致磁通量增加时,感应电动势的方向与变化的磁场方向垂直且遵循右手定则;当磁通量减少时,感应电动势的方向与变化的磁场方向相反。

三、应用举例1. 电磁感应产生的电动势可用于发电机的工作原理。

发电机通过转动磁场与线圈之间的磁通量变化来产生感应电动势,最终转化为电能供应给电器设备。

2. 感应电动势也可以应用于感应加热。

感应加热是通过变化的磁场产生的感应电流在导体中产生焦耳热,实现对物体进行加热的过程。

这种方法广泛用于工业领域中的加热处理、熔化金属等。

3. 感应电动势还可以实现非接触的测量。

例如,非接触式转速传感器利用感应电动势来实现对机械设备转速的测量。

四、实验验证1831年,法拉第进行了一系列实验来验证他提出的电磁感应定律。

其中最著名的实验是在一个充满磁铁的线圈中将另一个线圈移动。

当第一个线圈移动时,第二个线圈中就会感应出电流。

这一实验结果验证了法拉第的理论,为电磁感应定律的确认提供了强有力的证据。

五、应用发展法拉第电磁感应定律为电磁学的发展奠定了基础。

第十章 法拉第电磁感应定律

第十章 法拉第电磁感应定律

第10章法拉第电磁感应定律10.1 法拉第电磁感应定律 (2)10.1.1磁通量 (2)10.1.2 楞次定律 (4)10.2 动生电动势 (6)10.3 感生电场 (8)10.4 发电机 (10)10.5 涡电流 (11)10.6 总结 (12)10.7 附录:感生电动势与参照系 (12)10.8 解题技巧:法拉第定律和楞次定律 (13)10.9 解题 (14)10.9.1 导线附近的矩形线圈 (14)10.9.2 面积变化的线圈 (15)10.9.3 滑动的棒 (15)10.9.4 运动的棒 (16)10.9.5 时变磁场 (17)10.9.6 运动线圈 (18)10.10 概念题 (19)10.11 附加题 (20)10.11.1 滑动棒 (20)10.11.2 斜劈上的滑动棒 (20)10.11.3 磁场中的RC电路 (21)10.11.4 滑动棒 (21)10.11.5 转动棒 (22)10.11.6 通过磁场的矩形线圈 (22)10.11.7 磁棒穿过线圈 (22)10.11.8 交流发电机 (23)10.11.9 时变磁场的电动势 (23)10.11.10 正方形线圈通过磁场 (24)10.11.11 下落的线圈 (24)法拉第电磁感应定律10.1 法拉第电磁感应定律到目前为止,我们研究的电场和磁场分别是由静电荷和运动电荷(电流)产生的。

在导体内置入电场将引起电流,它反过来又会产生磁场。

人们不禁要问,磁场能不能产生电场呢?1831年,法拉第(Michael Faraday)发现,随时间变化的磁场会产生电场。

这种现象称为电磁感应。

图10.1.1展示了法拉第的实验。

图10.1.1 电磁感应法拉第证明了,当磁铁相对于线圈静止时,电流计里没有电流。

但只要磁铁与线圈之间存在相对运动,线圈中就会感应出电流。

具体地说,当磁铁靠近线圈时,电流计指针偏向一个方向,当磁铁远离线圈时,电流计指针偏向相反方向。

法拉第电磁感应定律的解释和应用

法拉第电磁感应定律的解释和应用

法拉第电磁感应定律的解释和应用法拉第电磁感应定律是描述导体内部电场变化时,在导体周围会产生感应电动势的物理规律。

这条定律由英国科学家迈克尔·法拉第在1831年得出,并被广泛应用于电磁感应、发电机、变压器等领域。

本文将对法拉第电磁感应定律及其应用进行详细解释。

一、法拉第电磁感应定律的原理法拉第电磁感应定律可以通过以下公式来描述:ε = -dφ/dt其中,ε是感应电动势,dφ是磁通量的变化率,dt是时间的微小变化量。

该公式表明,当磁通量的变化率越大,产生的感应电动势也越大。

法拉第电磁感应定律的实质是磁感线切割导体时,导体中的自由电子受到磁场力的作用而形成感应电流,从而产生感应电动势。

当磁场发生改变时,磁感线的数目和方向也会发生相应的变化,导致磁通量的变化。

根据法拉第电磁感应定律,这种磁通量的变化将引发感应电动势和感应电流。

二、法拉第电磁感应定律的应用1. 发电机发电机是利用法拉第电磁感应原理工作的设备之一。

发电机通过旋转的磁场切割导线圈,产生感应电动势,并将这种电动势转化为电能输出。

在发电机中,通过改变磁场的方向和大小,可以调节产生的感应电动势和输出电能的大小。

发电机广泛应用于发电厂和机动车辆等领域。

2. 变压器变压器是利用法拉第电磁感应定律工作的另一种重要设备。

变压器通过在一根绕组中引入交变电流,由于电流的变化产生交变磁场,进而引起另一根绕组中的感应电动势。

变压器在电能传输和电压调节中起到至关重要的作用,广泛应用于电力系统和电子设备中。

3. 感应电磁炉感应电磁炉是一种利用法拉第电磁感应定律的家用电器。

感应电磁炉通过在底部放置线圈,通过交变电流产生变化的磁场。

当放置了带有磁性的炊具时,磁场将切割炊具内的导体,从而产生感应电流加热食物。

感应电磁炉具有高效、安全、环保等优点,成为现代家庭常用的厨房设备之一。

4. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律原理制成的传感器。

电磁感应传感器可以感测到磁场强度或方向的变化,并将其转化为电信号输出。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是描述变化磁场引起感应电动势和感应电流产生的物理规律。

该定律由英国物理学家迈克尔·法拉第于1831年发现并提出。

它在电磁学、电动机、发电机和变压器等领域有着广泛的应用。

本文将对法拉第电磁感应定律的原理、应用和相关实验进行详细介绍。

一、法拉第电磁感应定律的原理法拉第电磁感应定律主要包括两个方面的内容:磁通量的变化引起感应电动势,感应电动势的大小与磁通量变化率成正比。

下面将对这两个方面进行详细阐述。

1. 磁通量的变化引起感应电动势当磁场的磁通量通过一个线圈时,如果磁场的强度发生变化,即磁通量发生变化,线圈中就会产生感应电动势。

感应电动势的方向由勒沃瓦定律决定,即感应电动势的方向使得通过线圈的电流的磁场的方向抵消原磁场的变化。

如果磁通量的变化率为Φ/t,线圈的匝数为N,根据法拉第电磁感应定律可得感应电动势:ε = -NΦ/t其中,ε表示感应电动势,N表示线圈的匝数,Φ表示磁通量,t表示时间。

2. 感应电动势的大小与磁通量变化率成正比当磁通量变化率较大时,所产生的感应电动势也相应增大。

根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

即感应电动势的大小为Φ/t的导数。

当磁通量以一定的速率改变时,线圈中产生的感应电动势也以相同的速率改变。

二、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域有着广泛的应用,尤其是在发电、电动机和变压器等设备中。

1. 发电机发电机是运用法拉第电磁感应定律制造的。

利用机械能驱动导线在磁场中运动,使得磁通量发生变化,从而产生感应电动势。

通过外部电路连接,感应电动势驱动电子流动,最终转化为电能。

2. 变压器变压器是利用法拉第电磁感应定律制造的。

变压器通过磁场感应来实现电能的传递和变换。

当交流电通过变压器的一侧线圈时,由于电流的改变引起磁场的改变,从而在另一侧线圈中感应出电动势,实现电能的输送和变压。

3. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律制造的。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律(Faraday's law of electromagnetic induction)是电磁学中的重要定律,描述了磁场的变化如何产生感应电流。

这个定律是由英国物理学家迈克尔·法拉第在1831年发现的,为电磁学的发展做出巨大贡献。

法拉第电磁感应定律可以用一个简洁的数学公式表达:感应电动势的大小等于导线中的磁通量的变化率。

即\epsilon = -\frac{d\Phi}{dt}其中,\epsilon 代表感应电动势,\Phi 代表磁通量,t代表时间。

负号表示感应电动势的方向和磁通量的变化方向相反。

这个定律的核心思想是,当一个导线被置于一个磁场中,并且磁场的强度发生变化时,导线中就会产生感应电流。

这个变化可以是磁场强度的增加或减少,也可以是磁场方向的改变。

这个定律对于理解电磁感应现象和发电原理非常重要,可以应用于实际生活和工程中。

为了更好地理解法拉第电磁感应定律,我们可以从几个方面来解释这个定律的原理和应用。

首先,我们来看一个简单的实验:在一个金属环上绕上一根导线,当将金属环放入强磁场中并旋转时,导线中就会有感应电流产生。

这是因为磁场随着金属环的旋转而发生变化,从而产生感应电动势和感应电流。

这个实验可以用法拉第电磁感应定律来解释:磁通量的变化引起了感应电动势的产生,进而产生了感应电流。

其次,法拉第电磁感应定律在发电中的应用非常重要。

根据这个定律,我们可以利用磁感线的变化来产生电流。

这就是电磁感应发电的原理。

当磁场通过一个线圈时,如果磁场的强度或方向发生变化,就会在线圈中产生感应电流。

这个原理广泛应用于发电机、变压器和电动机等设备中。

通过调节磁场的强度和方向,可以控制感应电动势和感应电流的大小和方向。

此外,法拉第电磁感应定律还与电磁波的产生和传播有关。

电磁波是由振动的电场和磁场所组成的一种波动现象。

根据法拉第电磁感应定律,磁场的变化可以引起电场的变化,进而产生电磁波。

§10-1电磁感应定律

§10-1电磁感应定律
o
o I dx d m I 则: l l v i 2x dt 2r dt 这样就有: v 0, i 0
0 I i l v 2x 0 kt i l v 2x
太原理工大学物理系
错在那里?
例2 真空中一长直导线通有电流 I (t ) I 0e 其中t为时间,I0和λ大于零。有一带滑动边的矩 形导线框与长直导线平行共面,两者相距为a , 矩形线框的滑动边长为b,以匀速率v 运动,设开 始时滑动边与对边重合, B v 求任意t时刻线框内的感 I (t ) 应电动势,并讨论方向。 x
t
0 I 解: B 2x
s
a
b
m Bds
太原理工大学物理系
回路绕行的正方向为顺时针方向
穿过回路的磁通量
m Bvtdx

a b
a
0 I (t ) vtdx 2x
0 I (t ) ab vt ln 2 a t 将 I (t ) I 0e 代入上式
B
I 3)若I=常数,回路以v向右
运动,i =? 4)若I=kt,且回路又以v向 右运动时,求i=?
l
a
b
Hale Waihona Puke ox太原理工大学物理系
解:设垂直纸面向里为回路的法线方向,则顺时 针为回路绕行正方向
1) 穿过回路中的m; 无限长载流导线的磁场
B
0 I B 2x
m B ldx
通过正方形线圈的磁通量:
Φm BdS

2a a

0 I adx 2x
太原理工大学物理系
m
2a
a
0 v 0 v adx a ln 2 2x 2

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是关于电磁感应现象中电动势产生的定律。

它是英国物理学家迈克尔·法拉第在1831年通过实验观察到的。

法拉第电磁感应定律揭示了磁场变化引起的感应电流现象,为电磁学的发展做出了重要贡献。

法拉第电磁感应定律的表述为:“当一根导体在磁场中运动或磁场变化时,产生在导体两端的电动势的大小与导体在磁场中运动的速度或磁场变化速率成正比。

”根据法拉第电磁感应定律,可以得出以下三个定律:第一定律:当导体与磁场垂直时,导体中不会产生电动势。

第二定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。

电动势的大小正比于导体在磁场中的速度。

第三定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。

电动势的大小正比于导体所受磁场变化率。

法拉第电磁感应定律的应用非常广泛。

它为电磁感应现象的解释提供了基础,也为电能转换和电磁设备的设计提供了理论依据。

根据法拉第电磁感应定律,我们可以理解一些实际应用。

例如发电机的工作原理就是基于电磁感应定律的。

当磁场和导体的相对运动产生变化时,导体中就会产生感应电动势,从而产生电流。

这就是发电机将机械能转化为电能的原理。

另外,电磁感应定律还可以解释变压器的工作原理。

当交流电通过一个线圈时,会产生交变磁场。

而接近该线圈的另一个线圈中会感应出电动势,从而产生电流。

这个原理被应用于变压器的步进调压、信号传输和能量传输等领域。

同时,法拉第电磁感应定律也可以用于电磁感应的实验教学。

通过实验,学生可以观察到磁场变化对电动势的影响,进而理解电磁感应的基本原理。

在理论研究和工程应用中,法拉第电磁感应定律为我们解决问题提供了重要的参考。

通过对电磁感应现象的深入理解,人们能够更好地利用电磁力和电磁感应现象,使其为社会经济发展和科学研究带来更多的益处。

总之,法拉第电磁感应定律是电磁学中一项重要的定律,它揭示了磁场变化会引起感应电动势的规律。

这一定律为电磁学的研究和应用提供了理论基础,也在发电、变压器和实验教学等领域有广泛应用。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,描述了变化磁场引起的感应电动势。

此定律由英国科学家迈克尔·法拉第于1831年提出,并推动了现代电磁学的发展。

本文将介绍法拉第电磁感应定律的内容,以及相关的应用和实验。

一、法拉第电磁感应定律的表述根据法拉第电磁感应定律,当一个导体被置于变化的磁场中时,导体中就会产生感应电动势,从而产生感应电流。

其数学表达方式可以用以下公式表示:ε = -dΦ/dt在上述公式中,ε代表感应电动势,单位为伏特(V);dΦ/dt代表磁通量随时间的变化率,单位为韦伯/秒(Wb/s)。

根据法拉第电磁感应定律,当磁场的变化率为正时,感应电动势的极性为负;当磁场的变化率为负时,感应电动势的极性为正。

二、法拉第电磁感应定律的实验验证为了验证法拉第电磁感应定律,科学家们进行了一系列的实验。

其中最著名的实验之一是法拉第实验,即用一个螺线管绕制的线圈将磁场感应到另一个线圈中。

通过改变输入线圈的电流或改变磁场的强度,可以观察到输出线圈中产生的感应电动势的变化。

除了法拉第实验,还有许多其他实验证实了该定律。

比如,当磁铁快速穿过线圈时,线圈中就会产生感应电流;在发电机工作时,通过转动磁场可以产生电流等。

三、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域都有广泛的应用。

以下是其中一些常见的应用:1. 电磁感应发电:根据法拉第电磁感应定律,通过改变磁场的强度或导体回路的面积,可以产生感应电动势,从而实现发电。

这种原理被广泛应用于发电机和发电厂。

2. 变压器:变压器是电力输送和转换中常用的设备,其工作原理也基于法拉第电磁感应定律。

变压器通过交流电产生变化的磁场,从而在输入线圈和输出线圈之间产生感应电动势和电流,从而实现电压和电流的转换。

3. 感应加热:法拉第电磁感应定律的另一个应用是感应加热。

通过在导体附近放置一个变化磁场的线圈,可以感应出感应电流,并使导体发热。

这种原理被广泛应用于感应炉、感应焊接等工艺中。

电磁感应mjj-资料

电磁感应mjj-资料
2πr
I r
ab0I d lr0I llnab
a 2πr 2π a
a
dr l b
M0llnab
I 2π a
§10.5 磁场的能量
1 自感磁能
R
自感电动势:
L

L
dI dt

I
L
回路方程: LdI RI
S
dt
两边乘以Idt IdtLdIR2d It
tIdtI0LdIttR2d It

i
dL
dt 2
R2L2 dB 2 dt
3 涡电流
当大块导体放 在变化的磁场中, 在导体内部会产生 感应电流,由于这 种电流在导体内自 成闭合回路故称为 涡电流。
dB dt
导体
电磁灶
电磁感应炉
§10.4 自感和互感
1 自感
当通过回路中的电流发

生变化时,引起穿过自
B
L B
i
Φ0
L B
Φ0
i
d 0
dt
i 0
d 0 dt
i 0
d 0 dt
i 0
楞次定律(1)在发生电磁感应时,回路中感应电流 的磁场总是试图阻止引起感应电流的磁通量的变化。
楞I i 次定律: v
(2)感应电流的效 果总是反抗引起感 应电流的原因。
Ii
磁场的能量密度:
wm
Wm V

1 2
B2

BH
wm12B 2 12BH12H2
例10 一根长直同轴电缆,由半径为R1 和R2 的两同心 圆柱组成,电缆中有恒定电流 I,经内层流进外层流出
形成回路。试计算长为l 的一段电缆内的磁场能量。

大学物理授课教案第十章电磁感应

大学物理授课教案第十章电磁感应

第十章 电磁感应§10-1法拉第电磁感应定律一、电磁感应现象,感应电动势电磁感应现象可通过两类实验来说明: 1.实验1〕磁场不变而线圈运动 2〕磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何〔如:线圈运动,变;或不变线圈运动〕,回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。

3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰•=lK l d K :非静电力ε 〔10-1〕说明:〔1〕由于非静电力只存在电源内部,电源电动势又可表示为⎰•=正极负极l d Kε说明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

〔2〕闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰•=lK l d K :非静电力ε〔3〕电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。

二法拉第电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。

数学表达式:dtd k i Φ-=ε 在SI 制中,1=k ,〔S t V Wb :;:;:εΦ〕,有dt d i Φ-=ε 〔10-2〕 上式中“-〞号说明方向。

2、i ε方向确实定为确定i ε,首先在回路上取一个绕行方向。

规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。

在此根底上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。

,0>Φ00<⇒>Φi dt d ε ,0>Φ00>⇒<Φi dt d ε 沿回路绕行反方向沿回路绕行方向:0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。

楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。

法拉第电磁感应定律知识点

法拉第电磁感应定律知识点

法拉第电磁感应定律知识点导言:法拉第电磁感应定律是电磁学中的重要定律之一,由英国科学家迈克尔·法拉第于1831年提出。

该定律规定了导体中的电流与磁场之间相互作用的关系,为电磁感应现象的解释提供了基础。

本文将介绍法拉第电磁感应定律的相关知识点,包括定律的内容、表达形式、适用条件以及应用领域等方面。

一、法拉第电磁感应定律的内容法拉第电磁感应定律指出,当导体中存在磁场时,通过导体的磁通量的变化将产生感应电动势,从而导致电流的产生。

该定律可用一下公式来表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。

根据这个公式,当磁通量的变化率较大时,感应电动势的大小也会增大,进而导致更大的电流。

二、法拉第电磁感应定律的表达形式法拉第电磁感应定律可以有不同的表达形式,根据具体情况选择不同的表示方式。

最常见的表达形式为涡旋电场定律和楞次定律。

1. 涡旋电场定律涡旋电场定律是法拉第电磁感应定律的一种表达形式,它描述了磁场变化时涡旋电场的产生。

根据这个定律,涡旋电场的旋度等于磁场的变化率。

涡旋电场的方向垂直于磁场的变化率和磁场的方向,其大小与磁场变化率成正比。

2. 楞次定律楞次定律是法拉第电磁感应定律的另一种表达形式,它描述了感应电流的产生与闭合回路的磁通量变化的关系。

楞次定律表示,闭合电路中的感应电动势等于该电路所围面积的磁通量的变化率。

根据楞次定律,在闭合电路中产生的感应电流的方向会阻碍磁通量的变化。

三、法拉第电磁感应定律的适用条件法拉第电磁感应定律的适用条件主要包括磁场的变化和导体的运动。

1. 磁场的变化法拉第电磁感应定律适用于磁场的变化情况。

当磁场的强度、方向或面积发生变化时,就会产生磁通量的变化,从而导致感应电动势和感应电流的产生。

2. 导体的运动在导体运动的过程中,如果导体相对于磁场的速度改变,也会导致磁通量的变化,从而产生感应电动势。

这是因为导体的运动会改变导体中自由电荷的分布情况,进而影响电流的产生。

大学物理 电磁感应定律

大学物理 电磁感应定律
一、法拉第电磁感应定律
电 磁 感 应 现 象
1
不论任何原因使通过回 路面积的磁通量发生变 化时,回路中产生的感 应电动势与磁通量对时 间的变化率成正比.
dΦ K dt

伏特(V) 韦伯(Wb) 秒(s)
2
SI制
Φ t
K 1
dΦ dt
闭合回路由 N 匝密绕线圈组成
dΦ d N dt dt
B
N
F
S
v
第10章 电磁感应
5
用 楞 次 定 律 判 断 感 应 电 流 方 向
B
B
I
S
v
N
I
N
S
v
6
7
楞次定律是能量守恒在电磁感应现象中的 体现。
i
S N
N
S
正是外界克服阻力作功,将其它 形式的能量转换成回路中的电能 若不是反抗将是什么情形?
i
N
S 过程将自动进行, 磁铁动能增加的同时,感应电流 S 急剧增加, 而i ,又导致 i…而不须 电磁永动机 外界提供任何能量。
先在闭合回路上任意规定一个正绕向,并用右螺旋法则 确定回路所包围的面积的正方向。
•若磁通量增加
与规定的正绕向相反
•若磁通量减少
dΦ 0 dt
0 0
4
与规定的正绕向相同
dΦ 0 dt
10–1 电磁感应定律
二、楞次定律 楞次定律:闭合回 路中感应电流的方 向,总是使它所激 发的磁场来阻止引 起感应电流的磁通 量的变化.(感应电 流的效果,总是反 抗引起感应电流的 原因.)
0 I
2πx 0 Ib l a ln 2π l

法拉第电磁感应定律 课件

法拉第电磁感应定律    课件

[典例] 如图 4-4-6 所示,边长为 0.1 m 的正方形线圈 ABCD 在大小为 0.5 T 的匀强磁 场中以 AD 边为轴匀速转动。初始时刻线圈平 面与磁感线平行,经过 1 s 线圈转了 90°,求: 图 4-4-6
(1)线圈在 1 s 时间内产生的感应电动势的平均值。 (2)线圈在 1 s 末时的感应电动势大小。 [解析] 初始时刻线圈平面与磁感线平行,所以穿过 线圈的磁通量为零,而 1 s 末线圈平面与磁感线垂直,磁 通量最大,故有磁通量变化,有感应电动势产生。
法拉第电磁感应定律
一、电磁感应定律 1.感应电动势 (1)在电磁感应现象中产生的电动势叫做感应电动势,产生感 应电动势的那部分导体相当于电源 。 (2)在电磁感应现象中,若 闭合 导体回路中有感应电流,电 路就一定有感应电动势;如果电路 断开 ,这时虽然没有感应电 流,但感应电动势依然存在。
2.法拉第电磁感应定律
(1)根据 E=ΔΔΦt 可得在转过 90°的过程中产生的平均 感应电动势 E=ΔΔΦt =0.5×0.1×0.1 V=0.005 V。
(2)当线圈转了 1 s 时,恰好转了 90°,此时线圈的速 度方向与磁感线的方向平行,线圈的 BC 段不切割磁感线 (或认为切割磁感线的有效速度为零),所以线圈不产生感应 电动势,E′=0。
向垂直。先保持线框的面积不变,将磁感应强度在 1 s 时间内
均匀地增大到原来的两倍。接着保持增大后的磁感应强度不
变,在 1 s 时间内,再将线框的面积均匀地减小到原来的一半。
先后两个过程中,线框中感应电动势的比值为
()
A.12
B.1
C.2
D.4
[思路点拨] 线框位于匀强磁场中,磁通量发生均匀变 化,根据法拉第电磁感应定律可得出感应电动势的大小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大理工大学 余 虹
2
99.1.1 法法拉拉第第电电磁磁感感应应定定律律
一、法拉第定律
穿过回路的磁通量变化引起 回路中电动势
Nd dt 反向后四指方向为 的方向
B I
N匝相同线圈回路的全磁通
二、楞次定律
正向磁通增加, 回路中感应电流反抗“增加”;
感应电流所激发的磁场总是抵抗 正向磁通减少,
第 7章 静电场和恒定电场 第 8章 恒定磁场 第 9章 电磁感应 第10章 麦克斯韦方程组
电磁场
2012-10-23(5)
大连理工大学 余 虹
1
9.1 法拉第电磁感应定律 9.2 动生电动势和感生电动势 9.3 自感应和互感应 9.4 磁场的能量 9.5 匀速运动点电荷的磁场
2012-10-23(5)
Q N R
2 d
1

N R
(1 2
)
2012-10-23(5)
大连理工大学 余 虹
R
4
或补偿回路中磁通量的变化。 回路中感应电流补充“减少”。
2012-10-23(5)
大连理工大学 余 虹
3
三、感应电流和感应电量
设回路电阻R,则电流强度
I N d
R R dt
电流的定义 I d Q dt
B I
N
dQ N d
dt R dt
t1~t2时间内通过导线截面的电量
相关文档
最新文档