浙教版八年级三角形中几种模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、手拉手模型:

1手的判别:

判断左右,将等腰三角形顶角顶点朝上,左边为左手顶点,右边为右手顶点。

2手拉手的定义

两个顶角相等且有共顶点的等腰三角形形成的图形。(左手拉左手,右手拉右手)

3手拉手基本结论

①△ABC≌△AB'C'(SAS)

②∠BAB'=∠BOB'

③AO平分∠BOC'

二、例题

例1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC

(2)AE=DC

(3)AE与DC的夹角为60。

(4)△AGB≌△DFB

(5)△EGB≌△CFB

(6)BH平分∠AHC

(7)GF∥AC

H

F

G

E

D

变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC

(2) AE=DC

(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHC

变式练习2:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC

(2) AE=DC

(3) AE 与DC 的夹角为60。

(4)AE 与DC 的交点设为H,BH 平分∠AHC

变式训练3:两个等腰三角形ABD 与BCE ,其中AB=BD,CB=EB,∠ABD=∠CBE=a 连接AE 与CD. 问(1)△ABE ≌△DBC 是否成立?

(2)AE 是否与CD 相等?

(3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分∠AHC ?

例2:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?

(2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度?

(4)HD是否平分∠AHE?

例3:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 问(1)△ADG≌△CDE是否成立?

(2)AG是否与CE相等?

(3)AG与CE之间的夹角为多少度?

(4)HD是否平分∠AHE?

二、半角模型

1、条件:

.

180

2

1

=

+

θ

β

α且

2、思路:①截长补短

②旋转

例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:①.∠MAN=

45

②.

AB C

CMN

2

=

③.AM、AN分别平分∠BMN和∠DNM.

例2拓展:在正方形ABCD中,已知∠MAN=

45,若M、N分别在边CB、DC的延长线上移动,

①.试探究线段MN、BM 、DN之间的数量关系.

②.求证:AB=AH.

例3.在四边形ABCD中,∠B+∠D=

180,AB=AD,若E、F分别在边BC、CD上,且满足EF=BE +DF.

求证:

.

2

1

BAD EAF∠

=

练习巩固1:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF 三条线段之间的数量关系,直接写出判断结果:;

(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上

的点,且∠EAF=

2

1

∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由; (3)在(

2)问中,若将△AE F 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..

练习巩固2:已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .

(1)如图1,当MAN ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当MAN ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;

(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.

N

M

D

C

B

A

N

M

C

D

B

A

N

M D C

B

A

练习巩固3:在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,,为ABC ∆外一点,且60MDN ∠=︒,

120BDC ∠=︒,BD CD =,

探究:当点M N ,分别爱直线AB AC ,上移动时,BM BN MN ,,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.

图①

M N

D C

B

A 图②

M

N

D C

B

A N

图③

M

D C

B

A

相关文档
最新文档