高中数学-逻辑连接词
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 3】已知 c 0 ,设 P:函数 y c x 在 R 上单调递减
Q:不等式 x+ | x - 2c |> 1 的解集为 R.如果 P 和 Q 有且仅
有一个正确,求 c 的取值范围
解:函数 y c x 在 R 上单调递减 0 c 1.
不等式 x | x 2c | 1的解集为R 函数y x | x 2c | 在R上恒大于1.
课外练习:
1.设有两个命题,命题 p:关于 x 的不等式 (x2) x2 3x2≥0
的解集为{x | x ≥ 2} ,命题 q:若函数 y kx2 kx 1 的值恒
小于 0,则 4 k 0 ,那么(B)
(A)“﹁q”为假命题
(B)“﹁p”为真命题
(C)“p 或 q”为真命题
D)“p 且 q”为真命题
2.在一次投篮练习中,小王连投两次,设命题 p :“第一次
投中”命题 q :“第二次投中”.试用 p 、 q 和联接词“或、且、
非”表示命题“两次恰有一次投中”:(__p_且____q_.)或( p且q )
3.已知 c>0,设 p:函数 y cx 在 R 上递减; q:函数 f (x) x2 cx的
最小值小于 1 .如果“ p或q ”为真,且“ p且q ”为假, 16
则实数 c 的取值范围为___0_,_1_2___U_. 1,
一、基础知识 (一)逻辑联结词
1.命题:可以判断真假的语句叫做命题. 2.逻辑联结词:“或” “且” “非”这些词叫做逻辑联 结词。
或:两个简单命题至少一个成立
且:两个简单命题都成立,
非:对一个命题的否定 3.简单命题与复合命题:不含逻辑联结词的命题叫 做简单命题;由简单命题与逻辑联结词构成的命题叫 做复合命题。
1.逻辑联结词“或”的理解是难点,“或”有三层 含义:
以“P或q”为例:一是p成立但q不成立,二是p不成立 但q成立,三是p成立且q成立, 2.对命题的否定只是否定命题的结论,而否命题既 否定题设又否定结论
3.真值表 P或q:“一真为真”, P且q:“一假为假”
4.互为逆否命题的两个命题等价,为命题真假判定 提供一个策略。
(3)P或q形式,其中p:4>3,q:4=3
(4)非p形式:其中p:平行四边形是梯形。
例2.已知命题 p : x2 mx 1 0 有两个不等的负 根;命题 q : 4x2 4(m 2)x 1 0无实根. 若命题p与 命题q有且只有一个为真,求实数m的取值范围.
m 3,或1 m 2
例1.已知复合命题形式,指出构成它的简单命题, (1)等腰三角形顶角的角平分线垂直平分底边, (2)垂直于弦的直径平分这条弦且平分弦所对的 两条弧,
(3)
(4)平4行四3 边形不是梯形
(1)P且q形式,其中p:等腰三角形顶角的角平分线垂直底 边, q:等腰三角形顶角的角平分线平分底边;
(2)P且q形式,其中p:垂直于弦的直径平分这条弦, q:垂直于弦的直径平分这条弦所对的两条弧
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“ 5.非真p”值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假 真
真
真假 假 真
假
假真 真 真
假
假假 真 假
假
(三)几点说明
练习.已知下列三个方程:x2+4ax-4a+3=0 x2+(a-1)x+a2=0 x2+2ax-2a=0至少有一个方程有实根, 求实数a的取值范围。
a 2或a 1
【变式训练】若p:{x|x≥-3},q:{x|x<2},试写出 (1)p真q假的x的集合; (2)p∧q为真的x的集合; (3)p假q真的x的集合.
Q
x
|
x
2c
|
2x 2c,
2c,
x
x
2c, 2c,
Leabharlann Baidu
函数y x | x 2c | 在R上的最小值为2c.
不等式 | x x 2c | 1的解集为R 2c 1 c 1 . 2
如果P正确,且Q不正确,则0 c 1 . 2
如果P不正确,且Q正确,则c 1.所以c的取值范围为(0, 1] [1, ). 2