A无穷级数常数项级数的审敛法

合集下载

高等数学-无穷级数简要讲解-2

高等数学-无穷级数简要讲解-2
9.2 常数项级数的审敛法
一、正项级数及其审敛法
1、正项级数收敛的充要条件

(1)定义:如果级数 un中各项均有un 0, n1
这种级数称为正项级数.
(2)正项级数收敛的充要条件:

如果级数 un为正项级数,则
部分和数列n1{sn}为单调增加数列.
正项级数收敛 部分和所成的数列sn有界.
n
(n

1) n
lim n (1
1 )n

e
1
n
则级数收敛。
5、根值审敛法(柯西判别法)

定理
对于正项级数
n1
un
,

lim
n
n
un


则当ρ<1时级数收敛, 当ρ>1时级数发散,
ρ=1时级数可能收敛也可能发散。
例8 判别下列级数的敛散性
1
(1) n1 (ln n)n
234
n

更一般的结论:交错级数
(1)n当P 0时收敛。
n2 n p
三、条件收敛与绝对收敛
下面讨论一般项级数 u1+u2 + u3+…+ un + …
其中un为任意实数。
1、定理


对于级数 un , 若级数 | un |收敛,
n1
n1
则级数 un也收敛。
n1


当 | un |收敛时,我们称任意项级数 un绝对收敛。
n2 1
n
1


1 收敛,
n2
n1

所以
n2 1
ln(1

第十一章 第2节常数项级数审敛法

第十一章 第2节常数项级数审敛法

例 2 证明级数

n =1

1 ∴ 级数 ∑ n 收敛 n =1 n 2

1 是发散的. 是发散的 n( n + 1)
1 1 , > 证明 ∵ n( n + 1) n + 1 ∞ ∞ ∞ 1 1 1 发散. 而级数 ∑ = ∑ 发散∴ 级数 ∑ , n( n + 1) n =1 n =1 n + 1 k =2 k
n=1

(1) 当 ρ < 1 时 , 级数收敛 ; (2) 当 ρ > 1 时 , 级数发散 .
22
说明 :
ρ = 1时 , 级数可能收敛也可能发散 .
例如 p - 级数
∑np
n= 1
nu n

1
1 un = p , n

1 = n →1 (n →∞) n
p
p >1 级数收敛 p ≤1 级数发散

∴ un+1 < (ρ +ε ) un < (ρ + ε )2 un−1 < ⋯< (ρ + ε )n−N uN+1
k
∞ n=1 n
∑(ρ +ε ) 收敛 , 由比较审敛法可知, 级数 ∑u
收敛 . 17
un+1 lim =ρ n→∞ un
un+1 当 n ≥ N 时, >1 un ∴ un+1 > un > un−1 >⋯> uN
∑u
n=1

n和
正项级数 ∑v 是两个正项级数 , u
n=1 n

n
≤ k vn ( 常数 k > 0 )

无穷级数审敛法汇总(一)

无穷级数审敛法汇总(一)

无穷级数审敛法汇总(一)\sum_{n=1}^\infty a_n 收敛\Leftrightarrow\forall\varepsilon>0,\exists N>0,n>m>N 时\Big|\sum_{k=m+1}^na_k\Big|=|a_{m+1}+\cdots+a_n|<\varepsilon 。

证:\sum_{n=1}^\infty a_n 收敛\Leftrightarrow\forall\varepsilon>0,\exists N>0,n>m>N 时,\exists \ a,\Big|\sum_{k=1}^m a_k-a\Big|<\frac{\varepsilon}{2},\Big|\sum_{k=1}^n a_k-a\Big|<\frac{\varepsilon}{2}\implies\Big|\sum_{k=m+1}^na_k\Big|=|a_{m+1}+\cdots+a_n|=\Big|\sum_{k=1}^n a_k-\sum_{k=1}^m a_k\Big|\leq\Big|\sum_{k=1}^n a_k\Big|+\Big|\sum_{k=1}^ma_k\Big|<\varepsilon.\qquad \qquad \square二.比较判别法(正项级数)正项级数 \sum_{n=1}^\infty a_n,\sum_{n=1}^\infty b_n ,若 \exists N\in \mathbb{N},c_1>0,c_2>0, 且n>N,c_1a_n\leq c_2b_n ,则\sum_{n=1}^\infty b_n 收敛 \implies\sum_{n=1}^\infty a_n 收敛; \sum_{n=1}^\infty a_n 发散\implies\sum_{n=1}^\infty b_n 发散。

无穷级数的定义性质和及敛散性判别

无穷级数的定义性质和及敛散性判别
级数的部分和
(常数项)无穷级数
n
sn u1 u2 un ui
部分和数列
i 1
s1 u1, s2 u1 u2, s3 u1 u2 u3,, sn u1 u2 un,
2. 级数的收敛与发散:
当n 无限增大时,如果级数 un 的部分和
n1
数列sn 有极限s ,

lim
n
sn
5! 55

n
3、
x2

2 4 6 (2n)
4、(1)n1 a n1 ; 2n 1
5、2k 1.2k 1,2k, 1 ; 6、 q 1, q 1. 2k
三、收敛. 四、1、发散;
2、收敛;
3、发散、[ s2n
n1 k1 (2k
1 )]. 10k
五、发散.[取 p 2n ]
1 (1 1) 1 (1 1) 1 ( 1 1 )
2 3 23 5
2 2n 1 2n 1
1 (1 1 ), 2 2n 1
lim
n
sn
lim 1 (1 n 2
1) 2n 1
1, 2
级数收敛, 和为 1 . 2
三、基本性质
性质 1 如果级数 un 收敛,则 kun 亦收敛.
解 如果q 1时
sn a aq aq2 aqn1
a aqn a aqn , 1q 1q 1q当q 1时,源自lim qn 0n
lim
n
sn
a 1q
当q 1时,
lim qn
n
lim
n
sn
收敛 发散
如果 q 1时
当q 1时, sn na
发散
当q 1时, 级数变为a a a a

A无穷级数常数项级数的审敛法.ppt

A无穷级数常数项级数的审敛法.ppt

lim(1
n
1 2
1 2n
)
3/26
二、概念
1. 级数的定义: un u1 u2 u3 un
n1
——(常数项)无穷级数,
部分和 sn u1 u2 un
一般项
2. 级数的收敛与发散:
若{sn }收敛(于 s),称 un 收敛, s 为 un 的和.
n1
n1
写成s = un .如果{sn }发散,称 un 发散.
n1
n1
余项 rn un1 un2 s sn .
4/26
例 1 讨论等比级数(几何级数) (a 0) aqn a aq aq2 aqn 的收敛性.
n0
解 当q 1时
sn a aq aq2
若q 1 limqn
若q
1
n
lim
q
n
若q 1, 级n数 为
n 2n
1, 2
假设调和级数收敛, 其和为s.
于是lim( s2n sn ) s s 0, 便 有
n
这是不可能的. 级数发散 .
0 1, 2
14/26
或由 2项
2项
4项
8项
(1 1) (1 1) (1 1 1 1) (1 1 1 ) 2 3 4 5 6 7 8 9 10 16
(
1 2m
1
1 2m
2
1 2m1
)
加 括 号 后 一 般 项vn
1 2
,v
n
0
(加括号后)级数发散 .
由性质4推论,调和级数发散.
2m项
15/26
例6 判别收敛性:1) 1 1 1 1 ;

2)
原式 1

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结摘要:本文简要阐述了常数项级数敛散性判别法。

由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。

关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。

无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。

在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。

主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。

1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。

若部分和数列{Sn}有极限S,即,则称级数(1)收敛。

若部分和数列{Sn}没有极限,则称级数(1)发散。

注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。

极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。

借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。

例如,由性质(1)和当|q|0时,01,则发散。

当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。

比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。

例2:判别级数的敛散性。

解:因为由比值判别法知级数收敛。

2.3 根植判别法设为正项级数,若有,则当0≤r1,则发散。

当级数含有n次幂,型如an或(un)n选用根值判别法。

根值判别法不需要与已知的基本级数进行比较。

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结作者:李娜来源:《山东工业技术》2014年第24期摘要:本文简要阐述了常数项级数敛散性判别法。

由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。

关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。

无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。

在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。

主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。

1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。

若部分和数列{Sn}有极限S,即,则称级数(1)收敛。

若部分和数列{Sn}没有极限,则称级数(1)发散。

注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。

极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。

借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。

例如,由性质(1)和当|q|2 正项级数敛散性判别法若级数各项均为非负数,则称该级数为正项级数。

正项级数收敛的充要条件是它的部分和数列有上界。

正项级数有以下几种常用判别法:2.1 比较判别法设与都是正项级数,且un≤vn(n=1,2,…),则收敛时,收敛;发散时,发散。

比较判别法适用范围比较广泛,当级数表达式型如,un为任意函数或un含有sinθ或cosθ等三角函数的因子可以进行适当的放缩时,选用比较判别法。

常数项级数的审敛法

常数项级数的审敛法

(1)n
n2 en
收敛,
因此
(1)n
n1
n2 en
绝对收敛.
首页
上页
返回
下页
结束

❖定理8(绝对收敛与收敛的关系)
如果级数 un 绝对收敛, 则级数 un 必定收敛.
n1
n1
例例142
判别级数
(1)n
n1
1 2n
(1
1 n
)n2
的收敛性.


|un
|
1 2n
(1
1 n
)n2
,

lim
n
n
|
un
|
❖p级数的收敛性
p级数 n1
1 np

p1
时收敛,
当 p1 时发散.
例 2 证明级数
1
是发散的.
n1 n(n1)
证证 因为 1 1 1 , n(n1) (n1)2 n1
而级数
n1
1 n 1
发散,
故级数 n1
1 也发散. n(n 1)
首页
上页
返回
下页
结束

调和级数与 p 级数是两个常用的比较级数.
1 np
( p 0) 的收敛性.
解 当 p1 时,
1 np
1 n
,
而级数 n11n 发散,
所以级数
n1
1 np
也发散.
首页
上页
返回
下页
结束

2) 若 p 1,因为当
1
np
n1 n1 n p
d
x
时,
1 np
1 xp
,

高数课件28无穷级数1常数项级数审敛法

高数课件28无穷级数1常数项级数审敛法
应用举例
对于形如$sum a^{n^2}$的级数,我们可以通过根号审敛法来判断其敛散性。
积分审敛法及其他方法简介
积分审敛法原理
设$f(x)$在$[1, +infty)$上非负且单调减少,则级数$sum_{n=1}^{infty} f(n)$与广义 积分$int_{1}^{+infty} f(x) dx$同敛散。
和函数求解技巧和性质总结
和函数求解技巧
和函数是幂级数的和,可以通过逐项积分、逐项求导 等方法求解。在求解过程中,需要注意积分和求导后 的收敛半径可能发生变化。
和函数性质
和函数具有连续性、可积性、可导性等性质。在收敛 域内,和函数可以表示为原函数的形式,从而方便进 行各种运算和分析。
典型例题分析与解答
足单调递减条件,因此不能用莱布尼茨判别法判断其敛散性。实际上,该级数发散。 • 例题2:判断级数$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n^2}$的敛散性。 • 解答:该级数为交错级数。对于数列$\frac{1}{n^2}$,由于$\frac{1}{(n+1)^2} < \frac{1}{n^2}$且$\lim{n
VS
交错级数性质
若交错级数收敛,则其满足$u_{n+1} leq u_n$,且$lim_{n to infty}u_n = 0$。
莱布尼茨判别法原理及应用举例
莱布尼茨判别法原理
对于交错级数$sum_{n=1}^{infty}(-1)^{n-1}u_n$,若数列${u_n}$单调递减且$lim_{n to infty}u_n = 0$,则该级数收敛。
THANKS FOR WATCHING
感谢您的观看
该幂级数的系数是 $frac{1}{n}$,可以通过比值 法或根值法求出收敛半径为1。 然后通过对幂级数逐项积分 或逐项求导等方法求出和函 数为$lnfrac{1}{1-x}$,但需 要注意收敛域为$(-1,1)$。

高数课件28无穷级数1常数项级数审敛法

高数课件28无穷级数1常数项级数审敛法


un1 ( n 1)! 10 n n 1 ( 2) ( n ), n 1 10 un n! 10
n! 故级数 n 发散. n1 10 un1 ( 2n 1) 2n 1, lim lim n u n ( 2n 1) ( 2n 2) n
证明 (1) 设 vn un vn ,
n 1



n 1
n 1
n 1

n 1
且 sn u1 u2 un v1 v2 vn
即部分和数列有界

un收敛. n 1

(2) 设 sn (n ) 且 un vn ,




则(1) 当 0 l 时, 二级数有相同的敛散性;
(2) 当 l 0 时,若
v n 收敛, 则 un 收敛; n 1
n 1


(3) 当 l 时, 若
v n 发散,则 un 发散;
n 1 n 1


un 证明 (1) 由lim l n v n
n n
s,
级数收敛于和s, 且s u1 .
余项 rn (un1 un 2 ),
rn un1 un 2 ,
满足收敛的两个条件,
rn un1 .
定理证毕.
( 1) n n 例 7 判别级数 的收敛性. n1 n 2

x (1 x ) ( ) 解 0 ( x 2) 2 x 1 2 x ( x 1) x 故函数 单调递减, un un1 , x 1 n 又 lim un lim 0. 原级数收敛. n n n 1

6-2 常数项级数的审敛法

6-2 常数项级数的审敛法

即 s ≤ s1 = a1 .其余项
上一页 下一页 返回
rn = (−1) an+1 + (−1) an+2 +L= (−1) (an+1 − an+2 + L)
n n
n= ( −1) a n +1 − a n + 2 + L ≤ a n +1 ;
n
因为an+1 ≥ 0, 所以 rn ≤ an+1 上述交错级数的审敛法也称为莱布尼兹审敛法 上述交错级数的审敛法也称为莱布尼兹审敛法
因此, 级数 ∑ ( −1)
n =1

n −1
1 收敛. n
返回
上一页
下一页
三、绝对收敛与条件收敛
以上讨论了正项级数与交错级数的敛散性, 以上讨论了正项级数与交错级数的敛散性 下面简单地讨论一下任意项级数的敛散性. 下面简单地讨论一下任意项级数的敛散性 形如
上一页 下一页 返回
类似地还可得到: 类似地还可得到: 一个正项级数(6-1), 如果对每一个 都有 如果对每一个n都有 一个正项级数
an+1 ≥ g > 1, an
那么这个正项级数是发散的. 那么这个正项级数是发散的
an+1 如果在正项级数(6-1)中,比值 a 的极限存 如果在正项级数 中 比值 n
上一页
下一页
返回
1 1 1 n−1 1 +L 例6-13 判别级数 1 − + − +L+ (−1) 2 3 4 n
的敛散性. 的敛散性.
1 1 1 解 因为 a n = , 所以a n + 1 = n + 1 < n = a n , 且有 n

无穷级数的审敛法与收敛性判别

无穷级数的审敛法与收敛性判别

无穷级数的审敛法与收敛性判别无穷级数是数学中的一个重要概念,利用无穷级数可以逼近函数的值。

但无穷级数是一个无限求和的概念,有可能会出现发散的情况,因此就有了收敛性判别和审敛法这两种方法来判定无穷级数是否收敛。

首先,让我们来看一下什么是无穷级数。

无穷级数是由无限多个数相加或相减所得到的一种数列求和方式,可以表示为以下形式:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+\ldots+a_n+\ldots$$其中,$a_n$ 表示第 $n$ 个数。

接下来,我们来介绍几种判定无穷级数收敛的方法。

一、正项级数判别法如果一个无穷级数的每一项都是非负数,即 $a_n\geq 0$,那么我们可以使用正项级数判别法来判断无穷级数是否收敛。

正项级数判别法的结果是,如果级数 $\sum\limits_{n=1}^{\infty}a_n$ 收敛,那么 $\lim\limits_{n\rightarrow \infty}a_n=0$。

这个结论非常重要,因为如果 $\lim\limits_{n\rightarrow\infty}a_n\neq 0$,那么级数 $\sum\limits_{n=1}^{\infty}a_n$ 一定发散。

这是因为无穷级数的每一项都是非负数,如果$\lim\limits_{n\rightarrow \infty}a_n\neq 0$,那么随着$n$ 的增大,$a_n$ 的大小也会越来越大,因此级数就会发散。

二、比较判别法比较判别法是一种常用的判定无穷级数收敛性的方法。

比较判别法的基本思想是,将待判定的级数与一个已知收敛或发散的级数进行比较,从而得出原级数的收敛性。

比较判别法分为两种情况:比较判别法一和比较判别法二。

比较判别法一表述如下:对于两个正项级数$\sum\limits_{n=1}^{\infty}a_n$ 和 $\sum\limits_{n=1}^{\infty}b_n$,如果存在一个正整数 $N$,使得当 $n>N$ 时,有 $a_n\leq kb_n$,其中 $k$ 是一个正常数,那么有以下结论:- 当级数 $\sum\limits_{n=1}^{\infty}b_n$ 收敛时,级数$\sum\limits_{n=1}^{\infty}a_n$ 收敛。

无穷级数-正项级数及其审敛法

无穷级数-正项级数及其审敛法


4. 判定下列级数的敛散性 : ∞ ∞ 1 1 (1 ) ∑ ; ( 2 ) ∑ ln 1 + 3 . 3 2 n n=1 n + a n=1 1 n 3 + a 2 = 1, 解 ( 1 ) 因 lim 3 n→ ∞ n 2
而级数
3 n=1 n 2


1
收敛,

由定理 11 .3 知, ∑
欲证 ∑ un 收敛 ,
n =1

定理11.3 (极限形式的比较审敛法) 设正项级数 ∑ un , ∑ vn 满足
n =1 n =1


则有
un lim =l n→ ∞ vn
(0 ≤ l ≤ +∞ ),
(1) 当 0 < l <+∞ 时, 两级数同敛散 ; (2) 当 l = 0 且 ∑ vn 收敛时, ∑ un 也收敛 ;
n =1
∑ v n收敛, 故原级数收敛 .

例7 判断
n =1


x 2n n
2
的敛散性
( x为常数
x 2 (n + 1 )
, x ≠ 0 , ± 1 ).
un + 1 = lim 解 因为 ρ = lim n→ ∞ n → ∞ un
= lim n2
n→ ∞
(n + 1 )2
n2
x 2n
(n + 1 )
(0 ≤ ρ ≤ +∞ ), 则
( 1) 当ρ < 1 时, 级数收敛 ; ( 2) 当ρ > 1或 ρ = +∞ 时, 级数发散 .
(3) 当ρ = 1 时, 根值审敛法失效.

第13章 无穷级数重点内容与练习

第13章 无穷级数重点内容与练习

都收敛
(B)
un 与
un2 都发散
n 1
n 1
n 1
n 1
(C) un 收敛,而
u
2 n
发散(D)
un 发散,而
un2
n 1
n 1
n 1
n 1
收敛
6. 级数 sin( n2 1) ( ).答案: B n1
(A)发散
(B)条件收敛
(C)绝对收敛 (D)敛散性无法判定
7.
级数
n1
sin n n2
( ).
(A) a ,b (B) a 2 ,b 2 2 +
2
2
2
2
(C) a ,b
22
答案: D .
(D) a 2 ,b
2
2
x2 1, 0 x ,
25.设
f
(x)
x2
1,
则 f (x) 以周期为 2 的傅
x 0.
里叶级数在点 x 处收敛于

答案: 2 .
1 n

).答案: C
(A)条件收敛 (B)绝对收敛
(C)发散
(D)无法确定
8. 设正项数列{an }单调减少,且级数 (1)n an 发散, n1
试讨论
(1)n (1 an1 ) 的敛散性.
n1
an
解:依题知
lim
n
an
存在,设
lim
n
an
a

a
0
,且
an a, n 1, 2,
而 (1)n (1 an1 ) an an1 an an1
ln
2
2
x
.当

高数 第十一章 无穷级数第二讲 常数项级数审敛法--正项级数

高数 第十一章  无穷级数第二讲  常数项级数审敛法--正项级数

第二讲 常数项级数审敛法--正项级数及其审敛法授课题目(章节):§11.2 常数项级数审敛法——正项级数及其审敛法教学目的与要求:1.了解正项级数收敛的充要条件;2.会用正项级数的比较审敛法和根值审敛法;3.掌握正项级数的比值审敛法;4.掌握p 级数的收敛性。

教学重点与难点:重点:比值审敛法难点:比较审敛法 讲授内容:定义 若0(1,2,......)n u n ≥=则称1nn u∞=∑为正项级数性质 (1)正项级数的部分和数列{}n s 单调递增,即1231n n s s s s s +≤≤≤≤≤(2)正项级数1nn u∞=∑收敛的充要条件是部分和数列{}n s 有界证明 (1)110(1,2,),n n n n u n s s u ++≥==+1n n s s +∴≥ (2)若1nn u∞=∑收敛,则{}n s 收敛,故{}n s 有界;若{}n s 有界,又{}n s 单调递增,故{}n s 收敛,从而1nn u∞=∑收敛。

正项级数审敛法 一、比较法定理1(比较审敛法)11,n nn n u v∞∞==∑∑均为正项级,且(1,2,)n n u v n ≤=若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。

证明 设级数1nn v∞=∑收敛于和σ,则级数1nn u∞=∑的部分和1212n n n s u u u v v v σ=+++≤+++≤即部分和数列{}n s 有界,故级数1nn u∞=∑收敛;反之,设1nn u∞=∑发散,若1nn v∞=∑收敛,由上面已证明的结论将有1nn u∞=∑收敛,与假设矛盾,故若1nn u∞=∑发散,则1nn v∞=∑发散。

推论11,n nn n u v∞∞==∑∑均为正项级数,且(,0)n n u kv n N N k ≤>>为自然数,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。

[经济学]高等数学第十一章无穷级数第二节常数项级数的审敛法

[经济学]高等数学第十一章无穷级数第二节常数项级数的审敛法
n =1


(3) 当 l = +∞ 时, 若
∑ v n 发散,则 ∑ un 发散;
n =1 n =1


un 证明 (1) 由lim = l n→ ∞ v n
l 对于ε = > 0, 2
l l un ∃ N , 当n > N时, l − < < l + 2 vn 2 l 3l 即 v n < un < v n 2 2 (n > N )
莱布尼茨定理
如果交错级数满足条件:
(ⅰ) un ≥ un + 1 ( n = 1,2,3,
) ;(ⅱ) lim un = 0 ,
1 1 n an a < 1, un < a ;a = 1, un ≡ ;a > 1, un < n . ( 2 )∑ ; 2n 2 a n =1 1 + a 2 ∞ v ( + 1 ) 1 π n π 2 n+1 2 = → ; ( 3)∑ n sin n ; un ~ n ⋅ n = vn, 2 2 vn 2 2n 2 n =1 ∞ un+1 n+1 p 1 np =( ) → 0; ( 4 )∑ ; un n n+1 n =1 n!
a n+1 (n + 1)! a n n!
(n + 1)
n +1
a a = → 1 n e (1 + ) n
nn ⎧ a < e , 收敛 , ⎪ ∴ ⎨ a > e , 发散 , ⎪ a = e , 发散 . ⎩
n n = a( ) n+1
3.根值审敛法 (柯西 Cauchy 判别法):

无穷级数微积分知识分享

无穷级数微积分知识分享

正项级数及其审敛法
正项级数:级数 an,an 0
n 1
部分和数列 {S n }单调上升,若数列 {S n }有界,

lim
n
S
n
存在,级数
an收敛。
n 1
正项级数收敛的充要条 件是:
部分和数列 {S n }有界。
比较审敛法
设 a n, b n 是正项级数,
n 1 n 1
若 a n bn , n 1,2, , 则
0, 若 bn收敛,则
n 1
a n也收敛;
n 1
(3)lim n
an bn
,若
b n 发散,则
n 1
a n也发散。
n 1
可用于比较的级数
(1)几何级数
n 1
ar
n
收敛
发散
,| ,|
r r
| |
1时 ; 1时 .
( 2) p级数
n 1
1 np
收敛 , p
发散
,
p
1时 ; 1时 .
i1
un (x)是x的函数。
例: sinn x sin x sin2 x sin3 x sinn x n1
收敛点
例 : sin n x sin x sin 2 x sin 3 x sin n x
n 1
x 时, 6
sin n sin sin 2 sin 3 sin n
ex
2:
n 1
sin 2 n2
n
ex 3: P 级数
, 1,
1,
n1 n p
1
ex 4 : sin
n 1
n
交错级数
(1)n1an a1 a2 a3 a4 (1)n1an
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档