二元一次方程定义、二元一次方程正整数解、二元一次方程组解的定义(看错某个字母)

合集下载

各种方程一元一次、二元一次、三元一次、一元一次、二元二次方程的解法的解法

各种方程一元一次、二元一次、三元一次、一元一次、二元二次方程的解法的解法

各种方程(一元一次、二元一次、三元一次、一元一次、二元二次方程的解法)的解法————————————————————————————————作者:————————————————————————————————日期:一元一次、二元一次、三元一次、一元一次、二元二次方程的解法整理稿方程含有未知数的等式叫方程。

等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。

则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若a=b,则b=a(等式的对称性)。

(4)若a=b,b=c则a=c(等式的传递性)。

【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

解方程的依据:1.移项; 2.等式的基本性质;3.合并同类项; 4. 加减乘除各部分间的关系。

解方程的步骤:1.能计算的先计算;2.转化——计算——结果例如: 3x=5*63x=30x=30/3x=10移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。

方程有整式方程和分式方程。

整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。

分式方程:分母中含有未知数的方程叫做分式方程。

一元一次方程人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。

通常形式是kx+b=0(k,b为常数,且k≠0)。

一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。

⒉去括号一般先去小括号,再去中括号,最后去大括号。

但顺序有时可依据情况而定使计算简便。

可根据乘法分配律。

⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

七年级数学二元一次方程组

七年级数学二元一次方程组

的解有 解有
x 1

y

4
x 5 y 2
,方程(2)的
x 2 x 5
则哪个解y 是4 方程y 组2 的解?
二元一次方程组的解法
1、解二元一次方程组的思想和方法 分别是什么?
消元
二元一次方程组
一元一次方程组
{ 消元
代入消元:
用一个未知数代 替另一个未知数
加减消元 两个方程相加减
消去一个未知数
13x 6y 251 在解方程组 27x 4y 192
时,你认为最简便的方法是( D )
A.代入消元法
B.用 1 27 213 ,先消去x C. 1 4 2 6 , 先消去y D. 1 2 2 3 ,先消去y
1、解下列方程组
y x 3x 2 y 5
5x 3 y 31 5x2 y 22
53((xy
1) 1)

y 3(x
5
5)
4、若3m—2n—7=0,则6n—9m—6= 。
5、填表:
;办公家具厂家 办公家具厂家 ;
意?" 四名神帝の脑袋在这一刻有些微微の眩晕,同时脑海内也无比の疑惑,这是什么玩意?预言术?祷告?请求远古智神降临? "啊!" 让四人无比の惊恐の是,身后再次传来三声惨烈の怒吼声,当他们反应过来の时候,已经来不及了.身后の三名神王再次被妖智撕裂了… 四人没有办法救,因为他们 眼前の妖智利爪已经抓向了他们,他们只能自保.但是四人却感觉一股凉意从脚底下往身子里钻,全身凉飕飕の! 妖术?法术? 这人居然有让谁死谁就死の能力?那刚才他跑什么? "伟大の智神,请赐予俺力量,俺要代替您惩罚这些…杂种!" 让四人感觉惊恐の是,那个"神棍&

二元一次方程组解题技巧讲义(补课用)

二元一次方程组解题技巧讲义(补课用)

⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼀、⼆元⼀次⽅程组的有关概念:1.⼆元⼀次⽅程:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.它的⼀般形式:)0,0(≠≠=+b a c by ax ,如6713,245=-=-n m y x 等是⼆元⼀次⽅程。

2.⼆元⼀次⽅程的解集:适合⼀个⼆元⼀次⽅程的每⼀对未知数的值,叫做这个⼆元⼀次⽅程的⼀个解.对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼀个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集.3.⼆元⼀次⽅程组及其解:两个⼆元⼀次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组.⼀般地,能使⼆元⼀次⽅程组的两个⽅程左右两边的值都相等的两个未知数的值,叫做⼆元⼀次⽅程组的解.它的⼀般形式为:=+=+.,222111c y b x a c y b x a 其中2121,,,b b a a 不全为零,如:?==;2,3y x =+=-;5,3n m n m =-=+-;2,53q p q p 都是⼆元⼀次⽅程组。

4.⼆元⼀次⽅程组的解法:代⼊消元法:在⼆元⼀次⽅程组中选取⼀个适当的⽅程,将⼀个未知数⽤含另⼀个未知数的式⼦表⽰出来,再代⼊另⼀个⽅程,消去⼀个未知数得到⼀元⼀次⽅程,求出这个未知数的值,进⽽求得这个⼆元⼀次⽅程组的解,这种⽅法叫做代⼊消元法。

加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相差,从⽽消去这个未知数,得到⼀个⼀元⼀次⽅程,这种求⼆元⼀次⽅程组的解的⽅法叫做加减消元法,简称加减法.例题精析:例1.⽅程ax-4y=x-1是⼆元⼀次⽅程,则a 的取值为() A 、≠0 B 、≠-1 C 、≠1 D 、≠2 解题思路:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.选B变式题1:如果(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,则a ,b 满⾜什么条件?解题思路:∵(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,∴a -2≠0,b+1≠0,?∴a ≠2,b ≠-1例2.若⼆元⼀次⽅程3x-2y=1有正整数解,则x 的取值应为()A 、正奇数B 、正偶数D 、0 解题思路:由312x y -=,x 、y 都是正整数,选A变式题1:.⽅程组2528x y x y +=??-=?的解是否满⾜2x -y=8?满⾜2x -y=8的⼀对x ,y 的值是否是⽅程组2528x y x y +=??-=?的解?解:满⾜,不⼀定.∵2528x y x y +=??-=?的解既是⽅程x+y=25的解,也满⾜2x -y=8,?∴⽅程组的解⼀定满⾜其中的任⼀个⽅程,但⽅程2x -y=8的解有⽆数组,如x=10,y=12,不满⾜⽅程组2528x y x y +=??-=?.例3.已知⼆元⼀次⽅程组45ax by bx ay +=??+=? 的解是21x y =??=?,则a+b 的值为____。

人教版初三数学上册二元一次方程组精选全文

人教版初三数学上册二元一次方程组精选全文

可编辑修改精选全文完整版课题:第六讲二元一次方程组课型:复习课年级:九年级教学目标:1.正确理解二元一次方程(组)的解的概念.2.掌握代入消元法、加减消元法、图象法解二元一次方程组;能解简单的三元一次方程组.3.会列二元一次方程组解决实际问题,并能根据具体问题的实际意义检验结果的合理性.教学重点与难点:重点:二元一次方程组的解法以及列二元一次方程组解决实际问题.难点:列二元一次方程组解决实际问题.课前准备:多媒体课件.教学过程:一、知识梳理,建构网络活动内容1:知识梳理1.二元一次方程的定义:含有未知数,并且未知项的次数都是的方程叫做二元一次方程.2.二元一次方程组的定义:共含有个未知数的一次方程组成的一组方程,叫做二元一次方程组.3. 二元一次方程(组)的解:一般的,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解.一般地,二元一次方程组的两个方程的解,叫做二元一次方程组的解.4.消元法解二元一次方程组:消元法的基本方法:将二元一次方程组转化为方程.方法有消元法和消元法两种.5. 列二元一次方程组解应用题的一般步骤:审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数.找:找出能够表示题意的两个相等关系.列:根据这两个相等关系列出必需的代数式,从而列出方程.解:解这个方程组,求出两个未知数的值.答:在对求出的方程的解作出是否合理判断的基础上,写出答案.活动内容2:构建网络处理方式:利用多媒体出示二元一次方程(组)的知识点及知识网络,以问题串的形式让学生回顾,如有遗忘,借用课本或同学间交流进行补充,需要教师强调的地方教师要结合具体的例子先简单分析,在后面的例题讲解中再着重强调.设计意图:以问题串的形式让学生回顾二元一次方程(组)的相关知识,如有遗忘,借用课本或同学间交流进行补充,为后面的题组训练打好基础,让学生掌握课堂的主动权,并在学生充分思考、交流的基础上构建知识网络图,让学生将零散、孤立的知识形成网络,完成知识脉络的梳理,让学生在小组交流讨论中完成建构并从中感受到知识间的内在联系,感受到转化的思想、类比的思想及数形结合思想,让学生在数学学习活动中完成二元一次方程(组)的知识要点复习, 为下一步激活运用这些知识打好基础.二、专题探究,归纳整合活动内容1:二元一次方程(组)的有关概念1.若243742953=+--++n m n m y x 是二元一次方程,则nm 的值等于 ; 2.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+17my nx ny mx 的解,则m+3n 的立方根为 .处理方式:学生讨论交流,在复习丛书上完成后再展示说明,学生之间互相补充.教师适时点评,然后师生共同总结所考察知识点.设计意图:本活动的设计意在引导学生通过自主探究、合作交流,对二元一次方程(组)的有关概念有更深层次的理解和认识.活动内容2:二元一次方程(组)的解法3.解方程组⎪⎩⎪⎨⎧=++-=+--.6)(2)(3,152y x y x y x y x处理方式:找同学在黑板上进行展示,其他同学在复习丛书上独立完成,然后全班交流讨论处理这类问题时的注意事项.如学生处理方法繁琐,则利用媒体出示另外一种处理方法,引导学生处理问题时应认真分析,注意整体的数学思想.设计意图:通过本题的设置,培养学生解二元一次方程组的能力及技巧,同时,一题多解让学生体会到整体的数学思想.活动内容3:二元一次方程(组)的应用陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15处理方式:让有不同解法的同学在黑板指定的位置板演解题过程,注意评价时明确运用整体思想的数学思想.设计意图:通过本题的练习,使学生体会解题多样性和整体思想,同时提高学生的思维能力.活动内容4:二元一次方程(组)与一次函数的关系如图直线1l :1y x =+与直线2l :y mx n =+相交于点(1,)P b ,(1)求b 的值; l 2 l 1 b 1 Py xO(2)不解关于x y 、的方程组1y x y mx n=+⎧⎨=+⎩请你直接写出它的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由.处理方式:学生先独立做题,教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.设计意图:主要考查一次函数与方程组的关系,有关函数的问题要注意数形结合思想与方程思想的应用,这样比较简洁.做练习题时,可以先画出草图,利用图像解题更为直观形象,这样往往可以使复杂问题变得简单.三、典例精析,方法总结【例1】 已知,02)3(2=+++-y x y x 则y x +的值为 .方法总结:本题利用偶次方、算术平方根非负数的性质,考查的是解二元一方程组,熟知解二元一次方程组的加减消元发和代入消元法.处理方式:由一名学生板演,其余学生在复习丛书上完成.完成后,让学生对板演的同学进行评价,教师及时点评表扬并利用多媒体课件展示方法总结.设计意图:通过例1,使学生加深对二元一次方程组的解法的掌握,能熟练利用加减消元发和代入消元法解二元一次方程组.跟踪练习:若方程组⎩⎨⎧-=+=+,645,22k y x k y x 的解之和:6-=+y x ,那么k = . 【例2】 若方程6=+ny mx 的两个解是⎩⎨⎧-==⎩⎨⎧==,12,1,1y x y x 则m ,n 的值为( ) A . 4 , 2 B . 2 , 4 C . -4 , -2 D . -2 , -4方法总结:此题考查了二元一次方程的解的概念,方程的解即为使方程左右两边相等的未知数的值.将x 与y 的两对值代入方程计算即可求出m 与n 的值.处理方式:由一名学生板演,其余学生在在复习丛书上完成.完成后,让学生对板演的同学进行评价,教师及时点评表扬并利用多媒体课件展示方法总结.设计意图:通过例2,使学生加深对二元一次方程组的解的理解及进一步熟练掌握二元一次方程组的解法.跟踪练习:若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x ,2的解是⎩⎨⎧==,1,2y x 则n m -为( ) A . 1 B . 3 C . 5 D . 2【例3】 今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.点拨:设该市前年外来旅游人数为x 万人,外出旅游人数为y 万人,根据总人数为226万人,前年同期外来旅游比外出旅游的人数多20万人,列方程组求解.方法总结:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.处理方式:学生先独立思考,然后教师根据学生思考情况组织学生进行交流,归纳出题目中的等量关系,讨论后列出方程组并求解.可以把分析过程设计成问题帮助学生理解. 设计意图:让学生经历列方程组解决实际问题的过程,培养学生的独立思考的能力和与人合作的意识.共同分析题目中包含的所有等量关系并用等式的形式写出来,便于学生设未知的两个量,顺利列出方程组,更好地体会二元一次方程组是刻画现实世界的有效模型.跟踪练习:某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值. 设计意图:通过学生对题组跟踪训练,及时发现问题解决问题;同时强化学生对二元一次方程组的解法及应用的掌握.使学生体验利用方程模型解决实际问题的方法.四、回顾反思,提炼升华通过本节课的复习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:给学生2分钟左右的时间,让学生自主交流课堂实践的经历、感受和收获,然后找3个学生尝试谈谈自己的收获.设计意图:课堂总结是知识沉淀的过程,使学生对本讲复习的知识进行梳理,培养学生知识归纳与整理的习惯与能力,通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆.五、达标测试,反馈提高1.下列方程组中,属于二元一次方程组的是( )⎩⎨⎧=+=+32.z y y x A ⎩⎨⎧==+65.xy y x B ⎩⎨⎧=-=+132152.b a b a C ⎪⎩⎪⎨⎧=+=-.517.n m n m D ; 2. 请写出一个二元一次方程组 ,使它的解是⎩⎨⎧-==.12y x ; 3.解方程组:⎪⎩⎪⎨⎧=-+=-=++.202,1,23z y x y x z y x ;4.甲、乙两人共同解方程组⎩⎨⎧-=-=+)2(,24)1(,155by x y ax 由于甲看错了方程(1)中的a ,得到方程组的解是⎩⎨⎧-=-=;1,3y x 乙看错了方程(2)中的b ,得到方程组的解为⎩⎨⎧==.4,5y x 试计算20152014)101(b a -+的值. 处理方式:学生独立完成,对学生错误较多的题目进行讲解.设计意图:设置的当堂检测便于及时获知学生对本讲知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课后促学必做题:《南方新中考》 A 级,B 级题.选做题:《南方新中考》 C 级题.板书设计: 第六讲 二元一次方程组知识梳理 构建网络 典例精析,方法总结例1: 例2: 例3:投 影。

(word完整版)二元一次方程组的概念和解法-教师版

(word完整版)二元一次方程组的概念和解法-教师版

(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。

含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。

判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。

2。

二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。

二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般情况下,一个二元一次方程有无数个解。

【例1】 下列各式是二元一次方程的是( )A 。

30x y z -+=B 。

30xy y x -+=C 。

12023x y -= D 。

210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。

2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。

【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。

【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

2018年七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。

2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有未知数,含有每个未知数的都是,并且一共有方程。

3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解。

5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式。

②,将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。

③,把求得的x值代入y=ax+b中求出y的值。

④,把x、y的值用“{”联立起来。

6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。

②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。

七年级下-二元一次方程组的定义及解法

七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。

注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。

例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。

注意三条:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程。

注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。

例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。

2.未知数的次数为1。

注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。

例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。

'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。

二元一次方程的概念及其解法

二元一次方程的概念及其解法

二元一次方程(组)的概念及其解法【知识要点】1. 什么叫做二元一次方程?什么叫做二元一次方程组?2. 你知道解二元一次方程组的基本思路吗?3.掌握二元一次方程组的两种解法“代入消元法”“加减消元法”【典型例题】概念1.下列方程中属二元一次方程的是( )A.x+y=3zB.3xy-7=0C.6x-7y=8D.113 x y+=2.下列是二元一次方程组的是( )A.123yxx⎧-=⎪⎨⎪=⎩B.1924xy⎧-=⎪⎨⎪=⎩C.12xyy x+⎧=⎪⎨⎪-=⎩D.22122x yy x⎧=⎪⎨+=⎪⎩3.数对24xy=-⎧⎨=⎩是下列哪一个方程的解( )A.x+y=2B.x+y=0C.2x+y=1D.x-y=24.已知5x+y=25,则用x的代数式表示y为______,用y的代数式表示x为____.5.写出二元一次方程3x-5y=1的一个正整数解________.6.两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?7.在平面直角坐标系中,已知点A)82(--,ba与点B)32(ba+-,关于原点对称,求a、b的值.解法一——代入消元法例1.把方程3x=1-4y变形:(1)用含x的代数式表示y;(2)用含y的代数式表示x.例2.用代入法解方程组:(1)233280y xx y=+⎧⎨--=⎩(2)31324x yx y+=⎧⎨+=-⎩练习解下列方程组(1)(2)解法二——加减消元法例4.(1 ).(2)561324x yx y-=⎧⎨-=⎩(3)153535250y y xx y+-⎧=⎪⎨⎪--=⎩(4)134123a b a b ⎧+=⎪⎪⎨⎪-=-⎪⎩(5)897317374x y x y +=⎧⎨-=⎩例5.解下列三元一次方程组:3248253211x y z x y z x y z +-=⎧⎪-+=⎨⎪-+=⎩例6.已知方程组35223x y k x y k +=+⎧⎨+=⎩中x 、y 的值之和等于2,求k 的值.例7.已知方程组⎩⎨⎧-=-=+)2(24)1(155ny x y mx 由于甲看错了方程(1)中的m,得到方程组的解为⎩⎨⎧-=-=13y x 乙看错了(2)中的n,得到方程组的解为⎩⎨⎧==45y x ,若按正确的m 、n 计算,求方程组的解。

二元一次方程组复习概念~zhu

二元一次方程组复习概念~zhu

考点三: 考点三:解的定义
x = −2, 1、已知 y = 3 是方程 是方程3x-3y=m和5x+y=n的公共 、 和 的公共 解,则m2-3n= 246.
关于解法
1、解二元一次方程组你有几种方法? 、解二元一次方程组你有几种方法? 两种: 两种:代入法和加减法 2、代入法和加减法解方程组,“代入”与“加 、代入法和加减法解方程组, 代入” 的目的是什么? 减”的目的是什么? 消元: 消元:把二元一次方程转化为一元一次方程 3、解二元一次方程组的步骤是什么? 、解二元一次方程组的步骤是什么?
关于应用
在列二元一次方程组解实际问题的过 程中,你认为最关键的是什么? 程中,你认为最关键的是什么?
找出等量关系, 找出等量关系,列出方程组
知识方法结“网络”
实际问题
数 方程组
数学问题 (二元一次方程组 二元一次方程组) 二元一次方程组
解 方 程 组 元
实际问题
数学问题 (二元一次方程 二元一次方程
1.解二元一次方程组的基本思路是 2.用加减法解方程组{ 2x-5y=7①
消元 .
相减 直接消去 x .
由①与② 2x+3y=2②
3.用加减法解方程组{ 由 6x-5y=12② ①与②相加 ,可直接消去
4x+5y=28①
y .
4.用加减法解方程组 用加减法解方程组 具体解法如下
(1) ①-②得x=1
D)
B、只有两个 、 D、有无数个 、
6、下列属于二元一次方程组的是 ( 、 A. B.
A

3 5 + =1 x y x− y = 0
x + y = 5 C. 2 2 x + y = 1

二元一次方程的概念及二元一次方程组的解法复习

二元一次方程的概念及二元一次方程组的解法复习
9、如果关于x、y的方程组 的解与 的解相同,求a、b的值。
10、一个两位数,其十位上的数与个位上的数的和等于1,这个两位数是______.
11、求方程3x+7y=20的正整数解。
12、解方程组
课后作业:
1、下列方程中,是二元一次方程的有________(填序号)。
① ② ③ ④
⑤ ⑥ ⑦ ⑧
2、下列方程组中,是二元一次方来自组的有________(填序号)。
(6)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去未知数,得到一个一元一次方程.这种方法叫做______________法,简称________法.
(7)用二元一次方程组解应用题一般有五步:________、设未知数、__________、解方程组、答.
2.在 与 两组值中,是二元一次方程组 的解的是
3.完成下面的解题过程:4.用代入法解方程组
解:由①,得x=____________.③
把③代入②,得_______________.
解这个方程,得y=_____.
把y=_____代入③,得x=_____.
所以这个方程组的解是
5.完成下面的解题过程:6.用加减法解方程组
*9、方程组 的解 、 满足关系式 ,则 =______________。
*10、①若 ,则 =______。
②若 ,则 。
11、解下列方程组:(有要求的按要求解题,没要求的选择自己喜欢的方法解题。)
(1)用代入消元法解方程组
(2)
(3)用加减消元法解方程组
(4)
(5) (6)
12、若 是方程组 解, 求 的值。
②若 是关于 、 的二元一次方程,则 =____。

完整版二元一次方程组知识点整理

完整版二元一次方程组知识点整理

1知识点1:二元一次方程(组)的定义1、二元一次方程的概念注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数⑵含有未知数的项的次数都是1.(3)二元一次方程的左右两边都必须是等式.(三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为 m=1, n=1已知(a - 2) X — by|a| 1= 5是关于X 、y 的二元一次方程,则下列方程为二元一次方程的有【巩固练习】下列方程中是二元一次方程的是(2、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组 注意:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为例:下列方程组中,是二元一次方程组的是其中属于二元一次方程组的个数为(B. 2第五章二元一次方程组 知识点整理卄 3m1、右X-3n 3m5y7是关于X 、 y 二兀一次方程,则m =知识点2: 元一次方程组的解定义含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程即若axm+by n=c 是二元一次方程,则 a 丰0, b 丰0且①2x 5 y ,② x 4 1,③ xy 2,④2x y 3,⑤ x2,⑥1xy 2x y 2,⑦一 y 7x⑧3x2y ,⑨ a b c 12A . 3x-y =02 1B . — + — =1x yC . x 5 —-—y=63 24xy=31。

③方程组中每个方程均为整式方程。

A 、x y 42x 3y 72a 3b B. 5b 4c11 C. D.【巩固练习】1,已知下列方程组:(1)3y 22x3x2,(3)C .般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。

2的解是(4xC .y3mx 2y 1的解,则m 2- n 2的值为4x n y 7 211都是关于X 、y 的方程ax + by = 6的解,则 3知识点3 :二元一次方程组的解法类型题1 根据定义判断 【巩固练习】 y m 1满足方程2x0,则2、下面几个数组中,哪个是方程 7x+2y=19 的一个解()。

二元一次方程和二元一次方程组原创

二元一次方程和二元一次方程组原创

二元一次方程与二元一次方程组知识点一:二元一次方程的定义(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.方程组,这种方法主要用在求方程中的字母系数.例题一:当a= 时,方程组⎩⎨⎧=-=+76023ay x y x 无解. 例题二:关于x 、y 的方程组⎩⎨⎧+=+=+223232k y x y x 的解x ,y 的和为12,则k 的值为 . 例题三:若方程组⎩⎨⎧=+=-153732n m n m 的解是⎩⎨⎧-==12n m ,则方程组⎩⎨⎧=-++=--+1)2(5)1(37)2(3)1(2y x y x 的解是 。

例题四:若方程组⎩⎨⎧=+=-62y mx y x 的整数解⎩⎨⎧==00y y x x 满足x 0≥0,y 0≥0,则整数m= . 练习1. 若方程组⎩⎨⎧=+=+-1360133y x y kx 有无穷多组解,(x ,y 为未知数),则k 。

2,若方程组⎩⎨⎧=+=-145523b a b a 的解是⎩⎨⎧-==11b a ,则方程组⎩⎨⎧=++-=+--1)2(4)1(55)2(2)1(3y x y x 的解知识点六:解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y )的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x 、y 的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数知识点七:同解方程组同解方程组定义:如果两个方程组的解相同,那么这两个方程组就是同解方程组.关于两个方程组同解的问题,要知道两个方程组四个二元一次方程都有同一组公共解,即随便把其中两个方程联立成方程组,解仍然相同.例题一:如果方程组⎩⎨⎧=+=53by ax x 的解与方程组⎩⎨⎧=+=54ay bx y 的解相同,则a 、b 的值是 。

人教七年级数学二元一次方程组和一元一次不等式组复习讲义

人教七年级数学二元一次方程组和一元一次不等式组复习讲义

⼈教七年级数学⼆元⼀次⽅程组和⼀元⼀次不等式组复习讲义⼆元⼀次⽅程组相关知识归纳1.⼆元⼀次⽅程⼆元⼀次⽅程具备以下四个特征:(1)是⽅程;(2)有且只有两个未知数;(3)⽅程是整式⽅程,即各项都是整式;(4)各项的最⾼次数为1.2.⼆元⼀次⽅程的解.3.⼆元⼀次⽅程组.它有两个特点:⼀是⽅程组中每⼀个⽅程都是⼀次⽅程;⼆是整个⽅程组中含有两个且只含有两个未知数.4.⼆元⼀次⽅程组的解.1概念:将⽅程组中⼀个⽅程的某个未知数⽤含有另⼀个未知数的代数式表⽰出来,代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程,最后求得⽅程组的解. 这种解⽅程组的⽅法叫做代⼊消元法,简称代⼊法. (2)代⼊法解⼆元⼀次⽅程组的步骤①选取⼀个系数较简单的⼆元⼀次⽅程变形,⽤含有⼀个未知数的代数式表⽰另⼀个未知数;②将变形后的⽅程代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(在代⼊时,要注意不能代⼊原⽅程,只能代⼊另⼀个没有变形的⽅程中,以达到消元的⽬的. );③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊①中变形后的⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).加减消元法2概念:当⽅程中两个⽅程的某⼀未知数的系数相等或互为相反数时,把这两个⽅程的两边相加或相减来消去这个未知数,从⽽将⼆元⼀次⽅程化为⼀元⼀次⽅程,最后求得⽅程组的解,这种解⽅程组的⽅法叫做加减消元法,简称加减法. (2)加减法解⼆元⼀次⽅程组的步骤①利⽤等式的基本性质,将原⽅程组中某个未知数的系数化成相等或相反数的形式;②再利⽤等式的基本性质将变形后的两个⽅程相加或相减,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(⼀定要将⽅程的两边都乘以同⼀个数,切忌只乘以⼀边,然后若未知数系数相等则⽤减法,若未知数系数互为相反数,则⽤加法);③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊原⽅程组中的任何⼀个⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).【⼩结】解⼆元⼀次⽅程组可以⽤代⼊法,也可以⽤加减法.⼀般地说,当⽅程组中有⼀个⽅程的某⼀个未知数的系数的绝对值是1或有⼀个⽅程的常数项是0时,⽤代⼊法⽐较⽅便;当两个⽅程中某⼀未知数的系数的绝对值相等或成整数倍时,⽤加减法⽐较⽅便.(1)、三元⼀次⽅程的概念(2)、三元⼀次⽅程组的概念(3)、三元⼀次⽅程组的解法三元⼀次⽅程组解题的基本步骤:①利⽤代⼊法或加减法,把⽅程组中的⼀个⽅程与另两个⽅程分别组成两组,消去两组中的同⼀个未知数,得到关于另外两个未知数的⼆元⼀次⽅程组。

二元一次方程组“看错”系数问题解法例析

二元一次方程组“看错”系数问题解法例析

1、“看错”系数问题解法例析2、含字母系数的方程组的解法3、二元一次方程组错解剖析4、二元一次方程组名题赏析5、列方程组解调配问题两例6、图象法解二元一次方程组7、解好方程组的图表信息题8、领悟方程组中数学思想1、“看错”系数问题解法例析在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例1.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几?分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.例2.在解方程组134ax by cx y -=⎧⎨-=⎩时,甲同学因看错了b 的符号,从而求得解为32x y =⎧⎨=⎩,乙同学因看错了c 的值,从而求得解为51x y =⎧⎨=⎩,试求a ,b ,c 的值.析解:因为甲同学仅看错了b 的符号,所以他的错解实际上满足看错了的方程组:134ax by cx y =⎧⎨-=+⎩,因此把32x y =⎧⎨=⎩代入13ax by +=,得3132a b +=; 把32x y =⎧⎨=⎩代入4cx y -=,得c =2.同理乙同学看错了c 的值,但没看错a ,b 的值.所以把51x y =⎧⎨=⎩代入方程13ax by -=,得513a b -=.于是得到关于a ,b 的方程组3213513a b a b +=⎧⎨-=⎩,解之得32a b =⎧⎨=⎩.所以a =3,b =2,c=2.2、含字母系数的方程组的解法一、给出方程组的解当含有字母系数的方程组的解已经给出时,可先把解直接代入原方程组,构造出关于字母系数的方程,进而求得其值.例1. 若方程组2331x ay bx y -=-⎧⎨+=⎩ 的解是11x y =-⎧⎨=⎩,求a 、b 的值.析解:由方程组解的意义,知11x y =-⎧⎨=⎩满足方程组2331x ay bx y -=-⎧⎨+=⎩,所以有2331a b --=-⎧⎨-+=⎩, 解这个关于a 、b 的方程组,得12a b =⎧⎨=⎩.∴a 、b 的值分别为1,2.二、方程组的解满足关系式当关于方程组的解满足一定的等式的字母求值问题,常常应把方程组中的字母当作已知数,用它的代数式表示方程组的解.再根据满足的等式,构造出关于字母的方程.例2.已知方程组3213325x y m x y m +=⎧⎨-=⎩…①…②的解适合x +y =10,求m 的值.析解:①+②,得x =18m ,所以x =3m .①-②,得4y =8m ,所以y =2m . 把x =3m ,y =2m 代入x +y =10,得 3m +2m =10,解之,得m =2.三、字母系数看错问题在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例3.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几? 分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.3、二元一次方程组错解剖析同学们在学习二元一次方程组时,由于对概念理解和解法掌握程度不够,常会出现一些错误.现举几例常见错误,望引起大家注意. 例1.已知方程(a +1)x ||a +(b +1)y12-b =7是关于x 、y 二元一次方程,求2a +3b 的值 .【错解】由题意得:⎩⎨⎧=-=1121||b a ∴ ⎩⎨⎧=±=11b a所以当a =1,b =1时,2a +3b =5; 当a =-1,b =1时,2a +3b =1.剖析:根据二元一次方程定义可知,方程应含有两个未知数且未知数系数不能为0. 正解:(接上)因为a +1≠0,所以 ∴a ≠-1,所以当a =1,b =1时,2a +3b =5; 故,填:5.例2.解方程组⎩⎨⎧-=-=-222y x y x ②①⋯⋯⋯⋯【错解】①-②得: y =4,把y =4 代入②得,x =2,原方程组的解是:⎩⎨⎧==42y x .剖析:错在①-②在上的符号方面,正解:①-②得:-y =4, 解得:y =-4,把y =-4 代入②得,x =-6,原方程组的解是:⎩⎨⎧-=-=46y x .例3.解方程组⎪⎩⎪⎨⎧=--+-=+--8)2(2)(3142y x y x yx y x ②①⋯⋯⋯⋯【错解】一:①×4得:2(x -y )-(x +y )=-1,剖析:去分母时漏乘 .(你来填一填!) 【错解】二;①×4得:2x -2y -x +y =-1, 剖析:忽略 .【错解】三:由②得:3x +y -4x -y =8 剖析:忘了括号前的 .正解:①×4得:2(x -y )-(x +y )=-4, 2x -2y -x -y =-4,x -3y =-4, ……③②变形得:3x +3y -4x +2y =8,-x +5y =8, ……④③+④,得:y =2把y =2带入③,得:x =2,这个方程组的解为:⎩⎨⎧==22y x你填对了吗?三个空分别是:不含分母的项;分数线的括号作用;负号和乘法分配律.4、二元一次方程组名题赏析一些数学问题初看似乎与二元一次方程组没有关联,但若运用二元一次方程组来解却简单.例1.如图1,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10°,求∠AOC 和∠BOC 的度数.【分析】本题有一隐含条件是:∠AOC 和∠BOC 组成平角180°,再依据已知中的x ,y 的另一个关系:∠AOC 的度数比∠BOC 的2倍多10°,又可得一方程. 解:设∠AOC 和∠BOC 的度数分别为x 、y ,依题意得 ⎩⎨⎧+==+102180y x y x , 解(略).还有些实际应用问题有时比较复杂,但也常利用方程和方程组来解决.例2.某通讯器材商店计划用6万元从厂家购进若干部新型手机,以满足市场需求.已知一厂家生产三种型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种..不同型号的手机共40部,并将6万元恰好用完.请你帮助商场算一下如何购买. 【分析】由于商场只同时购进三种手机中的两种..不同型号的手机40部,所以商店可以有购甲乙、乙丙、甲丙三种选择,因此本题应列三个二元一次方程组的应用问题叠加在一起,所以应分情况来解答.解:设甲、乙、丙三种型号的手机分别购买x 部、y 部、z 部,① 若选购甲乙两种型号,根据题意可列方程组⎩⎨⎧=+=+60000600180040y x y x ,解这个方程组,得⎩⎨⎧==1030y x ;图10C B A② 若选购乙丙两种型号,则有方程组⎩⎨⎧=+=+60000120060040z y z y ,解这个方程组,得⎩⎨⎧=-=6020z y ;③ 若选购甲丙两种型号,则有方程组⎩⎨⎧=+=+600001200180040z x z x ,解这个方程组,得⎩⎨⎧==2020z x ;第二种方案不行,舍去。

专题09 —二元一次方程组篇(解析版)

专题09 —二元一次方程组篇(解析版)

专题09 二元一次方程组考点一:二元一次方程组之相关概念:1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数是1的整式方程叫做二元一次方程。

2. 二元一次方程组的定义:把两个二元一次方程组合在一起,就组成一个二元一次方程组。

3. 二元一次方程的解:使二元一次方程左右两边成立的两个未知数的值叫做二元一次方程的一组解。

对于给定其中一个未知数的值总能求出另一个未知数的值。

所以二元一次方程的解成对出现,且无数对。

4. 二元一次方程组的解:二元一次方程组中两个方程的公共解。

叫做二元一次方程组的解。

1.(2022•雅安)已知⎩⎨⎧==21yx是方程ax+by=3的解,则代数式2a+4b﹣5的值为 .【分析】把x与y的值代入方程计算得到a+2b的值,原式变形后代入计算即可求出值.【解答】解:把代入ax+by=3得:a+2b=3,则原式=2(a+2b)﹣5=2×3﹣5=6﹣5=1.故答案为:1.2.(2021•凉山州)已知⎩⎨⎧==31yx是方程ax+y=2的解,则a的值为 .【分析】把方程的解代入方程,得到关于a的一元一次方程,解方程即可.【解答】解:把代入到方程中得:a+3=2,∴a =﹣1,故答案为:﹣1.3.(2021•金华)已知⎩⎨⎧==my x 2是方程3x +2y =10的一个解,则m 的值是 .【分析】把二元一次方程的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m =10,∴m =2,故答案为:2.4.(2021•浙江)已知二元一次方程x +3y =14,请写出该方程的一组整数解 .【分析】把y 看作已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,x =11,则方程的一组整数解为.故答案为:(答案不唯一).5.(2021•台湾)若二元一次联立方程式⎩⎨⎧=-=1064x y y x 的解为x =a,y =b ,则a +b 之值为何?( )A .﹣15B .﹣3C .5D .25【分析】运用加减消元法求出方程组的解,即可得到a ,b 的值,再求a +b 即可.【解答】解:,①+②得:6y =4y +10,∴y =5,把y =5代入①得:x =20,∴a +b =x +y =20+5=25,故选:D .6.(2021•无锡)若x ,y 满足方程组⎩⎨⎧=-=-24732y x y x ,则x +y = .【分析】把方程组的两个方程的左右两边分别相减,求出x +y 的值即可.【解答】解:,①﹣②,可得:(2x ﹣3y )﹣(x ﹣4y )=7﹣2,∴x +y =5.故答案为:5.7.(2021•遵义)已知x ,y 满足的方程组是⎩⎨⎧=+=+73222y x y x ,则x +y 的值为 .【分析】将方程组中的两个方程直接相减即可求解.【解答】解:,②﹣①得,x +y =5,故答案为5.8.(2021•枣庄)已知x ,y 满足方程组⎩⎨⎧=+-=+32134y x y x ,则x +y 的值为 .【分析】用加减消元法解二元一次方程组,然后求解.【解答】解:方法一:,①﹣②,得:2x +2y =﹣4,∴x +y =﹣2,故答案为:﹣2.方法二:,②×2,得:4x +2y =6③,①﹣③,得:y =﹣7,把y =﹣7代入②,得2x ﹣7=3,解得:x =5,∴方程组的解为,∴x +y =﹣2,故答案为:﹣2.考点二:二元一次方程组之解二元一次方程组:1. 解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。

二元一次方程知识点大全

二元一次方程知识点大全

y 2
49,
x 1
D.
x
y
y 2
49,
x 1
7.在方程 2x-y=1 中,若 x=-4,则 y=___;若 y=-3,则 x=_____. 8.写出满足二元一次方程 x+2y=9 的非负整数解_____________.
9.若一个二元一次方程的一个解为
x
y
2,,则这个方程可以是
A.3x-y2=0
B.2 + 1 =1
xy
C.x - 5 y=6
32
D.4xy=3
例2
:已知关于
x,y
m2 的二元一次方程(2m-4)x
-3
+(n+3)y|n|-2
=6,求 m,n 的值
知识点 2 二元一次方程组的定义:由两个二元一次方程所组
成的方程组叫二元一次方程组(不必记)
注:①方程组中有且只有两个未知数。
6,
b
得到方程组的解为
x y
4,若按正确的
4.
a
、b
计算,
求原方程组的解.
知识点4求二元一次方程的特殊解 例2:求二元一次方程 2x+5y=30 的
①正整数解.②非负整数解 方法:1、从系数最大(绝对值最大)的未知数从小到大开 始取值,并求出相应的另一未知数的值,直至另一未知数不再有 符合条件的对应值为止。2、从取值中选出正整数解,或非负整 数解。
A.3、2
B.2、3
C.4、1
D.1、4
6.某班共有学生 49 人.一天,该班某男生因事请假,当天的男
生人数恰为女生人数的一半.若设该班男生人数为 x,女生人数为
y,则下列方程组中,能正确计算出 x、y 的是

二元一次方程组知识点归纳及解题技巧汇总

二元一次方程组知识点归纳及解题技巧汇总

二元一次方程组知识点归纳及解题技巧汇总二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

5、消元法解二元一次方程组:(1) 基本思路:未知数又多变少。

(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。

6.解法:通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解加减消元法:例:解方程组x+y=9①x-y=5②解:①+② 2x=14即 x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解7. 二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6① 2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

教科书中没有的几种解法(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

二元一次方程知识点总结

二元一次方程知识点总结

二元一次方程知识点总结知识点一:二元一次方程的条件(1)两个未知数;(2)整式方程;(3)未知项的次数为“1”;(4)化为一般式:(a≠0,且b≠0.)(5)判定一个方程是否是二元一次方程,先要化为一般式,再依据定义进行判断知识点二:二元一次方程的解(1)二元一次方程的解是一对数值;(2)已知二元一次方程的解,就能代入二元一次方程中求出另一个未知数的值。

(3)每一个二元一次方程都有无数个解.但整数解的有限的。

⑷每个二元一次方程通过变形能转化成一次函数,会用含一个未知数的整式来表示另一个未知数.知识点三:二元一次方程组(1)它的一般形式为(其中a1与b1,a2与b2不同时为零).(2)已知二元一次方程组的解就能代入方程组.(3)二元一次方程组的解是唯一的。

知识点四:二元一次方程组的解法1.用代入消元法解题时,要注意强调:(1)首先从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的式子表示出来;(2)然后将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出x(或y)的值;(4)将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;(5)把求得的x,y的值用“大括号”联立起来,就是方程组的解.2.用加减消元法解二元一次方程组时应注意以下几点:(1)如果两个方程的系数相同用减法;如果系数互为相反数用加法,可以消去一个未知数.(2)如果两个方程的系数不同,可用最小公倍数转化成相同或相反,然后再将两个方程两边分别相加或相减,就可消去这个未知数。

(3)当方程组中两个未知数的系数为分数时,要每项都乘其分母的最小公倍数,转化成系数为整数的二元一次方程组,然后再用上述加减消元求解.⑷整体代入法、换元法3.解二元一次方程组常见的错误(1)求解不完整,只求出一个未知数的值就以为解完了;(2)将两个方程相减时容易弄错符号;(3)方程两边同乘以一个不等于零的数时,容易出现漏乘的项知识点五;三元一次方程组的解法解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是“消元”,把“三元”变为“二元”再变为“一元”以求解.知识点六:二元一次方程应用题1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是找等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数值要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组)解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.3.二元一次方程组应用题种类:⑴. 和差倍分问题甲乙丙三个工厂共同筹办一所厂校,所出经费不同,其中甲厂出总数的2/7,乙厂出甲丙两厂和的1/2,已知丙厂出了16000元,问这所厂校总经费是多少?甲乙两厂各出多少?⑵.产品配套问题某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(一张方桌有一个桌面,4条桌腿)⑶.盈不足问题某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数.⑷. 行程问题已知一铁路桥长1000m,现有一列火车从桥上通过,测得从火车开始上桥到车身过完共用1min,整列火车完全在桥上的时间为40s,求火车的速度及火车的长度.⑸. 工程问题一项工程,甲队独做要12天完成,乙队独做要15天完成,丙队独做要20天完成.按原定计划,这项要求在7天内完成,现在甲乙两队先合作若干天,以后为加快速度,丙队也同时加入了这项工作,这样比原定时间提前一天完成任务.问甲乙两队合作了多少天?丙队加入后又做了多少天?⑹. 年龄问题甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将是61岁”.问甲乙现在各多少岁?⑺. 数字问题已知一个两位数,它的十位上的数字与各位上的数字和是3. 若颠倒个位与十位数字的位置,得到的新数比原数小9,求这个两位数⑻. 几何问题有两个长方形,第一个长方形的长与宽之比为5:4,第二个长方形的长与宽之比为3:2,第一个长方形的周长比第二个长方形的周长大112,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.⑼. 劳力调配问题甲组有37人,已组有23人,现在要从甲乙两组调出相同数量的人去做其他工作,使甲组剩下人数为乙组剩下人数的2倍,问需要从甲乙两组各调出多少人?⑽.增长率问题甲乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台.问:上月两个厂个超额生产了机床多少台?⑾.利率问题李宏用甲乙两种形式分别储蓄2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元.已知这两种储蓄的年利率的和为3.24. 问:这两种储蓄的年利率各是百分之几?⑿.利润问题王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗?⒀. 方案选择已知某电脑公司有A型B型C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C 型每台2500元.我市东坡中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.⒁. 实际生活中的不定方程组学校用一笔钱买奖品,若以1枝钢笔和2个笔记本为一份奖品,则可买60份奖品;若以1枝钢笔和3个笔记本为一份奖品,则可买50份奖品,问这笔钱用来全部买钢笔或笔记本,可各买多少?某糖果店新进60kg散装奶糖,为了获得更多利润,商店决定将其包装后再出售.现有3kg装和2kg装两种包装盒,每只包装盒成本分别为0.8元和0.6元.(1)若全部用3kg装,共需包装盒成本___元;若全部用2kg装,共需包装盒成本___元;(2)若考虑到顾客要求,商店要求2kg的奶糖数量不少于20kg,则怎样设计包装方案,才能使包装盒成本最省?最省的成本是多少元?。

二元一次方程的意思

二元一次方程的意思

二元一次方程的意思
二元一次方程是指含有两个未知数的一次方程。

一般来说,二元一次方程的一般形式为ax + by = c,其中a、b、c为已知数,x 和y为未知数,且a和b不能同时为0。

解二元一次方程就是要找出一对使得方程成立的x和y的值。

解二元一次方程的方法有很多种,比如代入法、消元法、图解法等。

这些方法都可以用来求解二元一次方程的解。

二元一次方程在数学中有着广泛的应用,比如在几何学中用来求解直线的交点坐标,或者在物理学中用来描述两个变量之间的线性关系。

解二元一次方程的过程可以帮助我们理解未知数之间的关系,从而解决实际生活中的问题。

在代数学习中,二元一次方程是一个重要的概念,学生需要掌握如何解二元一次方程,以及如何将实际问题转化为二元一次方程进行求解。

掌握二元一次方程的求解方法不仅可以帮助我们提高数学解题的能力,也可以培养我们的逻辑思维能力和问题解决能力。

总之,二元一次方程是含有两个未知数的一次方程,解二元一
次方程的方法有很多种,对于数学学习和实际问题求解都具有重要意义。

希望我的回答能够帮助你理解二元一次方程的意思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程定义、二元一次方程正整数解、二元一次方程组解的定义(看错某个字母)
1. 下列选项中,是二元一次方程的是( )
A. xy +4x =7
B. x -y =1
C. π+x =6
D. 7x +3=5y +7x
2. 若关于x ,y 的方程+=0是二元一次方程,求m +n 的值
3. 求二元一次方程x +2y =11的正整数解
4. 由于粗心,在解方程组:⎩⎨⎧=-=-b y x y ax 4752时,小明把系数a 抄错了,得到的解是.小亮把常数b 抄错了,得到的解是
,求出a 和b 的原来数字.
5. 方程,用含的代数式表示y
6. 假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,通过列方程,求
出她们有几种租住方案。

相关文档
最新文档