晶体学基础报告
2-1晶体学基础--西安交大材料科学基础
1
13
c
c1
(463)
O a a1
b1
b
图2-6 晶面指数的确定 1 Oa1=1/2a Ob1=1/2b Oc1=1/2c
14
在确定密勒指数时,还需规定几点: 在确定密勒指数时,还需规定几点: (1)该晶面不能通过原点,因为这时截距为零,其倒数 )该晶面不能通过原点,因为这时截距为零, 是无意义的, 是无意义的,这时应选择与该晶面平行但不过原点的面来 确定晶面指数或把坐标原点移到该面之外; 确定晶面指数或把坐标原点移到该面之外; (2)当晶面与某晶轴平行时,规定其截距为 ,则截距 )当晶面与某晶轴平行时,规定其截距为∞, 的倒数为零; 的倒数为零; ( 3)当晶面与坐标轴的负方向相交时,截距为负,该指数 当晶面与坐标轴的负方向相交时, 当晶面与坐标轴的负方向相交时 截距为负, 的负号最后标在数字的上方。 的负号最后标在数字的上方。 (4)由于任一晶面平移一个位置后仍然是等同的晶面, )由于任一晶面平移一个位置后仍然是等同的晶面, 因此指数相同而符号相反的晶面指数是可以通用的。 因此指数相同而符号相反的晶面指数是可以通用的。
相同,还要看晶面的面间距和原子密度是否相等 如果它们 相同 还要看晶面的面间距和原子密度是否相等.如果它们 还要看晶面的面间距和原子密度是否相等 不相等,尽管晶面指数的数字相等 尽管晶面指数的数字相等,也不是性质相同的等同 不相等 尽管晶面指数的数字相等 也不是性质相同的等同 晶面,而不属于同族晶面 而不属于同族晶面。 晶面 而不属于同族晶面。
1
9
●确定晶向指数时,坐标原点不一定非选在晶向上,若 确定晶向指数时,坐标原点不一定非选在晶向上, 原点不在待标晶向上, 原点不在待标晶向上,那就需要找出该晶向上 ( x 1 , y 1 , z 1 )和 ( x 2 , y 2 , z 2 ) 两点的坐标 标 (x 1 − x 2 ) ( y 1 − y 2 ) (z 1 − z 2 ) 并使之满足: 质整数 uvw ,并使之满足: ,然后将三个数化成互 然后将三个数化成互
晶体学基础
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y
1-2 晶体学基础
晶向指数的确定步骤:
4 i
1)以晶胞的某一阵点O为原点,过原点的 晶轴为坐标轴,以晶胞点阵矢量的长度 . 作为坐标轴的长度单位.
2)过原点O作一直线OP,使其平行于待定的晶向。 3)在直线OP上任取一点P,求出P在三个坐标轴 上的坐标值。 4) 将这3个坐标值化为最小整数u,v,w,加上方 括号,[uvw]即为待定晶向的晶向指数。
为便于描述空间点阵的图形,可用许多平行 的直线将所有阵点连接起来,于是就构成一个 三维几何格架,称为空间格子,也叫晶格。
导出空间格子的方法:
首先在晶体结构中找出相当点,再将相当点按照 一定的规律连接起来就形成了空间格子。
相当点(两个条件:1、性质相同,2、周围环境相同。)
5.628Ǻ
2.8148Ǻ
1 11 1 1 1
111 1 1 1
晶向族:由晶体学上的等价晶向构成
晶面指数
4 i
三、晶面指数 晶体内部构造中由物质质点所组成的平面 称为晶面, 用来表征晶面的一组数字称为晶面指数。
n i
晶面指数的确定步骤 1) 建立坐标系,方法同晶向指数,但坐标原点 不能在待确定指数的晶面上。 2) 求待定晶面在三个坐标上的截距。 若晶面与某轴平行,则在此轴上截距为∞; 若晶面与某轴负方向相截,则在此轴上 截距为一负值 3) 取截距的倒数,并化成互质的整数比, 加上圆括号,记为(hkl),即为晶面指数。
● ●
结点:空间格子中的等同点。
行列:结点在直线上的排列。
行列中相邻结点间的距离称结点间距。同行列方向上结
点间距相等;不同方向的行列,结点间距一般不等。
●
面网:结点在平面上的分布。
单位面积内结点的数目称面网密度;相邻面网间的垂直 距离称面网间距。 相互平行的面网间面网密度和面网间距相等;否则一般 不等且面网密度大的其面网间距亦大。
第五讲 晶体学基础
第五讲晶体学基础*(一)晶体(crystal)的点阵结构(1)晶体的结构特征晶体是内部粒子(原子分子离子)或离子集团在空间按一定的规律周期性排列的固体。
周期性是指一定种类的粒子(原子或原子团)在空间一定的方向上每隔一定的距离重复出现的现象。
周期性重复的两要素:周期性重复的内容(结构基元(structural motif))和重复大小和方向。
(2)点阵(lattice)结构点阵: 连接任意两点的向量平移后能重合的一组点。
a 线性高分子—(CH2)n—与直线点阵素向量b As2O3,B(OH)3,石墨与平面点阵平面点阵单位:正方,六方,巨型,带心,一般。
c NaCL晶体与空间点阵点阵单位:素单位(P) 底心(C) 体心(I) 面心(F)(3) 晶体与点阵对应关系:晶楞--直线点阵;晶面--平面点阵;晶体--空间点阵;*晶体结构= 点阵+ 结构基元(晶体基本特征)(二)晶胞晶胞:空间点阵单位所截出晶体的一块平行六面体。
(1)晶胞(crystal cell)两要素:大小形状和内容。
(2)晶胞参数: 三个互不平行的楞长(a,b,c)及他们的夹角γαβ。
<ab γ,<bc=α,<ca=β(3)原子坐标:晶轴:a, b, c ;分数坐标例NaCL: Na 0 0 0, 1/2 1/2 0, 0 1/2 1/2, 1/2 0 1/2Cl 1/2 0 0, 0 1/2 0, 0 0 1/2, 1/2 1/2 1/2CsCL: Cs 0 0 0, Cl 1/2 1/2 1/2(CC 4): C=Na,C / 1/4 1/4 1/4, 1/4 3/4 3/4, 3/4 1/4 3/4, 3/4 3/4 1/4* 坐标系不变,原子移动:例:*坐标系平移(原点选择不同):例: 金刚石(CC 4)(4)两点间距离:P 2—P 1 =b y y a x x )()(1212-+-+c z z )(12-= [(P 2-P 1).(P 2-P 1)]1/2正交:P 2—P 1 = [(x 2-x 1)2a 2+(y 2-y 1)2b 2+(z 2-z 1)2c 2]1/2可用于计算键长P 2--P 1 ,键角(c 2=a 2+b 2-2abCosin ab α)及二面角,确定分子结构,讨论分子性能;计算分子间的距离,讨论分子间作用力及氢键等。
[工学]第一章 晶体学基础-1
lattice 点阵
structural motif 结构基元
Crystal structure 晶体结构
晶体结构 = 点阵 + 结构基元
晶体结构
点 阵
结构基元
+
直线点阵 所有点阵点分布在一条直线上。 所有点阵点分布在一个平面上。
点阵
平面点阵 空间点阵
所有点阵点分布在三维空间上。
1、直线点阵:一维点阵
世界上的固态物质可分为二类,一类是晶态,
另一类是非晶态。自然界存在大量的晶体物质 ,如高山岩石、地下矿藏、海边砂粒、两极冰 川都是晶体组成。人类制造的金属、合金器材、 水泥制品及食品中的盐、糖等都属于晶体,不 论它们大至成千上万吨,小至毫米、微米,晶 体中的原子、分子都按某种规律周期性排列。 另一类固态物质,如玻璃、明胶、碳粉、塑料 制品等,它们内部的原子、分子排列杂乱无章, 没有周期性规律,通常称为玻璃体、无定形物 或非晶态物质
晶胞的两个要素: 1.
晶胞的大小与形状:
由晶胞参数a,b,c,α
,β,γ表示, a,b,c 为 六面体边长, α,β,γ 分 别是bc,ca,ab 所组成的 夹角 晶胞的内容:粒子的种类、数目及它在晶胞 中的相对位置
2.
CsCl晶体结构
上图为CsCl的晶体结构。Cl与Cs的1:1存在 若
a≠b 。 a∧b≠120
( a )NaCl
( b )Cu
二维周期排列的结构及其点阵(黑点代表点阵点)
b
a
(c)石墨 二维周期排列的结构及其点阵(黑点代表点阵点)
3、空间点阵:三维点阵特点:
①空间点阵可以分解成一组组平面点阵 ②取不在同一平面的三个向量组成平行六面
晶体学基础
晶体学基础1. 晶体的基本性质2. 晶体结构与空间点阵3. 晶向、晶面及指标4. 晶带和晶带轴1. 晶体非晶体42. 空间点阵和晶胞¾空间点阵的概念¾点阵和点阵格子¾空间点阵与晶体结构空间点阵的概念¾晶体是由原子或原子团在三维空间中规则重复排列组成的固体。
作为基本单元的原子或原子团叫结构基元,简称基元。
¾为反映晶体中原子排列的周期性,以一个点代表一个基元,这个点就叫阵点,阵点在三维空间的周期性分布形成无限的阵列,就叫空间点阵,简称点阵。
5点阵和结构¾把空间点阵想象为晶体的结构框架,点阵中每一阵点所代表的周期重复的内容(原子、分子或离子),即结构基元,所以晶体结构可表述为:晶体结构=点阵+结构基元2. 空间点阵和晶胞晶胞= 点阵格子+ 结构基元10阵点数、阵点坐标2. 空间点阵和晶胞¾在晶胞不同位置的原子由不同数目的晶胞分享:顶角原子:1/8棱上原子:1/4面上原子:1/2晶胞内部:1阵点坐标的表示方法:¾以晶胞的任意顶点为坐标原点,以与原点相交的三个棱边为坐标轴,分别用点阵周期(a, b, c )为度量单位。
11晶向指数的确定1.建立坐标系,结点为原点,三棱为方向,点阵常数为单位;2.在晶向上任两点的坐标(x 1,y 1,z 1) (x 2,y 2,z 2)。
(若平移晶向或坐标,让在第一点在原点则下一步更简单);3.计算x 2-x 1:y 2-y 1:z 2-z 1;4.化成最小、整数比u :v :w ;3.晶向指数和晶面指数5.放在方括号[uvw]中,不加逗号,负号记在上方。
红线由两个结点的坐标之差确定点阵中由结点构成的直线称为晶向晶向指数的确定1002晶向指数的意义¾晶向指数表示着所有相互平行、方向一致的晶向;¾所指方向相反,则晶向指数的数字相同,但符号相反;¾晶体中因对称关系而等同的各组晶向可归并为一个晶向族,用<u v w>表示。
晶体学基础
晶体学基础一、晶体学的定义和基本概念1.1 晶体学的定义晶体学是研究晶体结构、晶体形态和晶体性质的学科,是物理学、化学和材料科学的重要分支。
它研究的对象是晶体,即具有规则、周期性排列的原子、分子或离子结构的固体物质。
1.2 晶体学的基本概念晶体学有一些基本概念,包括晶体的晶系、晶胞、晶面和晶点等。
1.2.1 晶体的晶系晶体的晶系是指晶体中晶胞的对称性,常见的晶系有立方晶系、四方晶系、正交晶系、单斜晶系、斜方晶系、三斜晶系和三角晶系。
不同的晶系具有不同的对称性和晶胞形状。
1.2.2 晶体的晶胞晶体的晶胞是晶体中具有一定对称性的最小重复单元,它由一组原子、分子或离子构成。
晶胞的形状和大小决定了晶体的外形和晶系。
1.2.3 晶体的晶面晶体的晶面是晶胞的界面,它可以由晶胞的截面所确定。
晶体的晶面具有一定的对称性和形状,不同的晶面反映了晶体内部的原子、分子或离子的排列方式。
1.2.4 晶体的晶点晶体的晶点是晶体中原子、分子或离子的位置,它们通过相对位置的排列而形成晶体的结构。
晶点的排列方式决定了晶体的周期性。
二、晶体学的研究方法2.1 X射线衍射方法X射线衍射是研究晶体结构的重要方法之一。
通过将X射线照射到晶体上,通过对衍射光的观察和分析,可以确定晶体的晶胞参数、原子位置和晶体结构。
2.2 电子显微镜方法电子显微镜是一种利用电子束来观察物体的显微镜。
通过电子显微镜,可以对晶体进行高分辨率的成像,揭示晶体的微观结构和原子排列方式。
2.3 光学显微镜方法光学显微镜是利用光学原理观察物体的显微镜。
通过光学显微镜,可以对晶体的形态、结构和颜色进行观察和分析,从而了解晶体的基本特征。
2.4 计算方法晶体学还利用计算方法对晶体结构进行模拟和计算。
通过计算方法,可以预测晶体的结构、性质和响应等,对晶体学研究起到重要的辅助作用。
三、晶体学的应用领域3.1 材料科学晶体学在材料科学领域有着广泛的应用。
通过研究晶体的结构和性质,可以设计和合成新材料,提高材料的性能和功能。
(完整版)第1章 晶体学基础
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
晶体结构与晶体化学晶体几何学理论基础
1.1.2 空间点阵
在图3.1的单位平移中,有两个最短的矢量,如图3.2所示。原点的选择是任意 的,任何图案的平移对称都可从图形的一点开始描述。如将图案抽象成一个点, 通过上述的一套平移对称操作即可得到一套平面上点的集合,称为网格或二维 点阵(图3.3)。在空间三维情况下,称作空间格子或空间点阵,点阵中的每个 点称为结点或点阵点。
晶体几何学理论基础
对称性是一种规律的重复,具有变化中的不变性,是自 然科学中一个重要的基本概念。晶体就是指原子或分子 在空间按一定规律重复排列构成的固体物质。晶体结构 的基本特征是其中的质点在三维空间作规律的重复排列。 晶体结构研究的就是揭示晶体内部原子和分子在空间排 列上的对称规律,这种规律只有在晶体结构中每个原子 在空间相对位置揭示出来时才能得到完整证明。
基本图案可以先旋转后反伸,也可以先反伸后旋转。其中1相当于i(反伸中心), 2相当于m)(对称面),3相当于3次轴加反伸中心,6相当于3次轴加对称面, 因此只有4是具有多利意义的旋转反伸轴。
2.点群 2.1 点对称要素 晶体外形上可能出现的对称要素称为点对称要素,包括对称中心、对称面、旋转轴 及旋转反伸轴。这些对称要素的特点是在进行对称操作过程中至少有一点是不动的。 二维空间的对称要素有:旋转点,2、3、4、6次轴;反映线,m。 三维空间的对称要素:旋转轴,2、3、4、6次轴;反伸(对称)中心,i;镜(对称) 面,m;旋转倒反轴,1、2、3、4、6。
1、对称操作 晶体学中的对称图形是通过对称操作来表征的。 对称操作 周期平移对称操作(晶体中) 有公度的
无公度的 准周期平移对称操作(准晶体中) 严格自相似准周期
点对称操作
旋转 反映 反伸
统计自相似准周期
1.1 平移
晶体学基础
12 6 14 8 6.02 1023 [(0.64 10 7 ) 2 sin 60 0.24 10 7 ] 3.59g.cm3
计算结果表明,-C3N4的密度比金刚石还要大,说明- C3N4的原子堆积比金刚石还要紧密,这是它比金刚石硬度 大的原因之一。
(2) 晶胞参数:Ti作A3型堆积,所以为六方晶胞。
在A3型堆积中取出六方晶胞,平行六面体的底是平 行四边形,则晶胞参数: a = b = 2r = 2145 = 290pm
由晶胞可以看出,六方晶胞的边长 c 为四面体高的 两倍,即:
c 2 边长为a的四面体高 6 2 6 2 a a 3 3 2 6 290 3 473.6 pm
• ⑸有特定的对称性
(6) 晶 体 的 X 射 线 衍 射 效 应
晶体的周期性结构使它成为天然的三维光
栅,周期与X光波长相当, 能够对X光产生衍射:
三、晶体的点阵结构
概念:在晶体内部原子或分子周期性地排列
的每个重复单位的相同位置上定一个点,这
些点按一定周期性规律排列在空间,这些点
构成一个点阵。点阵是一组无限的点,连结
一种高效低温的热电材料,下图是其沿某一方向
的一维晶体结构。
图1
图2
( 1)在图中画出它们的结构基元;结构基元的
化学式分别是图1
,图2
。
(2)现在,热电材料的研究主要集中在金属晶
体上,Ti就是制备热电材料的重要金属之一,已
知 Ti 的原子半径为 145pm ,作 A3 型堆积,请预
测金属晶体Ti的晶胞参数和密度。
( 2 ) 平 面 点 阵
例3、2002年江苏夏令营选拔赛
例 4 、 长期以来人们一直认为金刚石是最硬的物质,但这种
1.晶体学基础
原子可在 顶角、线 、面、内 部。
晶胞参数:
平行六面体的三根棱长a、b、c及其夹角α、β、γ是表示它本 身的形状、大小的一组参数,称为点阵参数(晶胞参数)
依照晶胞参数之间的关系,所有晶体的空间点阵可以划分为7个晶系:
晶 系 立方晶系 四方晶系 a=b=c a=b≠c 格子常数特点 α=β=γ=90° α=β=γ=90°
晶面族指数:用晶面族中 某个最简便的晶面指数填 在大括号{ }内作为该晶面
族的指数。
晶面间距
一般是晶面指数数值越小,其面间距较大,并且其阵点密度较大
a
b
(100)
(110) (210) (4-10) (130)
晶面间距的计算
一组平行晶面的晶面间距dhkl与晶面指数和晶格常数a、b、c有下列关系:
(2)晶胞
ClNa+
空间格子+基元
●晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的 空间格子中的平行六面体一致。 ●晶胞:是描述晶体结构的基本组成单位。 ●晶胞:能够反映整个晶体结构特征的最小结构单元。
周期性、对称 性
晶胞的选取不是唯一的!
晶胞的选取原则: 1)充分表示出晶体的对称性 2)三条棱边尽量相等 3)夹角尽量为直角 4)单元体积尽可能小
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
等同点: 各阵点的周围 环境完全相同, 周围阵点排布 及取向完全相 同。 A位臵
B位臵
空间格子有下列几种要素存在:
面网
平行六面体
晶面:可将晶体点阵在任意方向上分解 为相互平行的节点平面。 晶面族:对称性高的晶体中,不平行的 两组以上的晶面,它们的原子排列状况 是相同的,这些晶面构成一个晶面族。 晶向:也可将晶体点阵在任意方向上分 解为相互平行的节点直线组,质点等距 离的分布在直线上。 晶向族:晶体中原子排列周期相同的所 有晶向为一个晶向族。
01晶体学基础
上一内容 下一内容 回主目录
返回
续二
(1)电子和空穴:有效电荷与实际电荷相等。 (2)原子晶体:带电的取代杂质缺陷的有效电荷就
等于该杂质离子的实际电荷。 (3)化合物晶体:缺陷的有效电荷一般不等于实际
电荷。
上一内容 下一内容 回主目录
返回
缺陷的表示
• 无缺陷状态:0 • 晶格结点空位:VM, VX • 填隙原子:Ai, Xi • 错位原子:在AB中,AB, BA • 取代原子:在MX中NM • 电子缺陷:e’, h• • 带电缺陷: VM’, VX •, Ai •, Xi’, AB, BA , NM(n-m)
• 箭头表示反应方向
V V 0 NaCl(s) ' •
Na
Cl
• 箭头上表示基质的化学
式
•
生成物主要由缺陷组成
AgCl
AgCl(s )
Agi•
VA' g
Cl
Cl
上一内容 下一内容 回主目录
返回
基本的缺陷反应方程式
1.具有夫伦克耳缺陷(具有等浓度的晶格空位和填隙原子的 缺陷)的整比化合物M2+X2-:
位错模型
如图所示,晶体中多余的半原子面好象一片刀刃切入晶体中, 沿着半原子面的“刃边”,形成一条间隙较大的“管道”,该 “管道”周围附近的原子偏离平衡位置,造成晶格畸变。刃型 位错包括“管道”及其周围晶格发生畸变的范围,通常只有3到 5个原子间距宽,而位错的长度却有几百至几万个原子间距。刃 位错用符号 “┻”表示。
内容回顾
1.晶体结构的周期性; 2.点阵结构与点阵; 3. 点阵与平移群及与点阵结构的关系; 4. 晶体结构参数; 5. 晶面指数的确定;
上一内容 下一内容 回主目录
晶体学基础
0.25A-1 020 120 220
b (110)
010 110 210
(100) b* H110
H 210
(210)
100
c
a
c* 000
a*
200
晶体点阵
倒易点阵
立方晶系晶体及其倒易点阵
第三章 X射线衍射方向
自伦琴发出X射线后,许多物理学家都在积极地研究和探索,1905年 和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一 种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了 X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结 构的周期性,发表了《X射线的干涉现象》一文。
cosa0 H cos0 K
衍射线
1' X
1
显然,当X射线照射二 维原子网时,X、Y晶轴 方向上的那些同轴的圆 锥面上的衍射线要能够 加强,只有同时满足劳 厄第一和第二方程,才 能发生衍射。
衍射线只能出现在沿X晶轴方向及Y晶轴方向的两系列 圆锥簇的交线上。如果照相的底片平行于原子网,圆 锥在底片上的迹线为双曲线。每对双曲线的交点即为 衍射斑点,也相当于圆锥的交线在底片上的投影。不 同的H,K值,可得到不同的斑点。
劳厄的文章发表不久,就引起英国布拉格父子的关注,他们都是X射 线微粒论者,年轻的小布拉格经过反复研究,成功地解释了劳厄的实 验事实。他以更简结的方式,清楚地解释了X射线晶体衍射的形成, 并提出著名的布拉格公式:nX=2dsino这一结果不仅证明了小布拉格的 解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构 的信息。老布拉格则于1913年元月设计出第一台X射线分光计,并利 用这台仪器,发现了特征X射线。小布拉格在用特征X射线与其父亲合 作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金 刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键 按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来 说用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接 受。
晶体学基础(晶向指数与晶面指数)
晶背指数战晶里指数之阳早格格创做一晶背战晶里1 晶背晶背:空间面阵中各阵面列的目标(对接面阵中任性结面列的曲线目标).晶体中的某些目标,波及到晶体中本子的位子,本子列目标,表示的是一组相互仄止、目标普遍的曲线的指背.2 晶里晶里:通过空间面阵中任性一组阵面的仄里(正在面阵中由结面形成的仄里).晶体中本子所形成的仄里.分歧的晶里战晶背具备分歧的本子排列战分歧的与背.资料的许多本量战止为(如百般物理本量、力教止为、相变、X光战电子衍射个性等)皆战晶里、晶背有稀切的闭系.所以,为了钻研战形貌资料的本量战止为,最先便要设法表征晶里战晶背.为了便于决定战辨别晶体中分歧圆背的晶背战晶里,国际上通用稀勒(Miller)指数去统一标定晶背指数与晶里指数.二晶背指数战晶里指数的决定1 晶背指数的决定要领三指数表示晶背指数[uvw]的步调如图1所示.(1)修坐以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标少度单位分别是晶胞边少a,b,c,坐标本面正在待标晶进与.(2)采用该晶进与本面以中的任一面P(xa,yb,zc).(3)将xa,yb,zc化成最小的简朴整数比u,v,w,且u∶v∶w = xa∶yb∶zc.(4)将u,v,w三数置于圆括号内便得到晶背指数[uvw].图1 晶背指数的决定要领图2分歧的晶背及其指数天然,正在决定晶背指数时,坐标本面纷歧定非采用正在晶进与不可.若本面不正在待标晶进与,那便需要采用该晶进与二面的坐标P(x1,y1,z1)战Q(x2,y2,z2),而后将(x1-x2),(y1-y2),(z1-z2)三个数化成最小的简朴整数u,v,w,并使之谦脚u∶v∶w=(x1-x2)∶(y1-y2)∶(z1-z2).则[uvw]为该晶背的指数. 隐然,晶背指数表示了所有相互仄止、目标普遍的晶背.若所指的目标好同,则晶背指数的数字相共,然而标记好同,如图3中[001]与[010].道明:a 指数意思:代表相互仄止、目标普遍的所有晶背.b 背值:标于数字上圆,表示共一晶背的好同目标.c 晶背族:晶体中本子排列情况相共然而空间位背分歧的一组晶背.用<uvw>表示,数字相共,然而排列程序分歧大概正背号分歧的晶背属于共一晶背族.晶体结构中那些本子稀度相共的等共晶背称为晶背轴,用<UVW>表示.<100>:[100] [010] [001] [0000]1] [010] [1<111>:[111] [111] [111] [1111]1] [111] [111] [111] [1图3 正接面阵中的几个晶背指数2 晶里指数的决定国际上通用的是稀勒指数,即用三个数字去表示晶里指数(h k l).图4中的白色晶里为待决定的晶里,其决定要领如下.图4晶里指数的决定(1)修坐一组以晶轴a,b,c为坐标轴的坐标系,令坐标本面不正在待标晶里上,各轴上的坐标少度单位分别是晶胞边少a,b,c.(2)供出待标晶里正在a,b,c轴上的截距xa,yb,zc.如该晶里与某轴仄止,则截距为∞.(3)与截距的倒数1/xa,1/yb,1/zc.(4)将那些倒数化成最小的简朴整数比h,k,l,使h∶k∶l= 1/xa∶1/yb∶1/zc.(5)如有某一数为背值,则将背号标注正在该数字的上圆,将h,k,l置于圆括号内,写成(hkl),则(hkl)便是待标晶里的晶里指数.道明:晶里指数所代表的不然而是某一晶里,而是代表着一组相互仄止的晶里.a 指数意思:代表一组仄止的晶里;b 0的意思:里与对付应的轴仄止;c 仄止晶里:指数相共,大概数字相共然而正背号好同;d 晶里族:晶体中具备相共条件(本子排列战晶里间距真足相共),空间位背分歧的各组晶里,用{hkl}表示.正在坐圆系中,{100}:(100)(010)(001),{110}:(110)(101)(011)(110)(101)(011),{111}:(111)(111)(111)(111)e 若晶里与晶背共里,则hu+kv+lw=0;f 若晶里与晶背笔曲,则u=h, k=v, w=l.坐圆系时常使用晶里指数图5.图5 坐圆系时常使用晶里指数例子:请决定图6中的晶里的晶里指数,并正在图7中绘出那些晶里指数所代表的晶里.最先选定坐标系,如图所示.而后供出待标晶里正在a,b,c轴上的截距,分别为a/2,2b/3,c/2.与倒数后得到2,3/2,2.再将其化成最小的简朴整数比,得到4,3,4三个数.于是该里的晶里指数为(434).图6图7 晶里指数的标注所有相互仄止的晶里正在三个晶轴上的截距虽然分歧,然而它们是成比率的,其倒数也仍旧是成比率的,经简化不妨得到相映的最小整数.果此,所有相互仄止的晶里,其晶里指数相共,大概者三个标记均好同.可睹,晶里指数所代表的不然而是某一晶里,而且代表着一组相互仄止的晶里.图8坐圆晶胞的{110}、{111}晶里族3 闭于晶里指数战晶背指数的决定要领另有以下几面道明:(1)参照坐标系常常皆是左脚坐标系.坐标系不妨仄移(果而本面可置于所有位子).然而不克不迭转化,可则,正在分歧坐标系下定出的指数便无法相互比较.(2)晶里指数战晶背指数可为正数,亦可为背数,然而背号应写正在数字上圆,如(231),[112]等.(3)若各指数共乘以不等于整的数n,则新晶里的位背与旧晶里的一般,新晶背与旧晶背大概是共背(当n>0),大概是反背(当n<0).然而是,晶里距(二个相邻仄止晶里间的距离)战晶背少度(二个相邻结面间的距离)普遍皆市改变,除非n=1.从以上各例不妨瞅出,坐圆晶体的等价晶里具备“类似的指数”,即指数的数字相共,不过标记(正背号)战排列序次分歧.那样,咱们只消根据二个(大概多个)晶里的指数,便能推断它们是可为等价晶里.另一圆里,给出一个晶里族标记{hkl},也很简单写出它所包罗的局部等价晶里. 对付于非坐圆晶系,由于对付称性改变,晶里族所包罗的晶里数目便纷歧样.比圆正接晶系,晶里(100),(010)战(001)本去不是等共晶里,不克不迭以{100}族去包罗. 与晶里族类似,晶体中果对付称闭系而等共的各组晶背可归并为一个晶背族,用<uvw>表示.仿照上例,读者不妨写出正在坐圆晶系中的<100>,<110>,<111>,<112>战<123>等晶背族所包罗的等价晶背.以去,正在计划晶体的本量(大概止为)时,若逢到晶里族大概晶背族标记,那便表示该本量(大概止为)对付于该晶里族中的任一晶里大概该晶背族中的任一晶背皆共样创造,果而不需要区别简曲的晶里大概晶背. 其余,正在坐圆晶系中,具备相共指数的晶背战晶里肯定是相笔曲的,即[hkl]⊥(hkl).上头咱们用三个指数表示晶里战晶背.那种三指数表示要领,准则上适用于任性晶系.对付六圆晶系,与a,b,c 为晶轴,而a轴与b轴的夹角为120°,c轴与a,b轴相笔曲,如图9所示.图9六圆晶体的等价晶里战晶背指数然而是,用三指数表示六圆晶系的晶里战晶背有一个很大的缺面,即晶体教上等价的晶里战晶背不具备类似的指数.那一面不妨从图9瞅出.图中六棱柱的二个相邻表面(白里战绿里)是晶体教上等价的晶里,然而其稀勒指数却分别是(101)战(100).图中夹角为60°的二个稀排目标D1战D2是晶体教上的等价目标,然而其晶背指数却分别是[100]战[110].由于等价晶里大概晶背不具备类似的指数,人们便无法从指数推断其等价性,也无法由晶里族大概晶背族指数写出它们所包罗的百般等价晶里大概晶背,那便给晶体钻研戴去很大的便当.为了克服那一缺面,大概者道,为了使晶体教上等价的晶里大概晶背具备类似的指数,对付六圆晶体去道,便得搁弃三指数表示,而采与四指数表示(稀勒-布推菲指数).四指数表示是鉴于4个坐标轴:a1,a2,a3战c轴,如图10所示,其中,a1,a2战c轴便是本胞的a,b战c轴,而a3=-(a1+a2).底下便分别计划用四指数表示的晶里及晶背指数.图10六圆晶体的四轴系统(1)六圆晶系晶里指数的标定六圆晶系晶里指数的标定本理战要领共坐圆晶系中的一般,从待标晶里正在a1,a2,a3战c轴上的截距可供得相映的指数h,k,i,l,于是晶里指数可写成(hkil).根据几许教可知,三维空间独力的坐标轴最多不超出三个.应用上述要领标定的晶里指数形式上是4个指数,然而是不易瞅出,前三个指数中惟有二个是独力的,它们之间有以下的闭系:i = -( h + k ),果此,不妨由前二个指数供得第三个指数.六圆晶体中罕睹晶里及其四指数(亦称六圆指数)标于图11中.从图瞅出,采与四指数后,共族晶里(即晶体教上等价的晶里)便具备类似的指数.比圆:共6个等价里(Ⅰ型棱柱里).共6个等价里(Ⅱ型棱柱里).而{0001}只包罗(0001)一个晶里,称为基里.六圆晶体中比较要害的晶里族另有,请读者写出其局部等价里.图11六圆晶体中罕睹的晶里(2)六圆晶系晶背指数的标定采与四轴坐标,六圆晶系晶背指数的标定要领如下:当晶背通过本面时,把晶背沿四个轴领会成四个分量,晶背OP 可表示为:OP=ua 1+va 2+ta 3+wC ,晶背指数用[uvtw]表示,其中t=-(u+v).本子排列相共的晶背为共一晶背族,图12中a 1轴为[0112],a 2轴[0121],a 3轴[2011]均属〈0112〉,其缺面是标定较贫苦.可先用三轴造决定晶背指数[UVW],再利用公式变换为[uvtw].采与三轴坐标系时.C 轴笔曲底里,a 1、a 2轴正在底里上,其夹角为120o ,如图12,决定晶背指数的要领共前.采与三轴造虽然指数标定简朴,然而本子排列相共的晶背本应属于共一晶背族,其晶背指数的数字却不尽相共,比圆[100],[010],[011],睹图12.图12 六圆晶系的一些晶里与晶背指数六圆晶系按二种晶轴系所得的晶背指数可相互变换如下)2(31V U u -=,)2(31U V v -=,)(v u t +-=,W w =.比圆,[011]→[201],[100]→[0112],[010]→[0121],那样等共晶背的晶1背指数的数字皆相共.标定要领常常采与止走法.用止走法决定六圆晶体的四轴晶背指数时,会逢到一个新的问题,即解是不唯一的.比圆,a1轴的指数不妨是,也不妨是[2000];a2轴的指数不妨是,也不妨是[0200].领会百般等价晶背的四指数后创造,要念使等价晶背具备类似的四指数,便需要人为天附加一个条件,即前三个指数之战为整.若将晶背指数写成[UVTW],则上述附加条件可写成:U+V+T=0,大概T=-(U+V).依照那个附加条件,上述a1轴的指数便该当是,而不是[2000];共样,a2战a3轴的指数分别是战.图13中标出了六圆晶体中各要害晶背的四指数,它们是[0001],,等等.图13六圆晶体中罕睹的晶背除上述几个特殊晶背中,对付普遍的晶背,很易间接供出四指数[UVTW],果为很易包管正在沿a1,a2,a3战c 轴分别走了U,V,T战W步后既要到达晶进与的另一面,又要谦脚条件T=-(U+V).比较稳当的标注指数要领是剖析法.该法是先供出待标晶背正在a1,a2战c三个轴下的指数u,v,w(那比较简单供得),而后按以下公式算出四指数U,V,T,W.(1-1)T = - (U + V)W = w此公式可道明如下.由于三指数战四指数均形貌共一晶背,故:U a1+ V a2+ T a3+ W c= u a1+v a2+w c(1-2)又由几许闭系:a1+ a2= - a3(1-3)再由等价性央供:T = - (U+V)(1-4)解以上三个联坐圆程,即得到:u = 2U+V,v = 2V+U,w = W(1-5) (1-5)式战(1-1)式可用矩阵表示如下:==底下举二个例子.例1 请写出a1轴的晶背指数.解:从晶胞图间接得到:u=1,v=0,w=0,按(1-1)式算得:故.例2 请写出a2战-a3接角的仄分线D的晶背指数.解:从晶胞图可瞅出:D=a1+(-a3)=2a1+a2,得u=2,v=1,w=0,代进(1-1)式得到:U=1,V=0,T=-1,W=0,故.5 坐圆战六圆晶体中要害晶背的赶快标注正在以去各章将多次逢到坐圆战六圆晶体中的一些矮指数要害晶背,需要赶快决定其指数.根据上述标定指数的要领,咱们归纳出一条赶快标定晶背指数的心诀,即:“指数瞅个性,正背瞅走背”.便是道,根据晶背的个性,决断指数的数值;根据晶背是“顺轴”(即与轴的正背成钝角)仍旧“顺轴”(即与轴的正背成钝角),决断相映于该轴的指数的正背.底下简曲计划坐圆战六圆晶体中的各要害晶背.(1)坐圆晶体坐圆晶体中各要害晶背的个性如下:(1)<100>是晶轴.若沿着a轴,则第一指数为1,依次类推;如果“顺轴”(如沿-a轴),则相映指数为.(2)<110>是坐圆体里对付角线.若里对付角线正在a 里(即(100)里)上,则第一指数为整,其余二个指数为1大概(与决于所计划的对付角线是“顺着”仍旧“顺着”相映的晶轴).(3)<111>是体对付角线.三个指数皆是1大概,与决于该对付角线与相映轴的接角(钝角为1,钝角为).(4)<112>是顶面到对付里(即短亨过该顶面的{100}里)里心的连线.如果对付里是a里,则第一指数为2大概,其余二个指数为1大概.(2)六圆晶体六圆晶体中各要害晶背的个性如下:(1)[0001]c轴.(2)战a1,a2大概a3轴仄止的晶背.战哪个轴正(大概反)仄止,则相映的指数便是2(大概),其余三个指数便是,,0(大概1,1,0).(3)二个晶轴±a i战a j接角的仄分线(i、j=1,2,3,i≠j).比圆,是+a1轴战-a3轴接角的仄分线;是-a2轴战+a3轴接角的仄分线等等.根据以上几类晶背指数,还不妨赶快供得某些不仄止于基里的要害晶背.要领是先供该晶背正在基里上的投影线的指数[UVT0],而w可从晶胞图中曲瞅瞅出.比圆,供图1-19中MN的指数时,先将MN仄移至本面,找出其投影ON'的指数,从图1-19中可曲瞅瞅出W=1,故MN的指数,化整后得到.6 晶戴相接于某一晶背曲线大概仄止于此曲线的晶里形成一个晶戴,此曲线称为晶戴轴.设晶戴轴的指数为[uvw],则晶戴中所有一个晶里的指数(hkl)皆必须谦脚:hu+kv+lw=0,谦脚此闭系的晶里皆属于以[uvw]为晶戴轴的晶戴,已知二个非仄止的晶里指数为(h1k1l1)战(h2k2l2)则其接线即为晶戴轴的指数[uvw]:1221l k l k u -=,1221h l h l v -=,1221k h k h w -=.图14 晶戴轴7 晶里间距一组仄止晶里中,相邻二个仄止晶里之间的距离喊晶里间距.二近邻仄止晶里间的笔曲距离,用d hkl 表示.对付于分歧的晶里族{hkl}其晶里间距也分歧.总的去道,矮指数晶里的里间距较大,下指数晶里的里间距较小.图15 晶里间距图16 晶里间距公式的推导由晶里指数的定义,可用数教要领供出晶里间距,(简朴坐圆):d=a/(h 2+k 2+l 2)1/2,正接系:222)()()(1c l b k k h hkl d ++=,坐圆系:222l k h a hkl d ++=,六圆系:22)22(34)(1cl a k hk h hkl d +++=.此公式用于搀杂面阵(如体心坐圆,里心坐圆等)时要思量晶里层数的减少.比圆,体心坐圆(001)里之间另有共一类的晶里,可称为(002)里,故晶里间距应为简朴晶胞001d 的一半,等于2a .由公式也可瞅出矮指数晶里的里间距大. 三 晶体的极射赤里投影采与坐体图易以干到浑晰表白晶体的百般晶背、晶里及它们之间的夹角.通过投影图可将坐体图表示于仄里上.晶体投影要领很多,广大应用的是极射赤里投影.1 参照球与极射赤里投影(1)参照球设念将一很小的晶体大概晶胞置于一个大圆球的核心,由于晶体很小,可认为各晶里均通过球心,由球心做晶里的法线与球里的接面称为极面,那个球称参照球,如图17.球里投影用面表示相映的晶里,二晶里的夹角可正在参照球上量出,如图17,(110)与(010)夹角为45o.然而使用上仍不便当.可正在此前提上再做一次极射赤里投影.图17 参照球与坐圆系球里投影(2)极射赤里投影以球的北北极为瞅测面,赤讲里为投影里.连结北极与北半球的极面,连线与投影里的接面即为晶里的投影,如图18.投影图的鸿沟大圆与参照球曲径相等喊基圆.位于北半球的极面应与北极连线,所得投影面可另选标记,使之与北半球的投影面相区别.也可选与赤讲仄止的其余仄里做投影里,所得投影图形状稳定,只改变其比率.对付于坐圆系,相共指数的晶里战晶背互相笔曲、所以坐圆系尺度投影图的极面即代表了晶里又代表了晶背.若将参照球比较为天球,以天球的二极为投影面,将球里投影投射到赤讲仄里上,便喊极射赤里投影.图18 极射赤里投影2 尺度投影图以晶体的某个晶里仄止于投影里,做出局部主要晶里的极射投影图称为尺度投影图.普遍采用一些要害的矮指数晶里做投影里,如坐圆系(001),(011),(111)及六圆系(0001)等.比圆(001)尺度投影图是以(001)为投影里,举止极射投影而得到的,如图19.图19 坐圆系(001)尺度投影图3 吴氏网吴氏网是球网坐目标极射仄里投影,分度为2 o,具备保角度的个性.其读数由核心背中读,分东,北,西,北.吴氏网如图20所示.图20 吴氏网(分度为2o)使用吴氏网时,投影图大小与吴氏网必须普遍.利用吴氏网可便当读出任一极面的圆背,并可测定投影里上任性二极面间的夹角,是钻研晶体投影,晶体与背等问题的有力工具.正在丈量时,用透明纸绘出曲径与吴氏网相等的基圆,并标出晶里的极射赤里投影面.将透明纸盖于吴氏网上.二圆圆心末究沉合,转化透明纸、使所测二面降正在赤讲线上,子午线上,基果上,共已经线上.二面纬度好(正在赤讲上为经度好)便等于晶里夹角.不克不迭转到某一纬线去测夹角,果为此时所测得的角度不是本量夹角.例题1.已知杂钛有二种共素同构体,矮温宁静的稀排六圆结媾战下温宁静的体心坐圆结构,其共素同构转化温度为℃,估计杂钛正在室温(20℃)战900℃时晶体中(112)战(001)的晶里间距(已知a a20℃=0.2951nm, c a20℃=0.4679nm, aβ900℃).问案20℃时为α-Ti:hcp结构当h+2k=3n (n=0,1,2,3…) ,l=偶数时,有附加里.;900℃时为β-Ti:bcc结构当偶数时,有附加里.真量提要晶胞是能反映面阵对付称性、具备代表性的基础单元(最小仄止六里体),其分歧目标的晶背战晶里可用稀勒指数加以标注,并可采与极射投影要领去领会晶里战晶背的相对付位背闭系.沉面与易面1 晶背指数与晶里指数的标注;2 晶里间距的决定与估计;3 极射投影与Wulff网.要害观念与名词汇晶背指数,晶里指数,晶背族,晶里族,晶戴轴,晶里间距,极射投影,极面,吴氏网,尺度投影.[U V W]与[u v t w]之间的互换闭系:晶戴定律:坐圆晶系晶里间距估计公式:六圆晶系晶里间距估计公式:习题1 标出具备下列稀勒指数的晶里战晶背:a) 坐圆晶系,,,,;b) 六圆晶系,,,,2 正在坐圆晶系中绘出晶里族的所有晶里,并写出{123}晶里族战﹤221﹥晶背族中的局部等价晶里战晶背的稀勒指数.3 正在坐圆晶系中绘出以为晶戴轴的所有晶里.4 试道明正在坐圆晶系中,具备相共指数的晶背战晶里肯定相互笔曲.5 已知杂钛有二种共素同构体,矮温宁静的稀排六圆结媾战下温宁静的体心坐圆结构℃,估计杂钛正在室温(20℃)战900℃时晶体中(112)战(001)的晶里间距(已知a a20℃=0.2951nm, c a20℃=0.4679nm,aβ900℃).问案晶背指数:[uvw] 即为AB晶背的晶背指数.如u、v、w中某一数为背值,则将背号标注正在该数的上圆.[21]战[1]便是二个相互仄止、目标好同的晶背.果对付称闭系而等共的各组晶背可归并为一个晶背族,用<uvw>表示对付坐圆晶系去道,[100]、[010]、[001]战[00]、[00]、[00]等六个晶背,它们的本量真足相共,用<100>表示对付于正接晶系[100]、[010]、[001]那三个晶背本去不是等共晶背,果为以上三个目标上的本子间距分别为a、b、c,沿着那三个目标,晶体的本量本去不相共.图1-19{100},{111},{110}晶里族正在坐圆系中:{100}=(100)、(010)、(001);{110}=(110)(101)(011)(10)(01)(01);{111}=(111)、(11)、(11)、(11).{123}=(123)、(132)、(231)、(213)、(312)、(321);(23)、(32)、(31)、(13)、(12)、(21);(13)、(12)、(21)、(23)、(32)、(31);(12)、(13)、(23)、(21)、(31)、(32).共24组晶里晶里指数用去分别表示本子的排列形成的许多分歧圆背的晶里. 如(111)正在晶体中有些晶里具备共共的个性,其上本子排列战分散程序是真足相共的,晶里间距也相共,唯一分歧的是晶里正在空间的位背,一组等共晶里称为一个晶里族,用标记{hkl}表示.正在坐圆晶系中,具备相共指数的晶背战晶里肯定是相笔曲的,即[hkl] 笔曲于(hkl).比圆:[100] 笔曲于(100),[110] 笔曲于(110),[111] 笔曲于(111),等等.然而是,此闭系不适用于其余晶系.左边图,a1、a2、c为晶轴,而a1与a2间的夹角为120度.六圆晶系六个柱里的晶里指数为(100)、(010)、(10)、(00)、(00)、(10)那六个里是共典型晶里,然而其晶里指数中的数字却相共.晶背指数也有类似情况,比圆[100]战[110]是等共晶背,然而晶背指数却不相共.为了办理那一问题,可采与博用于六圆晶系的指数标定要领.(左图)。
2.晶体学基础
三轴和四轴晶向指数之间的关系
1 t (u v) (U V ) 3 w W 2 1 u U V 3 3 2 1 v V U 3 3
2.2 倒易点阵 倒易点阵是在晶体点阵的基础上按照 一定的对应关系建立起来的空间点阵, 是晶体点阵的另一种表达形式[ 之所以称为倒易点阵,是因为它的基 矢量与晶体点阵存在着倒易关系。为 了便于区别,有时将晶体点阵称为正 点阵
引入倒易点阵的作用
利用倒易点阵处理晶体几何关系和衍射
问题,能使几何关系更清楚,数学推演 更简化。 晶体点阵中的二维平面在倒易点阵中只 对应一个零维的倒易阵点,晶面间距和 取向这两个参量在倒易点阵中只用一个 倒易矢量就可以表达。 衍射花样实际上是满足衍射条件的倒易 阵点的投影,从这个意义上讲,倒易点 阵本身就具有衍射属性
为了从(2-9)式得出倒易基矢量的长度,
将(2-9)式改写成其标量形式:
1 1 1 a* b* c* aCos bCos cCos
(2-10) 式中 、ψ、ω分别为a*与a; b*与 b; c* 与c的夹角
图2-37以倒易基矢量c*为例,画出了它
与正点阵的对应关系 其中OP为c在c*上的投影,同时也是a、 b所构成的(001)晶面的面间距d001 OP=c cosω= d001 1 c*= 1/c cosω=
第二章 晶体学基础
2.1 晶体学基础 2.2 倒易点阵 2.3 倒易矢量的基本性质
2.1
晶
体
学 基
础
根据阵胞中阵点位置的不同可将14种布拉菲 点阵分为四类:
(l)简单点阵:用字母P表示。仅在阵胞
的八个顶点上有阵点,每个阵点同时为相 邻的八个平行六面体所共有,因此,每个 阵胞只占有一个阵点。阵点坐标的表示方 法为:以阵胞的任意顶点为坐标原点,以 与原点相交的三个棱边为坐标轴,分别用 点阵周期(a、b、c)为度量单位。阵胞顶 点的阵点坐标为000。
晶体学基础与材料结构
晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。
因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。
本章将扼要的介绍晶体学的基础知识,并了解材料结构。
1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。
虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。
所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。
在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。
应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。
显然,⽓体和液体都是⾮晶体。
在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。
固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。
玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。
从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。
⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。
⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。
晶体的异向性是因其原⼦的规则排列⽽造成的。
⾮晶体在⼀定条件下可转化为晶体。
例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。
⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。
晶体学基础_2
2023/10/12
45
1.6 倒易点阵
具体说来,要求从新点阵原点O
至任一节点P h,k,l的矢量OP
正好沿着正点阵中(hkl)面的法线方向, 而OP的长度就等于晶面间距的倒数,
即 OP
1
/
d
(
hkl
。
)
这样的新点阵就叫倒易点阵。
2023/10/12
46
1.6.2 倒易点阵
倒易点阵的构建方法:
c
24
1.1.4 典型晶体结构
3.面心立方晶格
Cu、Ag、Au、Al具有面心立方晶格结构
2023/10/12
25
1.1.4 典型晶体结构
4. 六角密排晶格
排列方式: ABABAB (六方密堆积)
Be、Mg、Zn、Cd具有六角密排晶格结构
2023/10/12
26
1.1.4 典型晶体结构
5.金刚石结构
分数坐标分别为:
Cs
+
:
1 2
1 2
1 2
CI : 000
由于点在晶胞内, x、y、z≤1 11
1.1.3 布拉菲阵胞
为了同时反应晶体结构的周期性和对称性,通常按照以下 原则选取晶胞: 1. 反应晶体的宏观对称性; 2. 相等的棱边和夹角尽可能多; 3. 平行六面体的棱与棱之间有尽可能多的直角; 4. 平行六面体的体积尽可能小。
<100>=[100]+[010]+[001]+[100]+[010]+[001]
2023/10/12
38
1.2.2 晶面及其表征
晶面指数(hkl)
现在广泛使用的用来表示晶面指数的是密勒指数,密勒指标是 指平面和三个晶轴相交截数的倒数的互质比,代表一族相互平 行的平面点阵。确定晶面指数的具体步骤如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛要求:初赛要求:晶体结构。
晶胞。
原子坐标。
晶格能。
晶胞中原子数或分子数的计算及与化学式的关系。
分子晶体、原子晶体、离子晶体和金属晶体。
配位数。
晶体的堆积与填隙模型。
常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。
决赛要求:晶体结构。
点阵的基本概念。
晶系。
宏观对称元素。
十四种空间点阵类型。
第七章晶体学基础Chapter 7. The basic knowledge of crystallography§7.1 晶体结构的周期性和点阵(Periodicity and lattices of crystal structures)一、.晶体远古时期,人类从宝石开始认识晶体。
红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。
名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。
世界上的固态物质可分为二类,一类是晶态,一类是非晶态。
自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。
人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。
另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。
晶体结构最基本的特征是周期性。
晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。
由于这样的内部结构,晶体具有以下性质:1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。
晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、分子按相同的结构排列而成。
气体、液体和非晶态的玻璃体也有均匀性,但那些体系中原子无规律地杂乱排列,体系中原子的无序分布导致宏观上统计结果的均匀性。
2、各向异性:晶体在不同的方向上具有不同的物理性质,如不同的方向具有不同的电导率,不同的折光率和不同的机械强度等。
晶体的这种特征,是由晶体内部原子的周期性排列所决定的。
在周期性排列的微观结构单元之中,不同方向的原子或分子的排列情况是不同的,这种差异通过成千上万次叠加,在宏观体现出各向异性。
而玻璃体等非晶态物质,微观结构的差异,由于无序分布而平均化了,所以非晶态物质是各向同性的。
例如玻璃的折光率是各向等同的,我们隔着玻璃观察物体就不会产生视差变形。
3、各种晶体生长中会自发形成确定的多面体外形。
晶体在生长过程中自发形成晶面,晶面相交成为晶棱,晶棱聚成顶点,使晶体具有某种多面体外形的特点。
熔融的玻璃体冷却时,随着温度降低,粘度变大,流动性变小,逐渐固化成表面光滑的无定形物,工匠因此可将玻璃体制成各种形状的物品,它与晶体有棱、有角、有晶面的情况完全不同。
4、晶体有确定的熔点而非晶态没有。
晶体加热至熔点开始熔化,熔化过程中温度保持不变,熔化成液态后温度才继续上升。
而非晶态玻璃体熔化时,随着温度升高,粘度逐渐变小,成流动性较大的液体。
5、晶体具有对称性。
晶体的外观与内部微观结构都具有特定的对称性,以后几节会专门介绍。
二、点阵与结构单元1895年Roentgen发现X射线,1912年Bragg首次用X射线衍射测定晶体结构,标志现代晶体学的创立。
晶体内部原子、分子结构的基本单元,在三维空间作周期性重复排列,我们可用一种数学抽象——点阵来研究它。
若晶体内部结构的基本单元可抽象为一个或几个点,则整个晶体可用一个三维点阵来表示。
点阵是一组无限的点,点阵中每个点都具有完全相同的周围环境。
在平移的对称操作下,(连结点阵中任意两点的矢量,按此矢量平移),所有点都能复原,满足以上条件的一组点称为点阵。
我们观察图7-2的二维平面几组点,在(a)组点中,每个点周围的环境不完全相同,所以不是点阵点,(b)组与(C)组点,每个点的周围环境都相同,平移矢量a、b作用后,图形都能复原,所以是点阵。
CuSe图7-2我们研究的晶体含有各种原子、分子,它们按某种规律排列成基本结构单元,我们可按结构基元抽象为点阵点。
我们先观察二维周期排列的一些原子、分子。
(a)为金属Cu的一层平面排列,每个Cu 原子可抽取一个点阵点。
在二维平面中,可将点阵点连接成平面格子。
图7-3 二维周期排列的晶体结构及平面格子我们研究的晶体含有各种原子、分子,它们按某种规律排列成基本结构单元,我们可按结构基元抽象为点阵点。
我们先观察二维周期排列的一些原子、分子。
(a)为金属Cu的一层平面排列,每个Cu 原子可抽取一个点阵点。
在二维平面中,可将点阵点连接成平面格子。
图7-4请注意:六方格子包含了六重旋转轴的对称性,每个点阵点周围有6个点阵点相邻,但六方格子的基本单位必须取平行四边形。
讨论二维点阵结构后,进一步分析晶体结构。
晶体结构是在三维空间伸展的点阵结构。
由晶体结构抽取的空间点阵中,一定可以找出与3个基本周期对应的3个互不平行的矢量a、b、c。
与空间点阵相应的平移群是:T mnp=m a+n b+p c m,n,p=0, ±1,±2……平移a、b、c矢量将点阵点相互连结起来,可将空间点阵划分为空间格子,空间格子将晶体结构截成一个包含相同内容的单位,这个基本单位叫晶胞。
图7-5 空间点群一共有十四种空间点群三.晶胞和晶胞参数晶胞是由微粒(原子、分子或离子)在三维空间整齐排列而成。
晶胞中最小的重复单元称为结构基元。
晶体则是结构基元在三维空间周期性重复出现所形成的固体。
晶体结构包括两方面:一是结构基元所包含微粒的种类、数量及相互关系;另一方面是结构基元在空间周期性排列的规律。
把前者结构基元抽象成几何点称为点阵点,后者就可用点阵结构表示。
晶胞是晶体的最小单位,晶体可视为是有一个个晶胞在三维空间并置堆砌而成。
因此只要了解晶胞,整个晶体结构也就掌握了。
在点阵结构中,将点阵点用结构基元代替,空间点阵单位就成为晶胞。
晶胞包括二个要素:几何要素和化学要素。
几何要素是指晶胞的大小、形式,用晶胞参数a、b、c、α、β、γ表示。
三个向量的长度a,、b、c表示大小,向量的夹角α=(b c)的夹角,β=(a b)的夹角,γ=(a b)的夹角表示方向;化学要素是指晶胞的内容,即晶胞中有哪些微粒(原子、分子、离子)、及他们的数量和位置。
位置用分数坐标表示。
晶胞参数( unit cell parameters)构成晶胞的六面体的三个边长(a、b、c)和它们之间的夹角α.β.γ,它们决定晶体的结构和大小。
晶胞的内容由组成晶胞的原子或分子及它们在晶胞中的位置所决定。
图7-7 为CsCl 的晶体结构。
Cl与Cs的1:1存在。
若C S+Cl-取一点阵点,我们可将点阵点取Cl-的位置。
根据Cl-的排列,我们可取出一个a=b=c,α=β=γ=90º的立方晶胞,其中8个Cl-原子位于晶胞顶点,但每个顶点实际为8个晶胞共有,所以晶胞中含8×1/8=1个Cl-原子。
Cs+原子位于晶胞中心。
晶胞中只有1个点阵点。
故为素晶胞。
图7-6为8个CsCl晶胞。
右上角为一个单胞。
图7-6 CsCl晶体结构图7-7是金刚石的晶胞。
金刚石也是一个a=b=c,α=β=γ=90º的立方晶胞,晶胞除了顶点8×1/8=1个C原子外,每个面心位置各有1个C原子,由于面心位置C原子为2个晶胞共有。
故6×1/2=3个C原子,除此晶胞内部还有4个C原子,所以金刚石晶胞共有1+3+4=8个C原子。
对于晶胞的棱心位置的原子,则为4个晶胞共有,计数为1/4个。
图7-7 金刚石晶胞四 .晶面1、晶面指标不同方向的晶面,由于原子、分子排列不同,具有不同的性质。
为了区别,晶体学中给予不同方向的晶面以不同的指标,称为晶面指标。
设有一组晶面与3个坐标轴x 、y 、z 相交,在3个坐标轴上的截距分别为r,s,t(以a,b,c 为单位的截距数目),截距数目之比 r:s:t 可表示晶面的方向。
但直接用截距比表示时,当晶面与某一坐标轴平行时,截距会出现∞,为了避免这种情况发生,规定截距的倒数比1/r:1/s:1/t 作为晶体指标。
由于点阵特性,截距倒数比可以成互质整数比1/r:1/s:1/t=h:k:l ,晶面指标用(hkl )表示。
图7-8图7-8中,r 、s 、t 分别为2,2,3;1/r:1/s:1/t=1/2:1/2:1/3=3:3:2,即晶面指标为(332),我们说(332)晶面,实际是指一组平行的晶面。
图7-9 示出立方晶系几组晶面及其晶面指标。
(100)晶面表示晶面与1/a 轴相截与b 轴、c 轴平行;(110)晶面面表示与a 和b 轴相截,与c 轴平行;(111)晶面则与a 、b 、c 轴相截,截距之比为1:1:1图7-9 立方晶体几组晶面晶面指标出现负值表示晶面在晶轴的反向与晶轴相截。
晶面、、、、、可通过3重或4重旋转轴联系起来,晶面性质是相同的,可用{100}符号来代表这6个晶面。
同理可用{111}代表、、、、、、、8个晶面。
2、晶面间距一组平行晶面(hkl)中两个相邻平面间的垂直距离称为晶面间距,用d hkl表示。
§7.2 晶体的对称性(Symmetry in crystal)一、七个晶系根据晶体的对称性,可将晶体分为七个晶系,每个晶系有它自己的特征对称元素。
对称性高的晶体,晶胞的规则性强,如立方晶系的晶胞是立方体,晶胞三个边长(即晶轴单位长度)相等并互相垂直。
这样的晶体,通过立方晶胞4个体对角线方向各有1个3重轴。
这四个3重轴称为立方晶系的特征对称元素。
我们若在晶体外形或宏观性质中发现4个3重轴,就可判定该晶体结构中必定存在立方晶系(英文为Cubic)。
由于立方晶系的晶体包含一个以上高次轴,也将立方晶系称作高级晶系。
还有些晶系,晶胞中至少有2个晶轴的单位长度是相等的,更重要的是这些晶胞中都有一个高次轴(6次轴、4次轴或3次轴),这个高次轴就称为他们的特征对称元素。
这些晶系有六方晶系(Hexagonal)、四方晶系(Tetragonal)、三方晶系(Trigonal)。
由于它们晶胞形状规则性比立方晶系低,又统称为中级晶系。
六方晶系的特征是宏观可观察到6次轴对称性,但每个晶胞仍是a、b晶轴相等,夹角为120°的平行六面体。
四方晶系中晶轴夹角都是90°,a、b轴亦相等。
另有3个晶系是正交晶系(Orthorhombic)、单斜晶系(Monoclinic)、三斜晶系(Triclinic),特征对称元素都不包含高次轴,所以统称为低级晶系。