分数乘法课堂实录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘法课堂实录
课题:分数乘分数
教学内容:例3、例4。
教学目标
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.发展学生的观察推理能力。
教具、学具准备
1.根据例题制作的挂图、投影片或多媒体课件。
2.每个学生准备一张长15cm、宽10cm的长方形纸。
教学过程
一、创设情境引入新课
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,
教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)
让学生计算,并说说怎样计算。
师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
板书课题:分数乘分数
二、操作探究计算算理
师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20
师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?
学生讨论交流汇报。
教师
归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
三、迁移延伸,归纳法则
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
第2页 /(共3页)
师:所以要求问题“文化遗产有多少处”用30直接乘问题对应的7/10就行。
2.出示窗2情境图,创设问题情境,提出本节课要研究的问题。
师:这是我们以前学过的简单的分数乘法问题的结构特点和解答方法,今天我们开始学习解决稍复杂的分数乘法问题。(板书课题)
师:今天的情境图带来的是秦兵马俑的信息,信息比较多,请同学们先自由读一读。
师:再请一位声音响亮的同学把情境图上的信息读给大家听,同学们边听边思考,根据这些信息可以提出哪些数学问题?
生:1号坑还剩多少尊陶俑、陶马没有清理?
师:建议同学们以“根据第几条信息,我提出的问题是什么”句式提问题,可以吗?
生1:1号坑内有6000尊陶俑、陶马,已清理出它的1/6,1号坑还剩多少尊陶俑、陶马没
有清理?
生2:1号坑面积最大,比2号坑大5/9。2号坑占地约9000平方米,1号坑占地约多少平方米?
生3:2号坑内的陶俑、陶马尊数比1号坑少3/4,2号坑有多少尊陶俑、陶马?
(评析:新授前的铺垫练习为学生学习新知识铺平道路,顺利地实现正迁移。学生原有认知
结构的清晰、稳固程度直接影响着正迁移的实现,而且学生头脑中的旧知痕迹,也会随着时间的消逝而逐渐地衰退,所以在学习新知识之前,抓住新知识在学生原有认知结构中的“生长点”
来设计铺垫练习,对本节课的教学很有帮助。另外,利用窗1中的信息来设计练习题,不打破教材中的原有情境串,使铺垫练习与新授学习浑然一体。)
三、合作探究、解决问题
师:这节课我们先来研究第一个问题。
课件出示:1号坑内有6000尊陶俑、陶马,已清理出它的1/6,1号坑还剩多少尊陶俑、陶马没有清理?
师:读题,弄懂说的是什么事,再读题,理解题中的数量关系,边读边想:这道题怎样解答?师:咱们先在练习本上尝试做一做。
师:请这位同学来说一说你的方法。
生1:我是这样想的,算式是6000-6000×1/6,先用6000×1/6求出已清理出了多少尊陶俑、陶马,再从总数6000里减去已清理的尊数就是没有清理的尊数。
学生说算式和计算过程(第一种),教师板书。
师:你和他的方法一样吗?你也来说说是怎样想的。
生2:先用6000×1/6求出已清理出了多少尊陶俑、陶马,再从总数6000里减去已清理的尊数就是没有清理的尊数。
师:你怎么知道求已清理出了多少尊要用6000×1/6?
生2:题里说“已清理出它的1/6”也就是清理出了总数6000尊的1/6,求已清理出了多少尊,也就是求6000的1/6是多少,所以用6000×1/6。
师:(指板书)用这种方法求还剩多少尊没有清理,应该先求,然后再求?
引导学生梳理这种方法的解题思路。
(评析:有了窗1的知识基础,这种方法学生掌握起来非常容易,所以老师在这种方法的学习上没有浪费太多时间。)
师:想到这种方法同学真多,我们在这种方法上达成了共识。还有不同的方法吗?
生:我是这样想的,算式是6000×(1-1/6),(1-1/6)先求出没清理的尊数占总尊数的几分之几,再用6000乘几分之几求出没清理的有几尊。
学生口述,教师写算式。
师:听明白了吗?再找一个同学说一说。
生2:(1-1/6)先求出没清理的尊数占总尊数的几分之几,再用6000乘几分之几求出没清理的有几尊。
师:(1-1/6)求的是什么?能再解释解释吗?
生1:(1-1/6)求的是没清理的。
生2:(1-1/6)先求出没清理的有多少尊。
生3:(1-1/6)求的是没清理的尊数占总尊数的几分之几。
师:看的出好多同学对(1-1/6)的意思还不太明白,除此以外,对第二种方法你还有疑问吗?
师:老师还有一个问题:算式中的1-1/6和问题还剩多少尊是什么关系?