2012年深圳大学912高等代数考研试题
2012研究生考试数学二真题及答案
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C )必要非充分条件.(D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0n a >,则1n n a ∞=∑为正项级数,S n =a 1+a 2+…a n 为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1n n a ∞=∑收敛是充要条件。
故选A(4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D)【解析】:2sin k x k e I e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k e I e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012考研数学二真题详细答案解析
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)即非充分地非必要条件.
【答案】:(A)
∞
∞
∑ ∑ 【解析】:由于 an > 0 ,则 an 为正项级数,Sn=a1+a2+…an 为正项级数 an 的前 n
D
∫∫ ∫ ∫ 【解析】:
xydσ = π dθ 1+cosθ r cosθ ⋅ r sin θ ⋅ rdr
0
0
D
∫ = 1 π sin θ ⋅ cosθ ⋅ (1 + cosθ )4 dθ 40
6
考研辅导
∫ = 16
πθ sin
cos θ
(2 cos2
【答案】:(D) 【解析】: 由二重积分的区域对称性,
∫∫ ( ) ∫ ∫ ( π
) x5 y − 1 dxdy =
2 −π
dx
1 sin x
x5 y − 1 dy = −π
2
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 1 ⎞ ⎛ −1⎞
(7)设 α1
=
⎜ ⎜
0
⎟ ⎟
,α
2
=
⎜ ⎜
1
⎟ ⎟
,α
3
=
⎜ ⎜
−1⎟⎟
,
α
考研辅导
2012 年全国硕士研究生入学统一考试
数学二试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上.
2012年考研高数一真题及解析
4n 2 4n 3 2 n x 2n 2n . x ( 2 n 1 ) x 2 2n 1 n 0 n 0 n 0 2n 1
由于
1 x2 x 2n 2 n 1 (1 x 1) = ( 2 n 1 ) x ( x ) ( ) (1 x 2 ) 2 1 x2 n 0 n 0
向量组线性相关的为 (A) 1 , 2 , 3 (B) (C)
1,2 ,4
(C) 1 , 3 , 4
1
(D)
2 ,3 ,4
1 0 0 (6) 设 A 为 3 阶矩阵, P 为三阶可逆矩阵,且 P AP 0 1 0 , P (1,2 ,3 ) , 0 0 2
1 2
y( x 1)e , B f xy
2
x2 y2 2
x( y 1)e ,C f yy
2
1 2
x2 y 2 2
……6 分
2 1 在点(1,0)处,由于 B AC 2e 0 , A 2e
0,
……8 分
1 2
故 f (1,0) e
sin 2 tdt
0 2 0
……9 分 ……10 分
1 4
(19) (本题满分 10 分) 已知 L 是第一象限中从点 (0, 0) 沿圆周 x2 y2 2x 到点 (2, 0) ,再沿圆周 x2 y 2 4 到点 (0, 2) 的曲线段,计算曲线积分 I
3x
(A)
(B)
0 0 2
2 0 0 (D) 0 2 0 0 0 1
与参数为 4 的指数分布,则 (A) (D)
2012年考研数学真题(完整版)
2012年全国硕士研究生入学统一考试数学一试题一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---L ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13(C) 25 (D) 45 (8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)2x =⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。
2012年深圳大学教育学硕士考研真题及2015年考研复习规划
深圳大学教育学硕士考研参考书-2012年真题2012年深圳大学教育学考研真题一、单项选择题:1.关注和探询“谁控制学校”、“谁制定学校管理的政策”、“谁决定教育的伦理、社会和经济目标”、“谁设置课程”的教育理论流派是()A. 制度教育学B. 改造主义教育理论C. 存在主义教育理论D. 批判教育学2.如下现象属于教育范畴的是()A. 爸爸针对小明懦弱的个性设法训练小明如何以牙还牙报复欺侮者B. 妈妈指导小明在与他人冲突中如何保护自己C. 老师严格管理以保护小明等弱小学生不再受欺负D. 小明在与同学的多次冲突中逐渐学会了如何与人和睦相处3. 下列现象中。
可以说明教育对社会发展起促进作用的是A. 班级授课制为普及义务教育提供了便利B. 普及义务教育在一定程度上满足了机器大生产对劳动力的要求C. 僵化的制度化教育导致社会拒绝学校毕业生D. 学生发展指导制度促进了学生学业、生涯、个性及社会性的发展二、辨析题:1、理想的师生关系以学生为中心。
2、马卡连柯倡导的集体教育即集体主义教育。
三、简答题:1、简要解释举例说明教育的负向功能。
2、17-18世纪德国的新大学运动。
2015年五阶段考研复习规划把考研作为一种娱乐,而不是被娱乐。
过程完美了,一切水到渠成,结果自然不错。
---------- 育明教育寄语第一阶段:预热(3月1日至7月1日)预热原因:育明教育老师认为考研复习比较理想的时间长度是6-9个月,因此从3月开始比较科学。
如果复习的时间太长,容易导致后劲不足。
正所谓“强弩之末势不能穿鲁缟”。
这是无数学子的血泪教训。
重点任务:1.收集考研信息,包括所报考专业的未来发展趋势、就业难易程度、所报考专业的难易程度、所报考学校的录取率、资料。
毕竟考研所需关注的点无非就两个:一是考研成功的可能性,二是研究生毕业后的就业问题。
2.根据所收集到的信息决定所报考的学校和专业。
对于这一点,育明教育团队认为,选择学校和专业的方案有两个:一是,选择尽可能好的学校,如北大、清华、人大、中传、北影、中央财经、南开、复旦,专业可以稍微差一点;二是,选择尽可能好的专业,如金融、经济、电影、新闻、法学、计算机、自动化等,学校可以差一点。
考研数学二历年真题
2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-的渐近线条数( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++ ,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ . (11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x yy +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<上曲率为22的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<. (21)(本题满分10 分)(I)证明方程1x x x ++= n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根; (II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11 1 ()f x -2 0 2 3x-1O()C .()D .(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B 的伴随矩阵。
2012年考研数学真题及参考答案(数学二)
(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变
2012考研真题及答案
2012考研真题及答案2012年的考研真题是许多考生备战考研的重要资料,了解这些真题并熟悉其中的答案对于备考考研的同学来说是至关重要的。
在本文中,将为您介绍2012年的考研真题及其答案。
第一部分:数学一2012年的考研数学一科目主要涵盖了数学分析、高等代数和概率论等内容。
以下是部分考题及其答案的概要。
题一:设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得f(b)-f(a)=(b-a)f' ( ξ )。
解析:根据罗尔定理,由于f(x)在[a,b]上连续,且在(a,b)内可导,那么在[a,b]上有f(a)=f(b)。
根据拉格朗日中值定理,存在一点ξ∈(a,b),使得f' ( ξ )=(f(b)-f(a))/(b-a)。
所以,f(b)-f(a)=(b-a)f' ( ξ )。
题二:已知数列{a_n}的通项公式为a_n=2^n-3^n+4^n-5^n,求证数列{a_n}是等差数列。
解析:我们可以通过数学归纳法来证明这个结论。
当n=1时,a_1=2-3+4-5=-2。
当n=k时,假设a_k=2^k-3^k+4^k-5^k成立。
当n=k+1时,我们需要证明a_(k+1) =2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)也成立。
根据等差数列的性质,我们有a_(k+1)-a_k = (2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)) - (2^k-3^k+4^k-5^k)。
化简后可得a_(k+1)-a_k= -2 × 3^k + 3^(k+1) -2 × 5^k + 5^(k+1)。
通过整理和变换,我们得到a_(k+1)-a_k = -3^k (2-3) + 5^k (5-2) = 0。
因此,数列{a_n}是等差数列。
通过以上两道题目,我们可以看出2012年考研数学一科目的难度适中,考察了数学分析和代数的基本概念和推导方法。
2012考研数学一、二、三真题
(14)设A,B,C是随机事件,A,C互不相容, 则 _________.
三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
2012年全国硕士研究生入学统一考试
数学(一、二、三)试题
启航教育集团
2012年全国硕士研究生入学统一考试
数学(一)试题
一、选择题:第1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个
选项符合题目要求,请将所选项前面的字母填在答题纸指定位置上。
(1)曲线 渐近线的条数( )
(A)0(B)1(C)2(D)3
(15)(本题满分10分)
计算
(16)(本题满分10分)
计算二重积分 ,其中D为由曲线 所围区域.
(17)(本题满分10分)
某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+ (万元/件)与6+y(万元/件).
(22)(本题满分11分)
设 ,
(I)计算行列式 ;
(II)当实数 为何值时,方程组 有无穷多解,并求其通解.
(23)(本题满分11分)
已知 ,二次型 的秩为2,
(I)求实数 的值;
(II)求正交变换 将 化为标准形.
2012年全国硕士研究生入学统一考试
数学(三)试题
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目
(A) (B) (C) (D)
数2--12真题答案
2012年考研数学(二)试题答案速查一、选择题(1)C (2)A (3)B (4)D (5)D (6)D (7)C (8)B 二、填空题(9)1 (10)π4(11)0 (12)x (13)(1,0)− (14)27− 三、解答题(15)(Ⅰ)1a =.(Ⅱ)1k =. (16)(1,0)为极大值点,极大值为12e −.(1,0)−为极小值点,极小值为12e−−.(17)()22π2,e 13S V ==−. (18)1615. (19)(Ⅰ)()e xf x =.(Ⅱ)(0,0). (20)略.(21)(Ⅰ)略. (Ⅱ)1lim 2n n x →∞=. (22)(Ⅰ)41a −.(Ⅱ)当1a =时无解.当1a =−时,TT(1,1,1,1)(0,1,0,0)k =+−x ,k 为任意常数.(23)(Ⅰ)1a =−.(Ⅱ)正交变换矩阵11132611132612036⎛⎫ ⎪ ⎪−⎪=⎪ ⎪− ⎪ ⎪⎝⎭Q ,标准形222326f y y =+.2012年全国硕士研究生入学统一考试数学(二)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】C .【解答】由题可知,22(1)1(1)(1)x x x x y x x x ++==−−+,故1lim ,x y →=∞所以1x =为垂直渐近线; 又由lim 1x y →∞=,故1y =为水平渐近线,无斜渐近线,故曲线渐近线的条数为2.(2)【答案】A.【解答】因为2100()(0)(e 1)(e 2)(e )(0)lim lim(1)(1)!x x nx n x x f x f n f n x x−→→−−−−'===−−,所以选A. (3)【答案】B.【解答】因为0(1,2,)n a n >=,所以数列{}n S 单调递增.如果{}n S 有界,由单调有界收敛准则知数列{}n S 极限存在,而1n n n a S S −=−,则1lim lim()0n n n n n a S S −→∞→∞=−=,即数列{}n a 收敛. 由此可知数列{}n S 有界是数列{}n a 收敛的充分条件. 反之,若{}n a 收敛,{}n S 未必收敛,例如,取1n a =(1,2,)n =,n S n =无上界,故选B. (4)【答案】D. 【解答】因为22π21πe sin d 0,x I I x x −=<⎰故21I I <;222π3π31π2πe sin d e sin d x x I I x x x x −=+⎰⎰22ππ(π)(2π)0esin d e sin d 0x x x x x x ++=−+>⎰⎰,故31I I >.所以选D.(5)【答案】D. 【解答】因为(,)0,f x y x∂>∂所以,固定y 值由12>x x 得1121(,)(,)>f x y f x y ,同理当(,)0,f x y y∂<∂固定x 值由12<y y 得2122(,)(,)>f x y f x y ,所以有答案D.(6)【答案】D.【解答】由二重积分的区域对称性可知π1552πsin 2(1)d d d (1)d πDxx y x y x x y y −−=−=−⎰⎰⎰⎰.(7)【答案】C.【解答】由已知可得134,,0,=ααα所以134,,ααα线性相关,选C. (8)【答案】B.【解答】1223123100(,,)(,,)110001Q ααααααα⎛⎫ ⎪=+= ⎪ ⎪⎝⎭,故11100110001−−⎛⎫ ⎪= ⎪ ⎪⎝⎭Q AQ ,1100100100100100110110010110010001001002001002−⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪ ⎪=−= ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭P AP ,所以选B.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】1.【解答】方程21e yx y −+=两边分别对x 求导,得d d 2e d d y y yx x x−= ①, 由0=x ,0=y ,得d 0d x yx==. 对①式两边再对x 求导,得22222d d d 2e e d d d y y y y y x x x ⎛⎫−=+ ⎪⎝⎭, 由0=x ,0=y ,d 0d x yx==,得22d 1d x yx==.(10)【答案】π4. 【解答】2222111lim ()12n n n n n n →∞++++++122222*********πlim ...lim d 14121111n n n i x n n x n i n n n n →∞→∞=⎛⎫ ⎪ ⎪=++=== ⎪+⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑⎰. (11)【答案】0. 【解答】因为1(ln ),z f x y =+所以211,z z f f x x y y ∂∂−''==⇒∂∂20z zx y x y∂∂+=∂∂.(12)【答案】x .【解答】由题知该方程可化为d 3d x xy y y+=,为一阶线性微分方程,带入公式求解可得 3xy y C =+,带入初始条件可得0C =,最终可得结果.(13)【答案】(1,0)−. 【解答】由曲率公式()3/221y k y ''='+,曲线方程代入公式可得.(14)【答案】27−.【解答】由初等矩阵的性质可知010100001B PA A ⎛⎫⎪== ⎪ ⎪⎝⎭,所以,**27BA PAA ==−.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分) 解:(Ⅰ)0011sin lim 1lim 1sin sin x x x x x x x x x →→+−⎛⎫−=−=⎪⎝⎭,1a =.(Ⅱ)221000sin 1()sin sin sin lim lim lim sin k k k x x x x x xf x a x x x x x x x x x x x+→→→+−−−+−−== 22110001(sin )(1)1cos 2lim lim lim (2)(2)k k k x x x xx x x x x k x k x +++→→→−+−===++, 因为它们为同阶无穷小量,所以1k =.(16)(本题满分10分)解:()()22222221e0,e0x y x y ffx xy xy++−−∂∂=−==−=∂∂,可解得1,0.x y =⎧⎨=⎩或1,0.x y =−⎧⎨=⎩. 因为22222222222222222(3)e,(1)e ,(1)e xy x y x y f f f x x x y y x xyx y+++−−−∂∂∂=−=−=−∂∂∂∂,所以当1,0.x y =⎧⎨=⎩时,11222e ;0;e A B C −−=−==−.又因为20,0AC B A −><,所以(1,0)为极大值点,极大值为12e−.同理当1,0.x y =−⎧⎨=⎩时,验证可得其为极小值点,极小值为12e −−.(17)(本题满分12分)解:设切点(,)A a b ,切线方程斜率为k ,则1k a=,ln b a =,并且(0,1)与A 两点共线,直线方程为1b ka −=,由此解得221e ,2,ea b k ===.切线方程:211,e y x =+与x 轴交于B 坐标为(1,0),直线AB 的方程22:(1)e 1AB l y x =−−,则 区域D 的面积22e 2e2222112(1)2ln d ln e 1e 12e 1e 1D x x x S x x x x x ⎛⎫−−⎡⎤=−=−−=+−+= ⎪⎢⎥−−⎣⎦⎝⎭⎰区域D 绕x 轴旋转一周所得旋转体的体积()()22e 22212(1)2ππln d e 1e 13x V x x ⎡⎤−⎛⎫=−=−⎢⎥⎪−⎝⎭⎢⎥⎣⎦⎰.(18)(本题满分10分)解:如图,利用极坐标计算,由cos ,sin .x r r r θθ=⎧⎨=⎩,得π1cos 0d d cos sin d Dxy r r r r θσθθθ+=⎰⎰⎰⎰π401sin cos (1cos )d 4θθθθ=+⎰ π401cos (1cos )d cos 4θθθ=−+⎰141116cos (1)d 415t t t t θ−=+=⎰.(19)(本题满分10分)解:(Ⅰ)由()()2()0,f x f x f x '''+−=可知特征方程为220λλ+−=,通解为yxO2πD1cos r θ=+212e e x x y C C −=+,将其带入方程()()2e f x f x ''+=,可得2122e 5e 2e x x x C C −+=, 121,0C C ==.所以()e x f x =.(Ⅱ)由220()()d xy f x f t t =−⎰,得22'2e e d 1,xxt y x t −=+⎰2222202e e d 4e e d 2xxxt xt y t x t x −−''=++⎰⎰,令0,0y x ''==,当0x >时,0y ''>;当0x <时,0y ''<. 所以(0,0)为其拐点.(20)(本题满分11分)证明:令21()ln cos 1(11)12x x f x x x x x +=+−−−<<−,则有()()f x f x =−,为偶函数.所以只需讨论0x >即可.()2211212()lnsin ln sin 11111x x x x f x x x x x x x x x x x +−+'=+−−=+−−−+−−−, ()()22422416(1)()cos 1,()sin 11x x f x x f x x x x −'''''=−−=+−−.当01x <<时,()0f x '''>,则()f x ''单调递增,且(0)2f ''=,所以()0f x ''>. 所以,当01x <<时,()f x '单调递增,且(0)0f '=,所以()f x 递增,且(0)0f =, 所以,当01x <<时,结论成立.同理,在10x −<<时,结论成立.(21)(本题满分11分) 解: (Ⅰ)令1()1,nn n F x x x x −=+++−则12()(1)21n n n F x nx n x x −−'=+−+++,所以该函数在1,12⎛⎫⎪⎝⎭内单调递增.因为1111()102222n n n F =++−=−<, (1)10n F n =−>,所以有零点定理可知方程在1,12⎛⎫⎪⎝⎭内至少有一个实根.又函数单调,所以有且仅有一个实根. (Ⅱ)先证明单调性.()()11111111(1)(1)00n n n n n n n n n n n n n n n n F x F x x x x x x x x −−++++++−=++−−++−=+>,而函数()n F x 单调,所以1n n x x +>,所以数列{}n x 单调递减.又1,12n x ⎛⎫∈⎪⎝⎭,所以数列是有界的.因此数列收敛,且lim 0n n n x →∞=.所以由1(1)1101nn n n n n nn nx x x xx x −−++−=−=−,两端取极限可得1lim 2n n x →∞=.(22)(本题满分11分)解:(Ⅰ)4221(1)(1)A =−=−+a a a ;(Ⅱ)由题可知当0A =时,解得1=a 或1=−a .当1a =时,增广矩阵作初等变换得,()1100101101|0011000002⎛⎫⎪−⎪→ ⎪⎪−⎝⎭A β,()()|r r <A A β,故方程组无解;当1a =−时,增广矩阵作初等变换得,()1001001011|0011000000−⎛⎫⎪−−⎪→ ⎪− ⎪⎝⎭A β,()()|3r r <=A A β,方程组有解,并可求得通解为T T (1,1,1,1)(0,1,0,0)x =+−k ,其中k 为任意常数.(23)(本题满分11分)解: (Ⅰ)由二次型的秩为2,知T()2r =A A ,故()2r =A ,对A 作初等变换,1011010110111000101000a a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→⎪ ⎪−+ ⎪ ⎪−⎝⎭⎝⎭A ,可得1a =−.(Ⅱ)当1a =−时,得T202022224⎛⎫ ⎪= ⎪ ⎪⎝⎭A A .()()T 2020*******λλλλλλλ−−⎛⎫ ⎪−=−−=−− ⎪ ⎪−−−⎝⎭E A A ,可得T A A 的特征值1230,2,6λλλ===.当10λ=时,解方程组T(0)−E A A x =0,得相应的特征向量()T11,1,1=−α;当22λ=时,解方程组T(2)−E A A x =0,得相应的特征向量()T21,1,0=−α;当36λ=时,解方程组T(6)−E A A x =0,得相应的特征向量()T31,1,2=α.因为特征值各不相等,所以特征向量相互正交,故只需单位化,得()T111,1,13=−β,()T 211,1,02=−β,()T 311,1,26=β.于是得到正交矩阵11132611132612036⎛⎫ ⎪ ⎪−⎪=⎪ ⎪− ⎪ ⎪⎝⎭Q . 在正交变换=x Qy 下,二次型的标准型为222326f y y =+.。
中国科学院2012高等代数试题与答案+
中定义:
( A, B) tr( AT B) , A, B R 22 其中, AT 表示矩阵 A 的转置, tr( X ) 表示矩阵 X 的迹。 1) 证明 ( A, B) 是线性空间 R 22 的内积; 1 1 2) 设 W 是由 A1 , 0 0 交基。
A−1αβ T A−1 。 1 + β T A−1α
仿照 ( I m + BA) −1 = I m − B ( I n + AB ) −1 A 的证明方法,把 A + αβ T
先化为 A + αβ T = A( I + A−1α ⋅ β T ) ,得到
( A + αβ T ) −1 = ( I + A−1α ⋅ β T ) −1 A−1 = [ I − A−1α (1 + β T ⋅ A−1α ) −1 β T ] A−1
⎟ ⎠
A−1α ⎞ ⎟ 1 + β T A−1α ⎟ ⎟ 1 ⎟ T −1 1+ β A α ⎠ − A−1α ⎞ ⎟ 1 + β T A−1α ⎟ ⎛ I 0 ⎞ = ⎟ ⎟ ⎜ 1 ⎝0 1⎠ ⎟ 1 + β T A−1α ⎠
证明
⎛ −1 A−1αβ T A−1 A − α⎞ ⎜ 1 + β T A−1α ⎜ ⋅ ⎟ 1⎠ ⎜ β T A−1 ⎜ T −1 ⎝ 1+ β A α
线性方程组可求出基础解系,得 W ⊥ 的一组基 X 1 , X 2 ,用施密特正交化方法把
X 1 , X 2 化为标准正交基即得。略。
8 .证明 我们先证明若 T1 , T2 为非零线性变换,则存在向量 α ∈V ,使得
T1 (α ) ≠ 0 , T2 (α ) ≠ 0 : 因为 T1 , T2 非零, 故有向量 α1 , α 2 , 使得 T1 (α1 ) ≠ 0 , T2 (α 2 ) ≠ 0 ,
历年深圳大学考研真题试卷与答案汇总深大考研真题哪里找
历年深圳大学考研真题试卷与答案汇总深大考研真题哪里找June 8th, 2022, what a day of hard work.历年深圳大学考研真题试卷与答案汇总-深大考研真题哪里找汇集了深圳大学各专业历年考研真题试卷原版,同时与深圳大学专业课成绩前三名的各专业硕士研究生合作编写了配套的真题答案解析,答案部分包括了解题思路、答案详解两方面内容;首先对每一道真题的解答思路进行引导,分析真题的结构、考察方向、考察目的,向考生传授解答过程中宏观的思维方式;其次对真题的答案进行详细解答,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力;具体请点击进入考研资料深圳大学708艺术概论通识考研真题试卷2012-2013年考研资料深圳大学947教育心理学综合考研真题与答案2012-2013年考研资料深圳大学333教育综合考研真题试卷2012-2013年考研资料深圳大学705马克思主义基础理论考研真题试卷2004-2013年考研资料深圳大学925马克思主义中国化基本理论考研真题试卷2007-2013年考研资料深圳大学724建筑专业知识考研真题试卷2009-2013年考研资料深圳大学723城市规划与设计专业知识考研真题试卷2012-2013年考研资料深圳大学503城市规划与城市设计考研真题试卷2012-2013年考研资料深圳大学501建筑设计快题考研真题试卷2011-2013年考研资料深圳大学937工程光学二考研真题试卷2008-2013年考研资料深圳大学902光学考研真题试卷2009-2013年考研资料深圳大学903工程光学一考研真题试卷2008-2013年考研资料深圳大学904电子技术基础考研真题试卷2011-2013年考研资料深圳大学940自动控制原理二考研真题试卷2007-2013年考研资料深圳大学906自动控制原理一考研真题试卷2007-2013年考研资料深圳大学939机械设计基础二考研真题试卷2004-2013年考研资料深圳大学905机械设计基础一考研真题试卷2004-2013年,不含12考研资料深圳大学911材料科学基础考研真题试卷2004-2013年考研资料深圳大学933普通物理考研真题试卷2002-2013年考研资料深圳大学936材料科学基础考研真题试卷2011-2013年考研资料深圳大学908工程经济学考研真题试卷2006-2013年,不含09、10考研资料深圳大学土木工程结构综合知识一考研真题试卷2013年考研资料深圳大学907物流工程考研真题试卷2011-2013年考研资料深圳大学942土木工程结构综合知识二考研真题试卷2013年考研资料深圳大学717有机化学考研真题试卷2011-2013年考研资料深圳大学912物理化学考研真题试卷2004-2013年考研资料深圳大学938无机化学考研真题试卷2011-2013年考研资料深圳大学715生态学考研真题试卷2012-2013年考研资料深圳大学714分子生物学考研真题试卷2002-2013年考研资料深圳大学934细胞生物学考研真题试卷2002-2013年考研资料深圳大学701新闻传播学基础考研真题试卷2004-2016年考研资料深圳大学918媒体文化考研真题试卷2012-2016年考研资料深圳大学723日语语言学、日本文学考研真题试卷2012-2013年考研资料深圳大学722专业英语考研真题试卷2013年考研资料深圳大学950综合日语考研真题试卷2012-2013年考研资料深圳大学949综合英语考研真题试卷2004-2013年考研资料深圳大学919法学专业考研真题试卷2004-2013年,不含10考研资料深圳大学917会计学考研真题试卷2004-2005、2008-2013年考研资料深圳大学919西方经济学考研真题与答案2006-2018年考研资料深圳大学915经济学考研真题与答案2004-2013、2015年考研资料深圳大学434国际商务专业基础考研真题与答案2011-2013年考研资料深圳大学431金融学综合考研真题与答案2002-2018年考研资料深圳大学923行政管理理论考研真题与答案1999-2013年考研资料深圳大学914微观经济学考研真题试卷2011-2013年考研资料深圳大学913运筹学考研真题与答案2005-2013年,不含10考研资料深圳大学924西方政治思想史考研真题试卷2012-2013年考研资料深圳大学704政治学理论考研真题试卷2003-2013年考研资料深圳大学941交通运输工程学考研真题与答案2016-2018年考研资料名校431金融学综合考研真题答案汇编共两册考研资料 398法硕联考专业基础非法学考研真题答案2000-2018年考研资料 498法硕联考综合非法学考研真题答案2000-2018年考研资料 397法硕联考专业基础法学考研真题答案2000-2018年考研资料 497法硕联考综合法学考研真题答案2000-2018年考研资料深圳大学707法学基础考研真题2006-2013年,不含10考研资料各高校346体育综合考研真题汇编考研资料深圳大学501建筑设计考研真题2011-2013年考研资料各高校基础英语历年考研真题答案汇编考研资料各高校日语专业考研真题答案汇编考研资料各高校基础日语历年考研真题答案汇编考研资料各高校语言学历年考研真题答案解析考研资料各高校英美文学考研真题答案汇编考研资料各高校英汉互译考研真题答案汇编考研资料 2019年深圳大学二外法语考研强化冲刺题库考研资料各高校二外法语历年考研真题答案汇编考研资料各高校二外日语历年考研真题答案汇编考研资料深圳大学243英语二外考研真题2012-2013年考研资料深圳大学242法语二外考研真题2007-2013年考研资料深圳大学924二外日语考研真题2005-2012年考研资料 2019年深圳大学二外英语考研强化冲刺题库考研资料 2019年深圳大学二外日语考研强化冲刺题库考研资料各高校中国哲学史历年考研真题汇编考研资料各高校西方哲学史历年考研真题汇编考研资料各高校科学哲学历年考研真题汇编考研资料各高校中国现当代文学考研真题与答案汇编考研资料各高校中国文学史历年考研真题答案汇编考研资料各高校中国古代文学历年考研真题答案汇编考研资料各高校细胞生物学历年考研真题汇编考研资料各高校分子生物学历年考研真题汇编考研资料细胞生物学考试重难点与名校真题详解含期末卷考研资料分子生物学考试重难点与名校真题详解含期末卷考研资料各高校马克思主义基本原理考研真题答案汇编考研资料电路考试重难点与名校真题答案详解邱关源第五版考研资料信号与系统考试重难点与名校真题答案详解郑君里第三版考研资料微型计算机原理与接口技术考试重难点与名校真题答案详解冯博琴第三版考研资料中国美术简史考试重难点与名校真题答案详解中央美院考研资料美术概论考试重难点与名校真题答案详解王宏建考研资料各高校艺术学概论历年考研真题汇编考研资料各高校生理学考研真题试卷汇编考研资料生理学考试重难点与名校真题答案详解朱大年第八版考研资料生物化学考试重难点与名校真题答案详解查锡良第七版考研资料数字电路考试重难点与名校真题详解含期末卷考研资料外国近现代建筑史考试重难点与名校真题答案详解罗小未第二版考研资料外国建筑史考试重难点与名校真题答案详解陈志华第四版考研资料各高校机械设计考研真题汇编考研资料各高校自动控制原理考研真题汇编含部分答案解析考研资料各高校道路工程考研真题汇编考研资料自动控制原理考试重难点与名校真题答案详解胡寿松第六版考研资料机械设计基础考试重难点与名校真题答案详解杨可桢第六版考研资料各高校无机化学历年考研真题汇编考研资料各高校电子技术基础历年考研真题汇编含模拟、数字考研资料各高校材料科学基础考研真题答案汇编考研资料材料科学基础考试重难点与名校真题详解胡赓祥第三版考研资料各高校艺术概论与基础考研真题汇编考研资料戏剧戏曲专业知识考试重难点与名校真题答案详解考研资料影视学专业知识考试重难点与名校真题答案详解考研资料各高校音乐理论与音乐史考研真题汇编考研资料 2019深大333教育综合考研强化冲刺题库考研资料公司理财考研强化冲刺题库罗斯第九版考研资料 2019深大考研917会计学考试重难点与名校真题答案详解考研资料各高校会计学考研真题答案汇编考研资料国际金融新编考研强化冲刺题库姜波克第四版考研资料各高校金融学综合历年考研真题答案汇编考研资料各高校国际关系与国际政治考研真题汇编考研资料各高校工程经济学历年考研真题汇编考研资料各高校经济学考研真题试卷分析与答案汇编共六册考研资料各高校运筹学考研真题与答案解析考研资料政治学原理考试重难点与名校真题详解王惠岩第二版考研资料 199管理类联考综合能力考研真题详解及核心讲义考研资料 199管理类联考综合能力考研真题与典型题详解:写作分册考研资料 199管理类联考综合能力考研真题与典型题详解:数学分册考研资料 199管理类联考综合能力考研真题与典型题详解:逻辑分册考研资料深圳大学711艺术概论考研真题试卷2012-2013年考研资料深圳大学928艺术评论写作考研真题试卷2012-2013年考研资料深圳大学712美术史论考研真题试卷2011-2013年考研资料深圳大学929创作考研真题试卷2011-2013年考研资料深圳大学721专业造型基础考研真题试卷2012-2013年考研资料深圳大学713现代设计史、论考研真题试卷2007-2018年考研资料深圳大学948专业设计二考研真题试卷2012-2013年考研资料深圳大学930专业设计一考研真题试卷2011-2013年考研资料深圳大学910生物医学工程综合考研真题试卷2011-2013年考研资料深圳大学727医学细胞生物学考研真题试卷2011-2013年考研资料深圳大学944数字电子技术基础考研真题试卷2011-2013年考研资料深圳大学943电子系统综合考研真题试卷2011-2013年考研资料深圳大学909数字电路与专业综合考研真题试卷2011-2013年考研资料深圳大学718量子力学考研真题试卷2011-2013年考研资料深圳大学710中国文学史考研真题与答案2009-2013年考研资料深圳大学阅读与评论考研真题试卷2013年考研资料深圳大学709中国哲学史考研真题试卷2007-2013年,不含10考研资料深圳大学926西方哲学史考研真题试卷2007-2013年考研资料深圳大学726体育理论综合考研真题试卷2007-2013年,不含10考研资料深圳大学716数学分析考研真题试卷2004-2013年,不含10考研资料深圳大学932高等代数考研真题试卷2004-2013年,不含10考研资料深圳大学戏剧表演与语言传播艺术通识考研真题试卷2012-2013年。
2012年考研数学(二)真题
(D) 0 0 1
二、填空题(9—14 小题,每小题 4 分,共 24 分)
9.设 y
d2y y(x) 是由方程 x2 y 1 ey 所确定的隐函数,则 dx2
x0
________。
10.
lim
n
n
1
1 n2
22
1
n2
n2
1
n2
________。
11.设
z
f
2. 【答案】A
【解析】 f (0) (11)(1 2)(1 n) 0 ,则
f
'(0)
lim
x0
y(x) x
y(0) 0
lim
x0
(ex
1)(e2x
2)(enx x
n)
lim
x0
x(e2x
2) (enx x
n)
(1 2)(1 n) (1)n1(n 1)!。
3. 【答案】B
【解析】充分性:因为 an 0 ,所以数列 Sn 单调递增,又因为数列{Sn} 有界,所以数列{Sn}
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
x2 2