自控作业根轨迹作业

自控作业根轨迹作业
自控作业根轨迹作业

00实验三 基于MATLAB的根轨迹绘制与性能分析

实验四基于MATLAB的根轨迹绘制与性能分析 [实验目的] 1.掌握MATLAB下的根轨迹绘制方法; 2.学会利用根轨迹进行系统分析。 [实验指导] 1.根轨迹作图函数(命令):rlocus( ) 调用格式: ①rlocus(sys) 或rlocus(num,den) ②rlocus(sys,k) ①②画根轨迹图,①变化参量(一般是根轨迹增益)范围系统自动给出; ②变化参量(一般是根轨迹增益)范围在程序中给出; ③r=rlocus(sys) ④ [r,k]=rlocus(sys) ③④不画根轨迹图,③返回闭环根向量;④返回闭环根向量(r)和变化参量(k)。 2.根与根轨迹增益的求取 ⑴在根轨迹上点击,可得到该点的根值和对应的根轨迹增益值。 ⑵使用计算给定根的根轨迹增益的函数(命令):rlocfind( ) 调用格式: ①[k,poles]=rlocfind(sys) ②[k,poles]= rlocfind(sys,p) 使用方法:

①首先,当前根轨迹已绘出。运行该命令时,在根轨迹图中显示出十字光标,当用户选择其中一点时,其相应的增益由k 记录,与增益相关的所有极点记录poles 中;同时,在命令行窗口显示出来。 ②事先事先给出极点p ,运行该命令时,除了显示出该根对应的增益以外,还显示出该增益对应的其它根。 3.开环零点极点位置绘图函数(命令): pzmap( ) 调用格式: ① pzmap(sys) ② [p,z]=pzmap(sys) 函数功能: 给定系统数学模型,作出开环零点极点位置图。 ① 零点极点绘图命令。零点标记为“+”,极点标记为“o”。 ② 返回零点极点值,不作图。 4.根轨迹渐进线的绘制 当根轨迹渐进线与实轴的交点σa 已求出后,可得到方程11()n m a K s σ-=--, 这是根轨迹渐进线的轨迹方程。 将1()() n m a K G s s σ-= -作为一个开环传递函数,录入到MATLAB 中,再使用根 轨迹作图函数(命令)rlocus( ),生成的轨迹就是原根轨迹的渐进线。 5.举例 例1:开环传递函数1 ()(1)(2) K G s s s s =++绘制其闭环根轨迹。 程序: >> z=[];p=[0,-1,-2];k=1;sys=zpk(z,p,k);rlocus(sys) 运行结果:

自动控制根轨迹实验报告

实验三 根轨迹分析 一、实验目的: 1.熟悉零、极点对根轨迹的影响 2.组合典型环节按照题目完成相应曲线 二、实验内容 鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。在直升机模式下,飞机的高度控制系统如图所示。要求: (1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的 超调量和调节时间(Δ=2%); (3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)= 5 .05.15 .02 ++s s Matlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0]; G1=tf(fenzi,fenmu) fenzi=[1]; fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1) sys2=feedback(280*sys1,1) step(sys2) sys3=feedback(G2,280*G1) step(sys3) G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)

根轨迹方法控制系统校正

根轨迹方法控制系统校正 1.根轨迹方法控制系统 调节时间:t s ≤5S (2%) 最大超调量:M p ≤10% 开环比例系数:K 0≥20 2. ζ=0.6 cos β=53°,取β=45° 4.4/ζWn ≤5s , 取ζW n =1 经计算,C (s )=1.079s/s+2 3.流程图

4.程序 clear; K=2; h=0.05; A=0; B=30; f=@(m,y)(K*m-2*y)/1; fc=@(s,m)(1*s-0.002*m)/1; n=floor(B/h); s(1)=0; m(1)=0; d(1)=0; y(1)=0; t=0:h:B; for i=1:n e(i)=1-s(i); k1=f(e(i),y(i)); k2=f(e(i),y(i)+h*k1/2); k3=f(e(i),y(i)+h*k2/2); k4=f(e(i),y(i)+h*k3); y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6; m(i+1)=(y(i+1)-y(i))/h+0.01*y(i+1); k1=fc(m(i),d(i)); k2=fc(m(i),d(i)+h*k1/2); k3=fc(m(i),d(i)+h*k2/2); k4=fc(m(i),d(i)+h*k3); d(i+1)=d(i)+h*(k1+2*k2+2*k3+k4)/6; s(i+1)=s(i)+h*(d(i+1)+d(i))*0.5; end plot(t,s,'-m') title(sprintf('2(s+0.01)/s(s+0.002)(s+2)')) set(legend,'Location','NorthWest') hold on 5.结果 调节时间4.6S 超调量7.6% K0=50

根轨迹分析实验报告

. 课程名称:控制理论乙指导老师:成绩: 实验名称:控制系统的根轨迹分析实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用计算机辅助分析法分析控制系统的根轨迹 2.熟练掌握Simulink仿真环境 二、实验内容和原理 1.实验内容 一开环系统传递函数为 k(s?2)?s)G(22(s?4s?3)绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2.实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k)从零变到无穷大时,死循环系统特征方程的根在s平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设等。pzmap,rlocus,rlocfind计也具有指导意义。在MATLAB中,绘制根轨迹有关的函数有:3.实验要求 (1)编制MATLAB程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。三、主要仪器设备 仿真环境simulink计算机一台以及matlab软件,四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure

自控实验报告实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、实验报告 1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。 3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。 4.写出实验的心得与体会。 三、实验内容 请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 一、 ) 136)(22()(2 2 ++++=s s s s s K s G 1、程序代码: G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G) G_c=feedback(G,1); step(G_c) 2、实验结果:

-8-6 -4 -2 24 6 8 Root Locus Real Axis I m a g i n a r y A x i s selected_point = -8.8815 + 9.4658i k = 1.8560e+04 r = -10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i 6.2089 - 8.2888i Time (seconds) A m p l i t u d e selected_point = -9.5640 - 7.6273i k = 1.3262e+04 r = -9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i 5.5400 - 7.6258i Time (seconds) A m p l i t u d e

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验容和原理 1. 实验容 一开环系统传递函数为 22) 34()2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 3. 实验要求 (1)编制MATLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure >> pzmap(G)

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

实验6 线性系统的根轨迹

实验六 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、基础知识及MATLAB 函数 根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。这个参数一般选为开环系统的增益K 。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。 假设系统的对象模型可以表示为 n n n n m m m m a s b s a s b s b s b s b K s KG s G ++++++++==--+-11111210)()( 系统的闭环特征方程可以写成 0)(10=+s KG 对每一个K 的取值,我们可以得到一组系统的闭环极点。如果我们改变K 的数值,则可以得到一系列这样的极点集合。若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。 1)绘制系统的根轨迹rlocus () MATLAB 中绘制根轨迹的函数调用格式为: rlocus(num,den) 开环增益k 的范围自动设定。 rlocus(num,den,k) 开环增益k 的范围人工设定。 rlocus(p,z) 依据开环零极点绘制根轨迹。 r=rlocus(num,den) 不作图,返回闭环根矩阵。 [r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增 益向量k 。 其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

实验二--基于MATLAB的根轨迹分析的实验方法

实验二 基于MATLAB 的根轨迹分析 1、给定某闭环系统的开环传递函数为2()()(416) K G s H s s s s = ++,用MATLAB 语言绘出该系统的根轨迹。 2、在图形窗口上求出系统稳定时,增益K 的取值范围。 >> num=1; >> den=[1,4,16,0]; >> sys=tf(num,den); >> figure(1) >> pzmap(num,den) >>figure(2) >>rlocus(sys) >> [k,pole]=rlocfind(sys) Select a point in the graphics window selected_point = 0.0163 + 4.0412i k = 65.8651 pole = -4.0575 0.0287 + 4.0289i 0.0287 - 4.0289i >>

图1 2()()(416) K G s H s s s s = ++ 零极点分布图 图2 2()()(416) K G s H s s s s = ++ 根轨迹图 3、将系统的开环传递函数改为:2(1)()()(416) K s G s H s s s s +=++,绘出该系统的根轨迹图。观察增加了开环零点后根轨迹图的变化情况。 >> num=[1 1];

>> den=[1 4 16 0]; >> sys=tf(num,den); >> figure(3) >> pzmap(num,den) >> figure(4) >> rlocus(sys) >> [k,pole]=rlocfind(sys) Select a point in the graphics window selected_point = -1.5996 + 8.2239i k = 56.7586 pole = -1.5956 + 8.2238i -1.5956 - 8.2238i -0.8088 >> 图3 2(1)()()(416) K s G s H s s s s +=++ 零极点分布图

线性系统的根轨迹分析-自控实验报告

装 订 线 信息科学与工程学院本科生实验报告 实验名称 线性系统的根轨迹分 析 预定时间 实验时间 姓名学号 授课教师 实验台号19 专业班级

装订线 一、目的要求 1.根据对象的开环传函,做出根轨迹图。 2.掌握用根轨迹法分析系统的稳定性。 3.通过实际实验,来验证根轨迹方法。 二、原理简述 绘制根轨迹 (1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。开环有三个极点:p1=0,p2=-1,p3=-2。 (2)实轴上的根轨迹: ①起始于0、-1、-2,其中-2 终止于无穷远处。 ②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为 显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193 (3)根轨迹与虚轴的交点 将S = j W 代入特征方程可得:

订 线 根据以上计算,将这些数值标注在S 平面上,并连成光滑的粗实线,如下图所示。 图上的粗实线就称为该系统的根轨迹。其箭头表示随着K 值的增加,根轨迹的变化趋 势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。 根据根轨迹图分析系统的稳定性 根据图 2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K (1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振 荡,临界稳定。 (2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。 (3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。 三、仪器设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

自动控制根轨迹实验

线性系统的根轨迹研究 实验目的 考察闭环系统根轨迹的一般形成规律。 观察和理解引进零极点对闭环根轨迹的影响。 观察、理解根轨迹与系统时域响应之间的联系。 初步掌握利用产生根轨迹的基本指令和方法。 实验内容 根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。 已知单位负反馈系统的开环传递函数为 2)^54()2()(2+++= s s s K s G ,实验要求: 试用MATLAB 的rlocus 指令,绘制闭环系统根轨迹。(要求写出指令,并绘出图形。) 利用MATLAB 的rlocfind 指令,确定根轨迹的分离点、根轨迹与虚轴的交点。(要求写出指令,并给出结果。) 利用MATLAB 的rlocfind 指令,求出系统临界稳定增益,并用指令验证系统的稳定性。 利用SISOTOOL 交互界面,获取和记录根轨迹分离点、根轨迹与虚轴的交点处的关键参数,并与前面所得的结果进行校对验证。(要求写出记录值,并给出说明。) 在SISOTOOL 界面上,打开闭环的阶跃响应界面,然后用鼠标使闭环极点(小红方块)从开环极点开始沿根轨迹不断移动,在观察三个闭环极点运动趋向的同时,注意观察系统阶跃响应的变化。根据观察,(A )写出响应中出现衰减振荡分量时的K 的取值范围,(B )写出该响应曲线呈现“欠阻尼”振荡型时的K 的取值范围。 添加零点或极点对系统性能的影响,以二阶系统为例开环传递函数 )6.0(1 )(2s s s G += 添加零点,增加系统阻尼数,超调量减小,在sisotool 界面上做仿真,写出未添加零点时系统的超调量,峰值,调节时间,添加零点后系统的超调量,峰值,调节时间,并写出系统添加零点的数值,并进行理论分析。(选做)

实验二 控制系统的根轨迹分析与频域分析

实验二 控制系统的根轨迹分析与频域分析 一、实验目的 1、掌握如何运用计算机的MA TLAB 软件进行根轨迹分析 1、 掌握如何用计算机MA TLAB 软件工具进行系统或环节的频率特性的测试。 二、实验类型 综合性 三、实验设备 计算机 四、实验原理 频率特性函数是静态下正弦输出信号与正弦输入信号的复数符号之比。从频率特性图象上可以很方便的得到关于系统稳定性和动态特性的一些信息。因此,它是研究控制系统的一个重要工具。 五、实验内容和要求 (一)内容 1、 已知开环传递函数为s s s s k s H 803616)(234+++=绘出闭环系统的根轨迹,并找出根轨迹与虚轴交点处的增益k 值。 2、 已知开环传递函数为)45)(23() 3()(22+++++= s s s s s k s H 绘出闭环系统的根轨迹。并分析系统 的稳定性。 3、 编程实现惯性环节005.0,11 )(=+=T Ts s G 的频率特性,编程实现幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图。 4、 编程实现振荡环节的频率特性。 8.0,4.0,2.0,002.0,121 )(22==++=ζζT Ts s T s G ,用MA TLAB 软件编程仿真出振荡环节的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和波德图,增益相位裕度的伯德图。并在同一极坐标图和伯德图中绘制不同ζ下的响应曲线。(要获得谐振峰值、谐振频率等关键点的值。) (二)要求 1、预习根轨迹的绘制的方法,编制相应实现的MA TLAB 程序。 2、在理论上画出实验中惯性环节、振荡环节相应的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图;并预先编制实现的MA TLAB 程序。 3、写出实验报告,对于内容(一)写出实现的MA TLAB 程序;给出给定系统)(s H 的根轨迹图,并分析系统的稳定性;进行实验总结;对于内容(二)给出出惯性环节、振荡环节的实现程序及各实验曲线;将实验结果同理论估计的结果相比较,若不同分析其原因;根据实验曲线能得到哪些结论(稳定性、增益方面的)。 六、注意事项 命令调用的格式不能随意改写 七、思考题 如何利用Bode 图来分析系统的增益裕度、相位裕度、及其稳定性?

实验二根轨迹的绘制及系统分析

《自动控制原理》 实验报告 题目:根轨迹的绘制及系统分析 专业:电子信息工程 班级: : 学号:

实验二 根轨迹的绘制及系统分析 一、实验目的 1.熟练掌握使用MATLAB 软件绘制根轨迹图形的方法; 2.进一步加深对根轨迹图的了解; 3.利用所绘制根轨迹图形分析系统性能。 二、实验容 本实验中各系统均为负反馈控制系统,系统的开环传递函数形式为: 1 1 () ()()() m i i n j j K s z G s H s s p ==-= -∏∏ (一)已知系统开环传递函数分别为如下形式: (1)()()(1)(2)K G s H s s s = ++ (2)(3) ()()(1)(2)K s G s H s s s += ++ (3)(3) ()()(1)(2)K s G s H s s s -= ++ (4)()()(1)(2)(3)K G s H s s s s = +++ (5)()()(1)(2)(3) K G s H s s s s = ++- 1、绘制各系统的根轨迹; 2、根据根轨迹判断系统稳定性;如果系统是条件稳定的(有根轨迹分支穿越虚轴),试确定稳定条件(K 值取值围);

(1)代码及截图 num=[1]; den=conv([1 1],[1 2]); rlocus(num,den) -2.5 -2-1.5-1-0.500.5 -0.8-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 Root Locus Real Axis I m a g i n a r y A x i s 根轨迹全部落在左半S 平面上,该系统稳定。 (2)代码及截图 num=[1 3]; den=conv([1 1],[1 2]); rlocus(num,den)

控制系统的根轨迹实验报告

控制系统的根轨迹作图 实验报告 班级:****** 姓名:***** 学号:****** 指导老师:**** 学年:2012至2013第二学期

一、实验目的 1.用matlab完成控制系统的建立。 2.了解系统根轨迹作图的一般规律,能熟练完成控制系统的根轨迹绘图。 3.利用根轨迹图进行系统分析。 二、实验内容 1.系统模型建立 sys = tf(num,den) sys = zpk(z,p,k) sys = ss(a,b,c,d) sys = frd(response,frequencies) 该主题相关matlab帮助资料:Matlab help——contents——control system toolbox ——building models 2.根轨迹绘图 rlocus(num,den) rlocus(num,den,k) r=rlocus(num,den) [z,p,k]=zpkdata(sys,’v’) 该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——building models 3.根轨迹分析 Sisotool() 该主题相关matlab帮助资料:Matlab help——contents——getting started——control system toolbox——root locus design 例1:传递函数为: 1.5 ------------------ s^2 + 14 s + 40.02 sys_tf = tf(1.5,[1 14 40.02]) 或num=1.5,den=[1 14 40.02],sys_tf(num,den); 例2:传递函数 1.5 -------------------- s^2 + 14 s + 40.02 matlab表示:s = tf('s'); sys_tf = 1.5/(s^2+14*s+40.02) 根轨迹如下图:

实验三-控制系统的根轨迹研究分析

实验三-控制系统的根轨迹分析

————————————————————————————————作者:————————————————————————————————日期:

实验三 控制系统的根轨迹分析 一、实验目的 1.利用MATLAB 完成控制系统的根轨迹作图; 2.了解控制系统根轨迹图的一般规律; 3.利用根轨迹进行系统分析。 二、实验原理 与根轨迹相关的MATLAB 函数: 1.绘制根轨迹的函数为rlocus ,常用格式为: rlocus(sys) sys 为系统开环传递函数名称; rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹; r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ; [r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。 2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根 轨迹增益下闭环系统的稳定性。 [k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。 例1 ) 4)(1()(++=s s s k s G r k 在命令窗口输入: k=1; z=[]; p=[0,-1,-4]; [num,den]=zp2tf(z,p,k); rlocus(num,den); title(’G k 根轨迹’) [k,r]=rlocfind(num,den) 3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系 统的零极点图。 pzmap(num,den) 在s 平面上作零极点图; pzmap(num,den) 返回变量格式,不作图,计算零极点。 三、实验内容 给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. ) 2)(1()(1++=s s s k s G r k 要求:

matlab实验报告1

控制系统仿真与CAD实验报告

一.实验内容: 控制系统稳定性,时域和频域分析的matlab 实现(第三章) 二.实验环境: MATLAB2009a 软件 三.实验过程: 1.已知典型二阶系统的传递函数为 其中,自然频率为6,绘制当阻尼比分别为0.1,0.2,0.707,1.0,2.0 时系统的单位阶跃响应曲线。 (1)实验程序: wn=6; kosi=[0.1,0.2,0.707,1.0,2.0]; hold on; for kos=kosi num=wn^2; den=[1,2*kos*wn,wn^2]; step(num,den) end (2)实验结果: 222()2n n n s s s ω ξωω Φ=++2 22 ()2n n n s s s ω ξωω Φ= ++222 ()2n n n s s s ω ξωω Φ=++

2.已知线性定常系统的状态空间模型为 试绘制其单位阶跃响应曲线。 (1)实验程序: a=[-1.6,-0.9,0,0; 0.9,0,0,0; 0.4,0.5,-5.0,-2.45; 0,0,2.45,0]; b=[1;0;1;0];c=[1,1,1,1];d=[0]; []1.60.90010.900000.40.5 5.0 2.45100 2.45001111x x u y x --????????????=+????--????????=[]1.60.90010.900000.40.5 5.0 2.45100 2.45001x x u y x --???????? ????=+????--???? ???? =

实验三-控制系统的根轨迹分析

实验三 控制系统的根轨迹分析 一、实验目的 1.利用MATLAB 完成控制系统的根轨迹作图; 2.了解控制系统根轨迹图的一般规律; 3.利用根轨迹进行系统分析。 二、实验原理 与根轨迹相关的MATLAB 函数: 1.绘制根轨迹的函数为rlocus ,常用格式为: rlocus(sys) sys 为系统开环传递函数名称; rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹; r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ; [r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。 2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根轨迹增益下闭环系统的稳定性。 [k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。 例1 ) 4)(1()(++=s s s k s G r k 在命令窗口输入: k=1; z=[]; p=[0,-1,-4]; [num,den]=zp2tf(z,p,k); rlocus(num,den); title(’G k 根轨迹’) [k,r]=rlocfind(num,den) 3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系统的零极点图。 pzmap(num,den) 在s 平面上作零极点图; pzmap(num,den) 返回变量格式,不作图,计算零极点。 三、实验内容 给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. ) 2)(1()(1++=s s s k s G r k 要求:

相关文档
最新文档