半导体器件基础(4)

合集下载

半导体器件基础

半导体器件基础

半导体器件基础半导体器件是现代电子技术中极其重要的组成部分,它们广泛应用于电子设备和通信系统中。

本文将介绍半导体器件的基础知识,包括半导体材料、PN结、二极管、晶体管和集成电路。

一、半导体材料半导体器件的核心是半导体材料。

半导体材料是介于导体和绝缘体之间的材料,它的导电性能在室温下较低,但在特定条件下可被控制增强。

常见的半导体材料有硅和锗。

半导体材料的导电特性取决于其原子晶格的结构和杂质的掺入。

二、PN结PN结是半导体器件中常见的结构之一。

它由一个掺杂有三价杂质的P区和一个掺杂有五价杂质的N区组成。

在PN结中,P区的杂质原子会释放出空穴,而N区的杂质原子则释放出电子。

当P区和N区相接触时,空穴和电子将发生复合,形成电势垒。

这种电势垒在正向偏置和反向偏置下表现出不同的特性。

三、二极管二极管是最简单的半导体器件之一。

它由PN结组成,具有两个引线,分别为阴极和阳极。

二极管可用于整流、开关和发光等应用。

在正向偏置下,电流可以顺利通过二极管;而在反向偏置下,电流将被截断。

四、晶体管晶体管是半导体器件的一种重要类型。

它由三个掺杂不同的区域组成,分别为发射极、基极和集电极。

晶体管可用于放大、开关和振荡等电路中。

具体而言,当有电流流经基极时,晶体管将放大电流,并将其从发射极传递到集电极。

五、集成电路集成电路是将大量的半导体器件和电子元件集成在单个芯片上的技术。

它是现代电子技术发展的重要里程碑,使得电子设备更小、更强大。

集成电路分为两种主要类型:模拟集成电路和数字集成电路。

模拟集成电路用于处理连续变化的信号,而数字集成电路则用于处理离散的数字信号。

综上所述,半导体器件作为现代电子技术的基础,具有广泛的应用前景。

通过了解半导体材料、PN结、二极管、晶体管和集成电路等基础知识,我们可以更好地理解和应用半导体器件,推动电子技术的进步和创新。

半导体器件基础4

半导体器件基础4
此时发射结正向运用, 集电结反向运用。 在曲线上是
比较平坦的部分, 表示当IB一定时, IC的值基本上不随 UCE而变化。在这个区域内,当基极电流发生微小的变化量 ΔIB时, 相应的集电极电流将产生较大的变化量ΔIC, 此
时二者的关系为
ΔIC=βΔIB
该式体现了三极管的电流放大作用。
对于NPN三极管, 工作在放大区时UBE≥0.7V, 而 UBC<0。

I C 1 . 74 58 I B 0 . 03
2 . 33 1 . 14 0 . 983 2 . 37 1 . 16



1 . 74
0 . 983
1 . 77
第1章 半导体器件基础
1.3.4 三极管的特性曲线
Rc IC +
mA

Rb
IB
A


U CC
(1-8)
第1章 半导体器件基础
发射区注入的电子绝大多数能够到达集电极, 形成
集电极电流, 即要求ICn>>IBn。
通常用共基极直流电流放大系数衡量上述关系, 用α
来表示, 其定义为



ICn

ICn
(1-9)
IEn IE
一般三极管的α值为0.97~0.99。将(1-9)式代入(1-6) 式,

其中ICEO称为穿透电流,

ICEO(1)ICBO
一般三极管的β约为几十~几百。β太小, 管子的放大能 力就差, 而β过大则管子不够稳定。
第1章 半导体器件基础
表1 - 3 三极管电流关系的一组典型数据
IB/mA -0.001 0 0.01 0.02 0.03 0.04 0.05 IC/mA 0.001 0.01 0.56 1.14 1.74 2.33 2.91 IE/mA 0 0.01 0.57 1.16 1.77 2.37 2.96

半导体器件基础

半导体器件基础

半导体器件基础一、引言半导体器件是现代电子技术的基础,广泛应用于通信、计算机、消费电子等各个领域。

本文将对半导体器件的基础知识进行介绍,包括半导体材料、PN结、二极管和晶体管。

二、半导体材料半导体器件的制作材料主要是硅(Si)和锗(Ge)。

这两种材料的原子结构中,外层电子数与内层电子数相差较小,使得它们具有较好的导电性能。

此外,硅和锗还具有稳定的化学性质和较高的熔点,适合用于制作半导体器件。

三、PN结PN结是半导体器件中最基本的结构之一。

它由一个P型半导体和一个N型半导体组成。

在PN结中,P型半导体中的空穴(正电荷)和N型半导体中的电子(负电荷)会发生扩散,形成空间电荷区。

空间电荷区中的电荷分布形成了电场,使得PN结两侧形成了正负电势差。

当外加电压使得PN结正向偏置时,空间电荷区变窄,电流可以通过;当外加电压使得PN结反向偏置时,空间电荷区变宽,电流无法通过。

PN结的这种特性使其成为二极管和晶体管等器件的基础。

四、二极管二极管是一种最简单的半导体器件,由PN结组成。

二极管具有只能单向导通电流的特性,即正向偏置时电流可以通过,反向偏置时电流无法通过。

二极管广泛应用于电路中的整流、限流和保护等功能。

五、晶体管晶体管是一种三层PN结的器件,由发射极、基极和集电极构成。

晶体管的工作方式取决于PN结的偏置状态。

当PN结适当偏置时,发射极和集电极之间的电流受到基极电流的控制。

晶体管可以放大电流和信号,广泛应用于放大器、开关和逻辑电路等领域。

六、其他半导体器件除了二极管和晶体管,半导体器件还包括场效应晶体管(FET)、可控硅(SCR)等。

FET是一种基于电场控制的器件,具有高输入阻抗和低噪声的特点,适用于放大和开关电路。

SCR是一种具有双向导通特性的器件,广泛应用于交流电控制领域。

七、结论半导体器件基础知识对于理解和应用现代电子技术至关重要。

本文介绍了半导体材料、PN结、二极管和晶体管等基本概念。

通过深入学习和理解半导体器件的基础知识,我们可以更好地应用和创新电子技术,推动科技进步和社会发展。

半导体器件基础

半导体器件基础

IF(多子扩散) 反向饱和电流 反向击穿电压 正偏
反偏 反向击穿 IR(少子漂移)
电击穿——可逆
2019年1月14日星期一5时11 分50秒
热击穿——烧坏PN结
11
根据理论分析:
i I S (e
u
UT
1)
T
UT =kT/q 称为温度的电压当量 u U 当 u>0 u>>UT时 e 1 其中k为玻耳兹曼常数 u 1.38×10-23 i I Se U T -9 q 为电子电荷量 1.6 × 10 u 当 u<0 |u|>>|U T |时 e U T 1 T 为热力学温度 对于室温(相当T=300 K) i IS 则有UT=26 mV。
3

E
+4 +4 +4

自由电子
4、导电机制
+4 +4 +4
+4
自由电子 载流子 空穴 带负电荷 带正电荷
+4
电子流
+4
空穴流

=总电流
本征半导体的导电性取决于外加能量:
温度变化,导电性变化;光照变化,导电性变化。
2019年1月14日星期一5时11 分50秒 4
二. 杂质半导体
在本征半导体中掺入某些微量杂质元素后的半导体称为 杂质半导体。 硅原子
△I
I z ma x
△U
27
稳压二极管的主要 参数 (1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下 ,所对应的反向工作电压。
UZ
i
(2) 动态电阻rZ ——
陡。
I z min
△I

半导体基础知识

半导体基础知识

设VCC = 5V 加到A,B的 VIH=3V
VIL=0V 二极管导通时 VDF=0.7V
A BY 0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
规定2.3V以上为1 0V以下为0
A BY 0 00 0 11 1 01 1 11
二极管构成的门电路的缺点
• 电平有偏移 • 带负载能力差
第三章 门电路
3.1 概述 • 门电路:实现基本运算、复合运算的单元电路,如
与门、与非门、或门 ······
门电路中以高/低电平表 示逻辑状态的1/0
获得高、低电平的基本原理
高/低电平都允许有 一定的变化范围
正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1
3.2半导体二极管门电路
T1 , T2同时导通
若T1 , T2参数完全对称,VI
1 2
VDD时,VO
1 2 VDD
三、输入噪声容限
在VI 偏离VIH 和VIL的一定范围内,VO 基本不变; 在输出变化允许范围内,允许输入的变化范围称为输入噪声容限
VNH VOH(min) VIH (min) VNL VIL(max) VOL(max)
• 硅管,0.5 ~ 0.7V • 锗管,0.2 ~ 0.3V
• 近似认为:
• VBE < VON iB = 0 • VBE ≥ VON iB 的大小由外电路电压,电阻决定
iB
VBB VBE Rb
三极管的输出特性
• 固定一个IB值,即得一条曲线, 在VCE > 0.7V以后,基本为水平直线
iC f (VCE )
iC f (VCE )
三、双极型三极管的基本开关电路

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

半导体元器件基础

半导体元器件基础

对。
二、齐纳击穿

在 重 掺 杂 的 PN 结 中 , 耗 尽 区 很
窄,所以不大的反向电压就能在耗尽区
内形成很强的电场。当反向电压大到一
定值时,强电场足以将耗尽区内中性原
子的价电子直接拉出共价键,产生大量
电子、空穴对,使反向电流急剧增大。
这种击穿称为齐纳击穿或场致击穿。 一 般 来 说 , 对 硅 材 料 的 PN 结 , UBR>7V 时 为 雪 崩 击 穿 ; UBR <5V 时 为 齐 纳 击 穿; UBR介于5~7V时,两种击穿都有。
界面的两侧形成了由等量正、负离子组 成的空间电荷区,如图1―7(b)所示。
空间电荷区
P
N
P
N
(a)
内电场
UB
(b)
图1―7PN结的形成

由于空间电荷区内没有载流子,所以
空间电荷区也称为耗尽区(层)。又因为空间电
荷区的内电场对扩散有阻挡作用,好像壁垒
一样,所以又称它为阻挡区或势垒区。

实际中,如果P区和N区的掺杂浓度相
+4
+4
+4

电 子
共 价
+4
+4
+4

+4
+4
+4
图1―2单晶硅和锗的共价键结构示意图
半导体中的载流子——自由电子和空穴
在绝对零度(-273℃)时,所有价电子都被束缚在共 价键内,晶体中没有自由电子,所以半导体不能导 电。当温度升高时,键内电子因热激发而获得能 量。其中获得能量较大的一部分价电子,能够挣脱 共价键的束缚离开原子而成为自由电子。与此同时 在共价键内留下了与自由电子数目相同的空位,如 图1―3所示。

使P区电位低于N区电位的接法,称PN

半导体器件知识点

半导体器件知识点

半导体器件知识点半导体器件是指基于半导体材料制造的用于控制和放大电信号的电子元件。

它在现代电子技术中扮演着重要的角色,广泛应用于计算机、通信、消费电子、能源等领域。

本文将介绍与半导体器件相关的几个重要知识点。

一、半导体材料半导体器件的核心是半导体材料。

半导体是介于导体和绝缘体之间的一类材料,具有一定的导电性能。

常见的半导体材料有硅(Si)和锗(Ge)等。

它们具有禁带宽度,当外加电场或温度变化时,半导体的导电性能会发生变化。

二、PN结PN结是半导体器件中最基本的结构之一。

它由P型半导体和N型半导体的结合组成。

P型半导体中的载流子主要是空穴,N型半导体中的载流子主要是电子。

PN结的形成使得电子和空穴发生扩散运动,形成电场区域,从而产生电流。

三、二极管二极管是一种基本的半导体器件。

它由PN结组成,具有单向导电性能。

正向偏置时,电流顺利通过;反向偏置时,电流几乎无法通过。

二极管广泛用于电源电路、信号检测和电波混频等应用。

四、晶体管晶体管是半导体器件中的重要组成部分,常见的有三极管和场效应晶体管。

它可以实现电流放大和控制,是现代电子设备中的核心部件之一。

晶体管广泛应用于放大器、开关、时钟和计算机存储器等领域。

五、集成电路集成电路是将大量的晶体管、电阻、电容和其他元件集成在同一片半导体芯片上。

它具有体积小、功耗低和可靠性高的特点。

集成电路分为模拟集成电路和数字集成电路,应用于电子计算机、通信设备和消费电子产品等领域。

六、光电器件光电器件是利用光与半导体材料相互作用的器件。

常见的光电器件有光电二极管、光敏电阻、光电晶体管和光电开关等。

光电器件广泛应用于光通信、光电转换、激光器等领域。

七、功率半导体器件功率半导体器件是用于大电流和高电压应用的特殊半导体器件。

常见的功率半导体器件有晶闸管、功率二极管和功率MOSFET。

功率半导体器件广泛应用于电动车、工业控制和能源转换等领域。

八、封装技术为了保护和连接半导体芯片,需要进行封装。

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识在当今科技飞速发展的时代,半导体器件已经成为了现代电子技术的核心基石。

从我们日常使用的智能手机、电脑,到各种先进的医疗设备、航空航天系统,半导体器件无处不在,深刻地影响着我们的生活和社会的发展。

那么,什么是半导体器件?它们是如何工作的?又有哪些常见的类型和应用呢?接下来,让我们一起走进半导体器件的世界,探寻其中的奥秘。

一、半导体的基本特性要理解半导体器件,首先需要了解半导体材料的特性。

半导体是一种导电性介于导体和绝缘体之间的材料,常见的半导体材料有硅(Si)、锗(Ge)等。

半导体的导电性可以通过掺杂等方式进行精确控制,这使得它们在电子器件中具有独特的应用价值。

半导体的一个重要特性是其电导特性对温度、光照等外部条件非常敏感。

例如,随着温度的升高,半导体的电导通常会增加。

此外,半导体还具有光电效应,即当半导体受到光照时,会产生电流或改变其电导特性,这一特性在太阳能电池、光电探测器等器件中得到了广泛应用。

二、半导体器件的工作原理半导体器件的工作原理主要基于 PN 结。

PN 结是在一块半导体材料中,通过掺杂工艺形成的P 型半导体区域和N 型半导体区域的交界处。

P 型半导体中多数载流子为空穴,N 型半导体中多数载流子为电子。

当P 型半导体和 N 型半导体结合在一起时,由于两种区域的载流子浓度差异,会发生扩散运动,形成内建电场。

在 PN 结上加正向电压(P 区接正,N 区接负)时,内建电场被削弱,多数载流子能够顺利通过 PN 结,形成较大的电流,此时 PN 结处于导通状态。

而加反向电压时,内建电场增强,只有少数载流子能够形成微小的电流,PN 结处于截止状态。

基于 PN 结的这一特性,可以制造出二极管、三极管等多种半导体器件。

三、常见的半导体器件1、二极管二极管是最简单的半导体器件之一,它只允许电流在一个方向上通过。

二极管在电路中常用于整流(将交流电转换为直流电)、限幅、稳压等。

例如,在电源适配器中,二极管组成的整流电路将交流市电转换为直流电,为电子设备供电。

半导体器件基础知识

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

半导体器件基础

半导体器件基础
二、半导体二极管及其特性
半导体二极管,也叫晶体二极管。它由一个PN结构成,具有单向导电性,是整流电路的核心器件。
几种常见二极管的外形
二极管的结构及电路符号 二极管 = PN结 + 管壳 + 引线
二极管的特性——单向导电性
二极管在电路中受外加电压控制共有两种工作状态: 正向导通和反向截止。 正向导通特性: 正向电压达到一定程度(硅二极管为0.6V,锗二极管为0.2V), 二极管导通,正向电流增加很快,导通时正向电压有一个很小的变化,就会引起正向电流很大的变化,两引脚之间的电阻很小,相当于开关接通。
小结
半导体材料的导电性能介于导体和绝缘体之间。半导体具有热敏、光敏、杂敏等特性。常用的半导体材料是硅和锗,并被制作成晶体。 半导体导电时有两种载流子(自由电子和空穴)参与形成电流。在纯净的半导体中掺入不同的微量杂质,可以得到N型半导体(电子型)和P型半导体(空穴型)。 P型半导体和N型半导体相连接在结合处形成PN结,PN结的基本特性是具有单向导电性。
多数载流子——自由电子 少数载流子——空穴
N型半导体主要是电子导电。
N型半导体和P型半导体
P型半导体 【Positive空穴】
1
在锗或硅晶体内掺入少量三价元素杂质,如硼;这样在晶体中有了多余的空穴。
2
空穴
3
硼原子
4
硅原子
5
多数载流子——空穴 少数载流子——自由电子
6
P型半导体主要是空穴导电。
7
PN结及其增大,PN结被电击穿,失去单向导电性。如果没有适当的限流措施,PN结会被热烧毁。
综上所述
PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流,PN结导通(相当开关闭合); PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流,PN结截止(相当开关断开)。 由此可以得出结论:PN结具有单向导电性(开关特性)。

半导体器件基础

半导体器件基础

半导体器件基础绝大部分二端器件(即晶体二极管)的基本结构是一个PN结。

利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极,可用来产生、控制、接收、变换、放大信号和进行能量转换。

晶体二极管的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。

三端器件一般是有源器件,典型代表是各种晶体管(又称晶体三极管)。

晶体管又可以分为双极型晶体管和场效应晶体管两类。

根据用途的不同,晶体管可分为功率晶体管微波晶体管和低噪声晶体管。

除了作为放大、振荡、开关用的一般晶体管外,还有一些特殊用途的晶体管,如光晶体管、磁敏晶体管,场效应传感器等。

这些器件既能把一些环境因素的信息转换为电信号,又有一般晶体管的放大作用得到较大的输出信号。

此外,还有一些特殊器件,如单结晶体管可用于产生锯齿波,可控硅可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存储器件等。

在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。

随着微波通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。

微波半导体器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的应用。

晶体二极管的基本结构是由一块P型半导体和一块N型半导体结合在一起形成一个PN结。

在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。

这偶极层阻止了空穴和电子的继续扩散而使PN 结达到平衡状态。

当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。

如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。

因此,PN结具有单向导电性。

此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。

半导体器件基础

半导体器件基础

半导体器件基础半导体器件是由半导体材料制成的电子元件,用于控制和放大电流和电压。

常见的半导体器件有二极管、晶体管、场效应管、双极型晶体管、光电二极管等。

半导体器件的基础知识包括以下几个方面:1. 半导体材料:半导体器件主要使用硅(Si)和砷化镓(GaAs)等半导体材料。

半导体材料具有介于导体和绝缘体之间的电导特性,可以通过控制材料的掺杂来调节其导电性。

2. PN结:PN结是半导体器件中最基本的结构,由P型和N型半导体材料直接接触而成。

在PN结中,P型半导体中的空穴与N型半导体中的电子发生复合,形成一个电子云区,这称为耗尽区。

耗尽区的存在使得PN结具有正向导通和反向截止的特性。

3. 二极管:二极管是一种最简单的半导体器件,由PN结构成。

在正向偏置(即P端连接正电压)时,二极管导通,允许电流通过;在反向偏置(即N端连接正电压)时,二极管截止,电流无法通过。

二极管广泛用于整流和保护电路中。

4. 晶体管:晶体管是一种三层构造的半导体器件,通常分为NPN和PNP两种类型。

晶体管可以作为开关或放大器使用,可以控制一个输入电流或电压来控制另一个输出电流或电压。

晶体管的放大性能使得它在电子设备中有广泛的应用。

5. 场效应管:场效应管是一种基于电场效应的半导体器件,包括MOSFET(金属-氧化物-半导体场效应管)和JFET (结型场效应管)两种。

场效应管具有高输入电阻、低输入电流、低噪声等特点,常用于放大和开关电路中。

6. 光电器件:光电器件包括光电二极管和光电三极管,它们能够将光信号转换为电信号。

光电器件广泛应用于光通信、光电传感、光能转换等领域。

以上是半导体器件基础的概述,深入了解半导体器件还需要学习更多的电子物理和电路理论知识。

电路中的半导体器件基础知识总结

电路中的半导体器件基础知识总结

电路中的半导体器件基础知识总结电路中的半导体器件是电子技术的重要组成部分,广泛应用于各种电子设备和系统中。

了解和掌握半导体器件的基础知识对于工程师和电子爱好者来说至关重要。

本文将对半导体器件的基础知识进行总结,包括半导体材料、二极管、场效应管和晶体三极管等方面。

一、半导体材料半导体器件的基础是半导体材料。

半导体材料具有介于导体和绝缘体之间的导电性能,其电阻随着温度的变化而变化。

常用的半导体材料有硅和锗。

硅是最重要的半导体材料之一,应用广泛。

半导体材料的导电特性由材料中的杂质控制,将适当的杂质加入纯净的半导体中可以改变其导电性能,这就是掺杂。

二、二极管二极管是一种最简单的半导体器件,它由正负两极组成。

二极管的主要作用是对电流进行整流,也可以用于稳压、开关等电路。

二极管的工作原理是利用PN结的特性。

PN结是由P型半导体和N型半导体连接而成,在PN结的接触面上形成空间电荷区,通过控制电势差,可以控制空间电荷区的导电状态。

在正向偏置时,电流可以从P端流向N端,形成导通状态;在反向偏置时,电流不能从N端流向P端,形成截止状态。

三、场效应管场效应管是一种三电极器件,由栅极、漏极和源极组成。

场效应管的工作原理是利用栅极电场的调控作用来控制漏极和源极之间的电流。

常用的场效应管有MOSFET(金属氧化物半场效应晶体管)和JFET(结型场效应晶体管)等。

MOSFET主要由金属栅极、绝缘层和半导体构成,栅极电压的变化可以控制漏极和源极之间的电流;JFET 主要由PN结构成,通过栅极电压的变化来控制漏极和源极之间的空间电荷区的导电状态。

四、晶体三极管晶体三极管是一种三电极器件,由发射极、基极和集电极组成。

晶体三极管的主要作用是放大和控制电流。

晶体三极管的工作原理是利用少数载流子在不同电极之间的输运和扩散来实现,发射极和基极之间的电流变化可以通过集电极和基极之间的电流放大。

晶体三极管有NPN型和PNP型两种,其中NPN型的晶体三极管发射极和基极连接为N型半导体,集电极为P型半导体;PNP型的晶体三极管发射极和基极连接为P型半导体,集电极为N型半导体。

《半导体器件基础》课件

《半导体器件基础》课件
《半导体器件基础》PPT 课件
这个PPT课件将带你深入了解半导体器件基础知识,从定义和分类开始,逐步 介绍固体物理基础、材料特性及应用等内容。
第一章 概述
半导体器件的定义和分类
从理解半导体器件的概念和分类开始,打下良好的基础。
固体物理基础
了解固体物理基础和半导体的结构特性,为后续内容打下坚实的基础。
介绍在半导体器件制造过程中使用的工艺辅助设备和材料。
第八章 半导体器件测试与可靠性
半导体器件生产过程中的测试
讨论半导体器件生产过程中的测试方法和步骤,确保 产品质量。
半导体器件的可靠性分析方法
介绍半导体器件的可靠性分析方法,以提高产品可靠 性和寿命。
结语
1 半导体器件的未来发展趋势
2 学习资源和参考文献
CMOS电路的设计原理 和技巧
讲解CMOS电路设计的原理和技巧, 探索其优势和应用范围。
第五章 光电子器件
光电二极管和光电晶体管
了解光电二极管和光电晶体管的原理和结构,以及其在光电子学中的应用。
光电耦合器件和光电器件应用
探索光电耦合器件和其他光电器件的特性和应用领域。
第六章 集成电路和MEMS器件
展望半导体器件领域的未来,包括新技术和应用。
提供学习资源和参考文献,以便进一步学习和探 索。
2
稳压二极管
介绍稳压二极管及其在电路中的应用,以及其工作原理。
3
功率晶体管
理解功率晶体管的工作原理和应用,探讨其在电路中的功能。
第四章 MOS场效应管
基础概念和原理
深入了解MOS场效应管的基本概 念、工作原理和操作特性。
MOSFET的模型和特性
介绍MOSFET的模型和特性,包括 负载线和阈值电压等。各种应用中的表现。

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识在现代科技的高速发展中,半导体器件扮演着至关重要的角色。

从我们日常使用的智能手机、电脑,到各种智能家电、汽车电子,乃至航空航天、医疗设备等领域,都离不开半导体器件的身影。

那么,究竟什么是半导体器件?它们是如何工作的?又有哪些常见的类型和应用呢?接下来,让我们一起走进半导体器件的世界,探寻其中的奥秘。

首先,我们来了解一下什么是半导体。

半导体是一种导电性介于导体和绝缘体之间的材料,常见的半导体材料有硅、锗等。

与导体相比,半导体的导电性较差,但通过特殊的工艺和处理,可以对其导电性进行精确的控制和调节。

半导体器件的核心原理是基于半导体的特性,利用外部电场、温度、光照等条件来改变半导体内部的载流子(电子和空穴)的分布和运动,从而实现对电流、电压等电学参数的控制和转换。

常见的半导体器件之一是二极管。

二极管具有单向导电性,就像一个单向的阀门,电流只能从一个方向通过。

当在二极管上施加正向电压时,电流可以顺利通过;而施加反向电压时,电流几乎无法通过,只有极小的反向漏电流。

二极管在电源整流、信号检波、限幅等方面有着广泛的应用。

另一种重要的半导体器件是晶体管。

晶体管可以分为双极型晶体管(BJT)和场效应晶体管(FET)两大类。

双极型晶体管是通过控制两种不同类型的载流子(电子和空穴)来实现电流放大和开关作用的。

而场效应晶体管则是通过电场来控制半导体中多数载流子的运动,从而实现电流的控制。

场效应晶体管又可进一步分为结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。

MOSFET 由于其低功耗、高集成度等优点,在现代集成电路中得到了极为广泛的应用。

在集成电路中,成千上万甚至数十亿个半导体器件被集成在一个小小的芯片上。

通过复杂的工艺和设计,实现了各种功能强大的电路,如微处理器、存储器、数字信号处理器等。

半导体器件的性能指标对于其应用有着重要的影响。

例如,工作电压、电流、频率响应、功率损耗等都是需要考虑的因素。

半导体器件重要知识点总结

半导体器件重要知识点总结

半导体器件重要知识点总结一、半导体基础知识1. 半导体的概念及特性:半导体是指导电性介于导体和绝缘体之间的一类材料。

由于半导体材料的导电性能受温度、光照等外部条件的影响比较大,它可以在不同的条件下表现出不同的导电特性。

半导体材料常见的有硅、锗等。

2. P型半导体和N型半导体:P型半导体是指在半导体材料中掺入了3价元素,如硼、铝等,使其成为带正电荷的空穴主导的半导体材料。

N型半导体是指在半导体材料中掺入了5价元素,如磷、砷等,使其成为自由电子主导的半导体材料。

3. 掺杂:半导体器件在制造过程中一般都要进行掺杂,以改变其导电性能。

掺杂分为N型掺杂和P型掺杂,通过掺杂可以使半导体材料的导电性能得到调控,从而获得所需要的电子特性。

4. pn结:pn结是指将P型半导体和N型半导体直接连接而成的结构,它是构成各类半导体器件的基础之一。

pn结具有整流、发光、光电转换等特性,在各类器件中得到了广泛的应用。

二、半导体器件的基本知识1. 二极管(Diode):二极管是一种基本的半导体器件,它采用pn结的结构,在正向偏置时可以导通,而在反向偏置时则将电流阻断。

二极管在各类电子电路中具有整流、电压稳定、信号检测等重要作用。

2. 晶体管(Transistor):晶体管是一种由半导体材料制成的三电极器件,它采用多个pn结的结构,其主要功能是放大信号、开关电路和稳定电路等。

晶体管在各类电子器件中扮演着至关重要的作用,是现代电子技术的重要组成部分。

3. 集成电路(IC):集成电路是将大量的半导体器件集成在一块半导体芯片上的器件,它可以实现各种功能,如存储、计算、通信等。

集成电路在现代电子技术中已成为了各类电子产品不可或缺的一部分,是现代电子产品的核心之一。

4. MOS场效应管(MOSFET):MOSFET是一种基于金属-氧化物-半导体的结构的场效应晶体管,它在功率控制、开关电路、放大器等方面有着重要的应用。

MOSFET在各类电源、电动机控制等领域得到了广泛的应用。

半导体电子元器件基本知识

半导体电子元器件基本知识

半导体电子元器件基本知识四、光隔离器件光耦合器又称光电耦合器,是由发光源和受光器两部分组成。

发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。

常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。

受光器引出的管脚为输出端。

光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。

光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。

具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。

如在:高压开关、信号隔离转换、电平匹配等电路中。

光隔离常用如图:五、电容有电解电容、瓷片电容、涤纶电容、纸介电容等。

利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。

电解电容是有极性的(有+、-之分)使用时注意极性和耐压。

电路原理图一般用C1、C2、C?等表示。

半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。

导电能力介于导体和绝缘体之间的物质称为半导体。

具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。

PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。

PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。

一、二极管将PN结加上相应的电极引线和管壳就成为半导体二极管。

P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。

二极管正向导通特性(死区电压):硅管的死区电压大于0。

5V,诸管大于0。

1V。

用数字式万用表的二极管档可直接测量出正极和负极。

利用二极管的单向导电性可以组成整流电路。

将交流电压变为单向脉动电压。

半导体器件基础第4讲

半导体器件基础第4讲

04
CATALOGUE
半导体器件的应用
电子器件
晶体管
晶体管是半导体器件中最基本的一种 电子器件,具有放大、开关和整流等 功能,广泛应用于电子设备中。
数字逻辑门
数字逻辑门是实现数字逻辑运算的电 子器件,如与门、或门、非门等,是 计算机和其他数字系统的基础。
集成电路
集成电路是将多个电子器件集成在一块 芯片上,实现特定的电路功能,广泛应 用于计算机、通信、消费电子等领域。
半导体二极管的伏安特性
正向导通时,电流随电压的增大而增大;反向截 止时,电流极小;反向击穿时,电流剧增。
双极晶体管的电流-电压特性
基极电流、集电极电流和发射极电流之间存在相 互关系,通过改变基极电流可以控制集电极电流 。
场效应晶体管的电流-电压特性
栅极电压可以控制源极和漏极之间的电流,具有 放大作用。
半导体器件的基本结构
p-n结
p-n结是由一个正(p)型半导 体和一个负(n)型半导体紧密 结合形成的界面。
在p-n结中,由于电子和空穴 的浓度差,会产生扩散电流和 漂移电流,形成一定的电阻。
p-n结具有单向导电性,是构 成各种半导体器件的基础。
双极结型晶体管
01
双极结型晶体管(BJT)是由两个p-n结和三部分(集电极、基 极和发射极)组成的半导体器件。
集成电路封装技术不断发展,新型封装技术如3D封装、晶圆级封装等
正在逐步推广,以提高集成度和可靠性。
03
集成电路设计工具
集成电路设计工具不断更新,新型设计工具如人工智能辅助设计、自动
化布线等正在逐步普及,以提高设计效率和降低成本。
新型光电子器件的发展
新型激光器
新型激光器如微纳激光器、光子晶体激光器等正在研究和发展,以提高输出功率 、减小体积和降低成本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1.7 PN结的形成
空间电荷区出现后,因为正负电荷的 作用,将产生一个从N区指向P区的内电场。 内电场的方向,会对多数载流子的扩散运 动起阻碍作用。同时,内电场则可推动少 数载流子(P区的自由电子和N区的空穴) 越过空间电荷区,进入对方。少数载流子 在内电场作用下有规则的运动称为漂移运 动。漂移运动和扩散运动的方向相反。无 外加电场时,通过PN结的扩散电流等于漂 移电流,PN结中无电流流过,PN结的宽 度保持一定而处于稳定状态。
第1章 半导体器件基础
1.1 半导体基础知识 1.2 半导体二极管 1.3 半 导 体 三 极 管 1.4 场 效 应 管
1.1 半导体基础知识
自然界中的物质,按其导电能力可分 为三大类:导体、半导体和绝缘体。
半导体的特点: ①热敏性 ②光敏性 ③掺杂性
1.1.1 本征半导体
完全纯净的、结构完整的半导体材料 称为本征半导体。
图1.9 PN结外加反向电压
PN结的单向导电性是指PN结外加正 向电压时处于导通状态,外加反向电压时 处于截止状态。
1.2 半导体二极管
1.2.1 二极管的结构及符号
半导体二极管同PN结一样具有单向导 电性。二极管按半导体材料的不同可以分 为硅二极管、锗二极管和砷化镓二极管等。 可分为点接触型、面接触型和平面型二极 管三类,如图1.10所示。
(4)温度升高,激发的电子空穴对数 目增加,半导体的导电能力增强。
空穴的出现是半导体导电区别导体导电的 一个主要特征。
1.1.2 杂质半导体
在本征半导体中加入微量杂质,可使 其导电性能显著改变。根据掺入杂质的性 质不同,杂质半导体分为两类:电子型 (N型)半导体和空穴型(P型)半导体。
1. N型半导体
图1.12 常见的二极管外形
1.2.2 二极管的伏安特性及主要参数
1.二极管的伏安特性
二极管两端的电压U及其流过二极管 的电流I之间的关系曲线,称为二极管的 伏安特性。
(1)正向特性
图1.10 不同结构的各类二极管
图1.11所示为二极管的符号。由P端引 出的电极是正极,由N端引出的电极是负 极,箭头的方向表示正向电流的方向,VD 是二极管的文字符号。
图1.11 二极管的符号
常见的二极管有金属、塑料和玻璃 三种封装形式。按照应用的不同,二极 管分为整流、检波、开关、稳压、发光、 光电、快恢复和变容二极管等。根据使 用的不同,二极管的外形各异,图1.12 所示为几种常见的二极管外形。
本征半导体中,自由电子和空穴成对 出现,数目相同。图1.2所示为本征激发所 产生的电子空穴对。
图1.2 本征激发产生电子空穴对
如图1.3所示,空穴(如图中位置1)出 现以后,邻近的束缚电子(如图中位置2) 可能获取足够的能量来填补这个空穴,而在 这个束缚电子的位置又出现一个新的空位, 另一个束缚电子(如图中位置3)又会填补 这个新的空位,这样就形成束缚电子填补空 穴的运动。为了区别自由电子的运动,称此 束缚电子填补空穴的运动为空穴运动。
1.本征半导体的原子结构及共价键
共价键内的两个电子由相邻的原子各 用一个价电子组成,称为束缚电子。图1.1 所示为硅和锗的原子结构和共价键结构。
图1.1 硅和锗的原子结构和共价键结构
2.本征激发和两种载流子
——自由电子和空穴
温度越高,半导体材料中产生的自由 电子便越多。束缚电子脱离共价键成为自 由电子后,在原来的位置留有一个空位, 称此空位为空穴。
图1.5 P型半导体共价键结构
P型半导体中,空穴为多数载流子 (多子),自由电子为少数载流子(少 子)。P型半导体主要靠空穴导电。
1.1.3 PN结及其单向导电性
1. PN结的形成
多数载流子因浓度上的差异而形成的 运动称为扩散运动,如图1.6所示。
图1.6 P型和N型半导体交界处载流子的扩散
2. PN结的单向导电性
如果在PN结两端加上不同极性的电压, PN结会呈现出不同的导电性能。
(1)PN结外加正向电压
PN结P端接高电位,N端接低电位, 称PN结外加正向电压,又称PN结正向偏 置,简称为正偏,如图1.8所示。
图1.8 PN结外加正向电压
(2)PN结外加反向电压
PN结P端接低电位,N端接高电位, 称PN结外加反向电压,又称PN结反向偏 置,简称为反偏,如图1
2.P型半导体
在硅(或锗)半导体晶体中,掺入微 量的三价元素,如硼(B)、铟(In)等, 则构成P型半导体。
三价的元素只有三个价电子,在与相
邻的硅(或锗)原子组成共价键时,由于 缺少一个价电子,在晶体中便产生一个空 位,邻近的束缚电子如果获取足够的能量, 有可能填补这个空位,使原子成为一个不 能移动的负离子,半导体仍然呈现电中性, 但与此同时没有相应的自由电子产生,如 图1.5所示。
图1.3 束缚电子填补空穴的运动
3.结 论
(1)半导体中存在两种载流子,一种 是带负电的自由电子,另一种是带正电的 空穴,它们都可以运载电荷形成电流。
(2)本征半导体中,自由电子和空穴 相伴产生,数目相同。
(3)一定温度下,本征半导体中电子 空穴对的产生与复合相对平衡,电子空穴 对的数目相对稳定。
由于空穴和自由电子均是带电的粒子, 所以扩散的结果使P区和N区原来的电中性 被破坏,在交界面的两侧形成一个不能移 动的带异性电荷的离子层,称此离子层为 空间电荷区,这就是所谓的PN结,如图1.7 所示。在空间电荷区,多数载流子已经扩 散到对方并复合掉了,或者说消耗尽了, 因此又称空间电荷区为耗尽层。
在硅(或锗)半导体晶体中,掺入微 量的五价元素,如磷(P)、砷(As)等, 则构成N型半导体。
五价的元素具有五个价电子,它们进
入由硅(或锗)组成的半导体晶体中,五 价的原子取代四价的硅(或锗)原子,在 与相邻的硅(或锗)原子组成共价键时, 因为多一个价电子不受共价键的束缚,很 容易成为自由电子,于是半导体中自由电 子的数目大量增加。自由电子参与导电移 动后,在原来的位置留下一个不能移动的 正离子,半导体仍然呈现电中性,但与此 同时没有相应的空穴产生,如图1.4所示。
相关文档
最新文档