北京中考复习-概率与统计

合集下载

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。

以下是对这些知识点的详细梳理。

1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。

概率的计算方法包括:理论概率、几何概率和频率概率。

-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。

-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。

-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。

2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。

统计的主要目的是对研究对象进行客观的描述和分析。

-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。

-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。

-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。

3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。

抽样调查的方法包括概率抽样和非概率抽样。

-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。

-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。

4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。

(北京专用)中考数学复习方案 第四单元 统计与概率课件 新人教

(北京专用)中考数学复习方案 第四单元 统计与概率课件 新人教
► 热考一 获取统计图表信息,解决问题 例1 [2012·北京] 近年来,北京市大力发展轨道交
通,轨道运营里程大幅增加,2011年北京市又调整修订 了2010至2020年轨道交通线网的发展规划.以下是根 据北京市轨道交通指挥中心发布的有关数据制作的统计 图表的一部分.
第19课时┃ 京考探究
第19课时┃ 京考探究
故选 B.
第18课时┃ 京考探究
(1)方差是各个数据与平均数的差的平方的平均数. (2)方差反映了一组数据的波动大小,方差越大,数据 波动越大;方差越小,波动越小.
第19课时┃数据的整理与分析
第19课时┃ 考点聚焦
考点聚焦
考点1 数据的集中趋势
定义 一组数据的平均值称为这组数据的平均数
算术平 均数
则从2011到2015年这4年中,平均每年需新增运营里程为 (367-36)÷4=82.75(千米).
第19课时┃ 京考探究
本题是将社会上热门话题与统计结合的一道考题,考 查了学生对图表绘制过程的理解、阅读图表并提取有用 信息的技能,借助数据处理结果做合理推测的能力.这 是北京市这几年考核统计这部分知识的常见题型.常考 的几种统计图表有条形统计图、扇形统计图、折线统计 图、频数分布表、频数分布直方图.
第19课时┃ 京考探究
解: (1)补全图见下图.
9×1+37×2+26×3+1110×0 4+10×5+4×6+3×7=3,这 100 位顾客平均一次购物使用塑料购物袋的平均数为 3 个, 2000×3=6000.
第18课时┃ 京考探究
[解析] A选项中总体是360名学生的体重,C选项中 样本是抽取的60名学生的体重,D选项中个体是每个 学生的体重,故选择B.
总体和样本所要考察的对象是某些人(物)的具 体数量指标,样本容量是样本中包含个体的数目, 不带单位.

中考数学总复习:统计与概率

中考数学总复习:统计与概率

中考数学总复习:统计与概率统计与概率是中学数学中的一大重要内容,也是中考数学中出现频率较高的考点之一。

本文将从统计和概率两个方面进行和复习,以帮助同学们系统地回顾和巩固相关知识点。

统计一、数据的整理和统计学中的第一步是对所给的数据进行整理和,常见的方法有以下几种:1.频数表:将数据按照取值的不同进行分类,并统计每个类别中数据出现的频数。

示例: | 数据 | 频数 | | —- | —- | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 5 |2.频率表:在频数表的基础上,计算每个类别的频率,即频数与样本容量的比值。

3.线性图:可用于展示数据的分布特征,横坐标表示数据的取值,纵坐标表示频数或频率。

二、代表性指标代表性指标是对数据集中趋势或平均水平进行衡量的数值,常见的代表性指标有以下几种:1.平均数:在一组数据中,所有数值的和除以数据的个数。

示例:给定一组数据:4, 5, 6, 7, 8,求平均数。

平均数 = (4 + 5 + 6 + 7 + 8) / 5 = 30 / 5 = 62.中位数:将一组数据从小到大排列,位于中间位置的数值。

示例:给定一组数据:3, 5, 1, 9, 2,求中位数。

排序后的数据:1, 2, 3, 5, 9 中位数为33.众数:一组数据中出现频率最高的数值。

三、概率概率是研究随机事件发生可能性的数学分支。

以下是概率计算中常用的一些基本概念和方法:1.样本空间:随机试验的所有可能结果组成的集合。

2.事件:样本空间中的一个子集。

3.概率:事件发生的可能性大小,范围在0到1之间。

4.加法法则:对于两个互斥事件 A 和 B,它们同时发生的概率等于各自概率的和。

示例:P(A ∪ B) = P(A) + P(B)5.乘法法则:对于独立事件 A 和 B,它们同时发生的概率等于各自概率的乘积。

示例:P(A ∩ B) = P(A) × P(B)以上仅为统计与概率的部分内容,同学们在备考中需结合教材和试题进行全面复习。

北京市数学中考《统计与概率》复习专题含答案解析

北京市数学中考《统计与概率》复习专题含答案解析

北京市数学中考复习统计与概率部分检测题(时间:100分钟总分:100分)学号姓名一、选择题(本大题共10小题,每小题3分,共30分),1.一组数据5,5,6,x,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是()A.7 B.6 C.5.5 D.52.检测1 000名学生的身高,从中抽出50名学生测量,在这个问题中,50名学生的身高是()A.个体B.总体C.样本容量D.总体的样本3.下列事件为必然事件的是()A.买一张电影票,座位号是偶数;B.抛掷一枚普通的正方体骰子1点朝上C.百米短跑比赛,一定产生第一名;D.明天会下雨4.一次抽奖活动中,印发的奖券有10 000张,其中特等奖2张,一等奖20张,•二等奖98张,三等奖200张,鼓励奖680张,那么第一位抽奖者(仅买一张奖券)•中奖的概率为()A.110B.150C.1500D.150005.某校把学生的笔试、实践能力、成长记录三项成绩分别按50%、20%、30%•的比例计入学期总评成绩,90分以上为优秀,甲、乙、丙三人的各项成绩(单位:分)如下表,学期总评成绩优秀的是()A.甲B.乙、丙C.甲、乙D.甲、丙6.甲、乙两个样本的方差分别是s甲2=6.06,s乙2=14.31,由此可反映出()A.样本甲的波动比样本乙的波动大;B.样本甲的波动比样本乙的波动小;C.样本甲的波动与样本乙的波动大小一样;D.样本甲和样本乙的波动大小关系不确定7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差为13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 C.4,23D.4,38则这个班此次测验的众数为()A.90分B.15 C.100分D.50分9.一组数据1,-1,0,-1,1的方差和标准差分别是()A.0,0 B.0.8,0.64 C.1,1 D.0.810.由小到大排列一组数据y1,y2,y3,y4,y5,其中每个数都小于-2,则对于样本1,y1,•-y2,y3,-y 4,y 5的中位数是( )A .212y + B .232y y - C .512y + D .342y y - 二、填空题(本大题共8题,每题3分,共24分)11.•若你想设计一个月内你家里丢弃塑料袋数目的情况•,• 你一定不能选择_____ __统计图(填扇形、折线和条形). 12.如图,是世界人口扇形统计图,关系中国部分的圆心角的度 数为_ _____.13.在100件产品中有5件次品,则从中任取一件次品的概率为________.14.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的________(填“平均数”“方差”或“频率分布”).15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是_____.16.在一个有10万人的小镇上,随机调查了2 000人,其中有250•人看中央电视台的早间新闻,在该镇随便问一人,他看早间新闻的概率大约是________. 17.已知一组数据的方差是s 2=125[(x 1-2.5)2+(x 2-2.5)2+(x 3-2.5)2+…+(x 25-2.5)2],则这组数据的平均数是_________.18.一组数据的方差为s 2,将这组数据的每个数据都乘2,•所得到的一组新数据的方差是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.已知一组数据6,2,4,2,3,5,2,4.(1)这组数据的样本容量是多少?(2)写出这组数据的众数和平均数.20.请你设计一个转盘游戏,使获一等奖的机会为112,获二等奖的机会为16,获得三等奖的机会为14,并说明你的转盘游戏的中奖概率.21.根据下表制作扇形统计图,表示各种果树占果园总树木的百分比.(1)计算各种果树面积与总面积的百分比;(2)计算各种果树对应的圆心角的度数;(322(1)餐厅所有员工的平均工资是多少?工资的中位数是多少?(2)用平均数还是用中位数描述所有员工的工资的一般水平比较恰当?(3)去掉经理工资以后,其他员工的平均工资是多少?•是否也能反映员工工资的一般水平?23(1)若这20名学生的平均分是84分,求x和y的值.(2)这20名学生的本次测验成绩的众数和中位数分别是多少?24.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?把它们排列出来.(2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?25.中小学生的视力状况受到社会的关注,某市有关部门对全市4•万名初中生的视力状况进行了一次抽样调查,统计所得到的有关数据绘制成频率分布直方图,如图10-2,从左至右五个小组的频数之比依次是2:4:9:7:3,第五小组的频数是30. (1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.(3)如果视力在4.9~5.1(包括4.9、5.1)均属正常,那么全市初中生视力正常约有多少人?频率组距视力5.455.154.854.554.253.95答案一、选择题1.B 2.D 3.C 4.A 5.C 6.B 7.D 8.A 9.D 10.C 二、填空题11.扇形12.72°13.12014.频率分布15.3416.1817.2.5 18.4s2三、解答题19.解:(1)8.(2)众数为2,平均数为3.5.20.解:设计略,中奖概率为1111 12642++=.21.解:(1)梨树25%,苹果树50%,葡萄树12.5%,桃树12.5%.(2)梨树90°,苹果树180°,葡萄树45°,桃树45°.(3)图略.22.解:(1)平均工资为810元,中位数为450.(2)中位数.(3)445,能反映员工工资的一般水平.23.解:(1)由题意知12,80901070,x yx y+=⎧⎨+=⎩解得1,11.xy=⎧⎨=⎩(2)众数为90分,中位数为90分.24.解:(1)共有6种不同排法,分别为红黄蓝、红蓝黄、黄红蓝、黄蓝红、•蓝红黄、蓝黄红.(2)13.25.解:(1)设5个小组的频率依次为2x,4x,9x,7x,3x,则2x+4x+9x+7x+3x=1,解得x=125.30÷325=250(人).(2)第三小组,理由略.(3)4×725=1.12万人.。

2023北京中考数学二模分类汇编——统计与概率(原卷版)

2023北京中考数学二模分类汇编——统计与概率(原卷版)

2023北京中考数学二模分类汇编——统计与概率一.用样本估计总体(共1小题)1.(2023•燕山区二模)校运动会前夕,要选60名身高基本相同的女生组成表演方队,现从全校200名女生中随机抽取40人,了解了她们的身高情况,数据如下:145﹣150150﹣155155﹣160160﹣165165﹣170170﹣175身高/cm26101642人数/人根据以上数据,估计入选表演方队的女生身高范围为cm.二.频数(率)分布表(共2小题)2.(2023•朝阳区二模)某班级准备定做一批底色相同的T恤衫,征求了全班40名同学的意向,每个人都选择了一种底色,得到如下数据:底色灰色黑色白色紫色红色粉色频数3618472为了满足大多数人的需求,此次定做的T恤衫的底色为.3.(2023•朝阳区二模)某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min),并对数据进行了整理、描述,部分信息如下:a.每天在校体育锻炼时间分布情况:每天在校体育锻炼时间x(min)频数(人)百分比60≤x<701414%70≤x<8040m80≤x<903535%x≥90n11%b.每天在校体育锻炼时间在80≤x<90这一组的是:80,81,81,81,82,82,83,83,84,84,84,84,84,85,85,85,85,85,85,85,85,86,87,87,87,87,87,88,88,88,89,89,89,89,89.根据以上信息,回答下列问题:(1)表中m=,n=.(2)若该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生的人数;(3)该校准备确定一个时间标准p(单位:min),对每天在校体育锻炼时间不低于p的学生进行表扬.若要使25%的学生得到表扬,则p的值可以是.三.频数(率)分布直方图(共4小题)4.(2023•平谷区二模)快递使我们的生活更加便捷,可以说,快递改变了我们的生活.为了解我国的快递业务情况,我们收集了2022年11月全国31个省的快递业务数量(单位:亿件)的数据,并对数据进行了整理、描述和分析,给出如下信息:a.2022年11月快递业务量排在前3位的省的数据分别为:275.2,225,74.8,b.其余28个省份2022年11月的快递业务数量的数据的频数分布图如图:c.2022年11月的快递业务数量的数据在10≤x<20这一组的是:10.3,11,15.5,16.3,17.8,根据以上信息,回答下列问题:(1)补全条形统计图;(2)2022年11月的31个省的快递业务数量的中位数为;(3)若设图中28个省份平均数为,方差为;设31个省份的平均数为,方差为s2,则,s2(填“>”“=”或“<”).5.(2023•昌平区二模)某学校初中各年级进行体质健康测试,为了解学生成绩,从七年级和九年级各随机抽取40名学生的成绩进行整理、描述和分析,下面给出了部分信息.a.七年级成绩的频数分布直方图如图(数据分成5组):60≤x<70,70≤x<80,0≤x<90,90≤x<100,100≤x<110b.七年级成绩在80≤x<90这一组的是:8282838485858587878888c.七年级、九年级成绩的平均数、中位数如表:平均数中位数七年级87.55m九年级86.2590根据以上信息,回答下列问题:(1)写出表中m的值;(2)分别对本次抽取的学生的成绩进行等级赋分,不少于90分就可以赋予“优秀”等级,七年级赋予“优秀”等级的学生人数为p1,九年级赋予“优秀”等级的学生人数为p2,判断p1,p2大小,并说明理由;(3)该校共有七年级学生310人,不少于80分就可以赋予“良好”等级,估计该校七年级所有学生本次体质健康测试成绩等级为良好及以上的人数为(直接写出结果).6.(2023•西城区二模)为增强居民的反诈骗意识,A,B两个小区的居委会组织小区居民进行了有关反诈骗知识的有奖问答活动.现从A,B小区参加这次有奖问答活动居民的成绩中各随机抽取20个数据,分别对这20个数据进行整理、描述和分析,下面给出了部分信息.a.A小区参加有奖问答活动的20名居民成绩的数据的频数分布直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.A小区参加有奖问答活动的20名居民成绩的数据在80≤x<90这一组的是:84858586868889c.B小区参加有奖问答活动的20名居民成绩的数据如表:分数738182858891929496100人数1323131411根据以上信息,解答下列问题:(1)补全a中频数分布直方图;(2)A小区参加有奖问答活动的20名居民成绩的数据的中位数是;B小区参加有奖问答活动的20名居民成绩的数据的众数是;(3)为鼓励居民继续关注反诈骗宣传,对在这次有奖问答活动中成绩大于或等于90分的居民颁发小奖品.已知A,B两个小区各有2000名居民参加这次活动,估计这两个小区的居委会一共需要准备多少份小奖品.7.(2023•海淀区二模)某企业生产甲、乙两款红茶,为了解两款红茶的质量,请消费者和专业机构分别测评.随机抽取25名消费者对两款红茶评分,并对数据进行整理、描述和分析,下面给出了部分信息.a.甲款红茶分数(百分制)的频数分布表如下:分数70≤x<7575≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数2144 b.甲款红茶分数在85≤x<90这一组的是:86868686868787888889c.甲、乙两款红茶分数的平均数、众数、中位数如下表所示:品种平均数众数中位数甲86.6m n乙87.59086根据以上信息,回答下列问题:(1)补全甲款红茶分数的频数分布直方图;(2)表格中m的值为,n的值为;(3)专业机构对两款红茶的条索、色泽、整碎、净度、内质、香气、滋味醇厚度、汤色、叶底来进行综合评分如下:甲款红茶93分,乙款红茶87分,若以这25名消费者评分的平均数和专业机构的评分按照6:4的比例确定最终成绩,可以认定款红茶最终成绩更高(填“甲”或“乙”).8.(2023•大兴区二模)某中学为普及天文知识,举行了一次知识竞赛(百分制),为了解七、八年级学生的答题情况,从中各随机抽取了40名学生的成绩,并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息:a.七年级学生竞赛成绩的频数分布表:成绩频数频率50≤x<6020.0560≤x<704m70≤x<80100.2580≤x<90140.3590≤x≤100100.25合计40 1.00b.八年级学生竞赛成绩的扇形统计图:c.八年级学生竞赛成绩在80≤x<90这一组的数据是:80,80,82,83,83,84,86,86,87,88,88,89,89,89d.七、八年级学生竞赛成绩的中位数如下:中位数七年级81八年级n根据以上信息,回答下列问题:(1)写出表中m,n的值:m=,n=;(2)此次竞赛中,抽取的一名学生的成绩为83分,在他所在的年级,他的成绩超过了一半以上被抽取的学生的成绩,他是哪个年级的学生,请说明理由;(3)该校八年级有200名学生,估计八年级竞赛成绩80分及80分以上的学生共有人.9.(2023•东城区二模)2022年10月16日,中国共产党第二十次全国代表大会在北京人民大会堂开幕,习近平代表第十九届中央委员会向大会作报告,报告提出要加快建设农业强国.某农业学家在光照、降水量等条件接近的不同地区对几种不同的玉米进行产量实验,得出的部分数据(单位:kg /hm 2)如表.注:1hm 2表示10000平方米,即1公顷.品种A品种B 品种C 品种D 品种E 品种F 品种G 品种H 低海拔区98438650799677057506743765175398高海拔区78007267753378676333640058745201(1)请补全条形统计图;(2)8个品种的玉米在低海拔区产量的中位数为,不同品种的玉米产量总体趋势在(填“低”或“高”)海拔区更加稳定;(3)已知气温和含氧量都会影响玉米的产量,下列三种方案中,选择哪两种方案进行组合可以判断哪一种因素对玉米产量的影响较大,a .将两个不同品种的玉米分别种植在两个温室中,两个温室气温相同,氧气浓度不同,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较;b .将同一品种玉米种植在气温相同,氧气浓度不同的两个温室中,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较;c .将同一品种玉米种植在气温不同,氧气浓度相同的两个温室中,在其他条件相同的情况下记录每个温室的玉米产量,重复多次实验,求出每个温室玉米产量的平均值,并比较.10.(2023•大兴区二模)如图是根据A,B两城市一周的日平均气温绘制的折线统计图,根据统计图判断日平均气温较稳定的城市是(填“A”或“B”).11.(2023•丰台区二模)如图是某书店2022年7月至12月教育类图书销售额占当月全部图书销售额的百分比折线统计图.小华认为,8月份教育类图书销售额比7月份减少了.他的结论(填“正确”或“错误”),理由是.12.(2023•顺义区二模)在某次男子三米跳板比赛中,每名参赛选手要进行六轮比赛,每轮得分的计算方式如下,如图是对参加比赛的甲、乙、丙三位选手的得分数据进行了整理,描述和分析,给出部分信息:a.甲、丙两位选手的得分折线图:b.乙选手六轮比赛的得分:74.5,68.6,96.9,m,63.25,92.75;c.甲、乙、丙三位选手六轮比赛得分的平均数:选手甲乙丙平均数85.55n82.55根据以上信息,回答下列问题:(1)已知乙选手第四轮动作的难度系数为3.5,七名裁判的打分分别为:8.0,8.0,8.5,8.0,8.0,8.0,7.5,求乙选手第四轮比赛的得分m及表中n的值;(2)从甲、丙两位选手的得分折线图中可知,选手发挥的稳定性更好(填“甲”或丙”);(3)每名选手六轮比赛得分的总和为个人最终得分,根据上述信息判断:在甲、乙、丙三位选手中,最终得分最高的是(填“甲”“乙”或“丙”).13.(2023•房山区二模)青少年的健康素质是全民族健康素质的基础.某校为了解学生寒假参加体育锻炼的情况,从七、八、九年级学生中各随机抽取了该年级学生人数的5%,调查了他们平均每周参加体育锻炼的时长,并对这些数据进行整理、描述和分析,下面给出部分信息.a.七,八年级学生平均每周参加体育锻炼时长数据的折线图如下:b.九年级学生平均每周参加体育锻炼的时长:7,8,8,11,9,7,6,8;c.七、八、九年级学生平均每周参加体育锻炼时长的平均数、中位数、众数:年级平均数中位数众数七年级7.176,10八年级7m n九年级p88根据所给信息,回答下列问题:(1)表中m的值是,n的值是,p的值是;(2)设七、八、九三个年级学生参加体育锻炼时长的方差分别是,,,直接写出,,之间的大小关系(用“<”连接);(3)估计全校九年级所有学生中,共有名学生参加体育锻炼的时长不少于9小时.14.(2023•门头沟区二模)门头沟区深挖区域绿水青山教育资源,以区域山水和历史人文资源为素材,开展跨学科实践活动.某校为调研学生的学习成效.举办“跨学科综合实践活动”成果作品比赛.十名评委对每组同学的参赛作品进行现场打分.对参加比赛的甲,乙,丙三组同学参赛作品得分(单位:分)的数据进行整理、描述和分析,下面给出了部分信息.a.甲.乙两组同学参赛作品得分的折线图:b.丙组同学参赛作品得分:9499109108810c.甲,乙,丙三组同学参赛作品得分的平均数、众数、中位数如表:平均数众数中位数甲组8.699乙组8.6a8.5丙组8.69b 根据以上信息,回答下列问题:(1)表中a=,b=;(2)在参加比赛的小组中,如果某组同学参赛作品得分的10个数据的方差越小,则认为评委对该组同学参赛作品的评价越一致.据此推断:在甲,乙两组同学中,评委对组同学的参赛作品评价更一致(填“甲”或“乙”)(3)如果每组同学的最后得分为去掉十名评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该组同学的参赛作品越优秀.据此推断:在甲,乙,丙三组同学中,参赛作品最优秀的是组同学(填“甲”“乙”或“丙”).七.加权平均数(共1小题)15.(2023•东城区二模)小红参加“建团百年,我为团旗添光彩”主题演讲比赛,形象、表达、内容三项得分分别是8分、8分、9分.若将三项得分依次按2:4:4的比例确定最终成绩,则小红的最终比赛成绩为()A.8.3分B.8.4分C.8.5分D.8.6分八.方差(共5小题)16.(2023•顺义区二模)某餐饮外卖平台规定,点单时除点餐费用外,需另付配送费9元.某学习小组收集了一段时间内该外卖平台的部分订单,统计了每单的消费总额和每单不计算配送费的消费额的两组数据,对于这两组数据,下列判断正确的是()A.众数相同B.中位数相同C.平均数相同D.方差相同17.(2023•昌平区二模)某餐厅计划推出一个新菜品,在菜品研发阶段研制出A、B两种味道,为测试哪种味道更符合当地人口味,随机抽取餐厅内的5位当地顾客分别为两种味道的菜品打分,打分情况如下表,下列关系全部正确的是()口味顾客1顾客2顾客3顾客4顾客5A798610B5610109A.,B.,>C.=,<D.<,<18.(2023•西城区二模)某射击队要从甲、乙、丙三名队员中选出一人代表射击队参加市里举行的射击比赛,如表是这三名队员在相同条件下10次射击成绩的数据:甲乙丙平均数8.598.8方差0.250.230.27如果要选出一个成绩好且又稳定的队员去参加比赛,这名队员应是.19.(2023•丰台区二模)某校兴趣小组在学科实践活动中,从市场上销售的A,B两个品种的花生仁中各随机抽取30粒,测量其长轴长度,然后对测量数据进行了收集、整理和分析.下面是部分信息.a.两种花生仁的长轴长度统计表:花生仁长轴长度(mm)12131415161718192021A品种花生仁粒数51067200000B品种花生仁粒数0023645442b.两种花生仁的长轴长度的平均数、中位数、众数、方差如下:平均数中位数众数方差A品种花生仁a13.5c 1.4B品种花生仁17.5b16 3.9根据以上信息,回答下列问题:(1)兴趣小组的同学在进行抽样时,以下操作正确的是(填序号);①从数量足够多的两种花生仁中挑取颗粒大的各30粒;②将数量足够多的两种花生仁分别放在两个不透明的袋子中,摇匀后从中各取出30粒;(2)写出a,b,c的值;(3)学校食堂准备从A,B两个品种的花生仁中选购一批做配菜食材,根据菜品质量要求,花生仁大小要均匀,那么兴趣小组应向食堂推荐选购(填“A”或“B”)品种花生仁,理由是.20.(2023•石景山区二模)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x<90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80828385878888根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有人.九.统计量的选择(共1小题)21.(2023•石景山区二模)一组数据:1,2,5,0,2,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差一十.概率公式(共1小题)22.(2023•昌平区二模)一个不透明的盒子中装有10个除颜色外无其他差别的小球,其中有1个黄球和3个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为()A.B.C.D.一十一.列表法与树状图法(共6小题)23.(2023•平谷区二模)袋子里有2个红球1个白球,除颜色外无其他差别,随机摸取两个,恰好为一个红球一个白球的概率是()A.B.C.D.24.(2023•北京二模)一个不透明的袋子中装有红、黄小球各两个,除颜色外四个小球无其他差别,从中随机同时摸出两个球,那么两个球的颜色相同的概率是()A.B.C.D.25.(2023•房山区二模)不透明的盒子中有三张卡片,上面分别写有数字“1,2,3”,除数字外三张卡片无其他差别.从中随机取出一张卡片,记录其数字,放回并摇匀,再从中随机取出一张卡片,记录其数字,两次取出卡片上的数字的乘积是偶数的概率是()A.B.C.D.26.(2023•西城区二模)一个不透明的口袋中有3个红球和1个白球,这四个球除颜色外完全相同.摇匀后,随机从中摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的颜色相同的概率是()A.B.C.D.27.(2023•海淀区二模)投掷两枚质地均匀的骰子,两枚骰子向上一面的点数相同的概率是()A.B.C.D.28.(2023•顺义区二模)不透明的袋子中有四个完全相同的小球,上面分别写着数字1,2,3,4.随机摸出一个小球,记录其数字,放回并摇匀,再随机摸出一个小球,记录其数字,则两次记录的数字不相同的概率是.一十二.利用频率估计概率(共7小题)29.(2023•大兴区二模)不透明的盒子中装有红、白两色的小球共n(n为正整数)个,这些球除颜色外无其别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.图中显示了用计算机模拟实验的结果:下面有三个推断:①随着实验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;②若盒子中装40个小球,可以根据本次实验结果,估算出盒子中有红球14个;③若再次进行上述摸球试验,则当摸球次数为200时,“摸到红球”的频率一定是0.40.所有合理推断的序号是()A.①②B.②C.①③D.①②③30.(2023•朝阳区二模)某射箭选手在同一条件下进行射箭训练,结果如下:射箭次数n102050100200350500射中靶心的次数m7174492178315455射中靶心的频率0.700.850.880.920.890.900.91下列说法正确的是()A.该选手射箭一次,估计射中靶心的概率为0.90B.该选手射箭80次,射中靶心的频率不超过0.90C.该选手射箭400次,射中靶心的次数不超过360次D.该选手射箭1000次,射中靶心的次数一定为910次31.(2023•丰台区二模)掷一枚质地均匀的硬币m 次,正面向上n 次,则的值()A.一定是B.一定不是C .随着m的增大,越来越接近D .随着m 的增大,在附近摆动,呈现一定的稳定性32.(2023•石景山区二模)如图显示了某林业部门统计某种树苗在本地区相同条件下的移植成活试验的结果.下面有四个推断:①当移植的棵数是800时,成活的棵数是688,所以“移植成活”的概率是0.860;②随着移植棵数的增加,“移植成活”的频率总在0.852附近摆动,显示出一定的稳定性,可以估计“移植成活”的概率是0.852;③与试验相同条件下,若移植10000棵这种树苗,可能成活8520棵;④在用频率估计概率时,移植3000棵树时的频率0.852一定比移植2000棵树时的频率0.853更准确其中合理的是()A .①②B .①③C .②③D .②④33.(2023•东城区二模)质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n 1001502002503005001000合格产品数m 89134179226271451904合格率0.8900.8930.8950.9040.9030.9020.904在这批产品中任取一件,恰好是合格产品的概率约是(结果保留一位小数).34.(2023•房山区二模)某公司销售部在出售一批柑橘前需要先进行“柑橘损坏率”统计,去掉损坏的柑橘后,再确定柑橘的售价.表是销售部随机取样得到的“柑橘损坏率”统计表的一部分:柑橘总质量n/kg250300350400450500550600损坏的柑橘质量m/kg24.7530.9335.1239.9744.5451.0755.1361.98柑橘损坏的频率0.0990.1030.1000.0990.0990.1020.1000.103估计这批柑橘完好的概率为(结果精确到0.1).35.(2023•门头沟区二模)投壶是中国古代一种传统礼仪和宴饮游戏.下表记录了一组游戏参与者的投查结果.投壶次数n50100150200250300400500投中次数m284672104125153200250投中频率0.560.460.480.520.500.510.500.50根据以上数据,估计这组游戏参与者投中的概率约为(结果精确到0.1).。

北京中考必备知识点归纳

北京中考必备知识点归纳

北京中考必备知识点归纳北京中考是北京市初中毕业生进入高中阶段的重要选拔考试,涵盖了语文、数学、英语、物理、化学、生物、历史、地理、政治等多个学科。

以下是对这些学科的一些必备知识点归纳:语文- 古诗词鉴赏:掌握常见的古诗词及其作者、背景和主题。

- 文言文阅读:熟悉文言文的基本句式和常用词汇,能够翻译和理解文言文。

- 现代文阅读:提高阅读理解能力,学会概括文章主旨、分析作者观点。

- 作文技巧:掌握记叙文、议论文等不同文体的写作技巧。

数学- 代数:掌握代数方程、不等式、函数等基本概念和运算法则。

- 几何:理解平面几何和立体几何的基本定理和性质。

- 统计与概率:熟悉统计图表的绘制和解读,概率的计算方法。

- 解题技巧:培养逻辑推理和问题解决的能力。

英语- 词汇:扩大词汇量,掌握常用词汇的拼写、发音和用法。

- 语法:熟悉各种时态、语态、从句等语法结构。

- 阅读理解:提高阅读速度和理解能力,学会快速获取信息。

- 写作:掌握不同类型文章的写作方法,如记叙文、议论文等。

物理- 力学:理解力的作用效果、运动的描述、牛顿运动定律等。

- 热学:掌握温度、热量、热力学第一定律等概念。

- 电磁学:学习电场、磁场、电磁感应等基础知识。

- 实验技能:培养实验操作能力和数据分析能力。

化学- 物质的组成:了解元素、化合物、分子、原子等概念。

- 化学反应:掌握化学反应的类型、条件和平衡。

- 化学计算:学习物质的量、摩尔质量、浓度等计算方法。

- 化学实验:熟悉实验操作和实验现象的观察。

生物- 细胞生物学:理解细胞结构、功能和生命活动。

- 遗传与进化:学习遗传规律、基因突变和生物进化。

- 生态学:了解生态系统的结构、功能和保护。

- 生物技术:了解基因工程、克隆技术等现代生物技术。

历史- 中国古代史:掌握重要朝代的更替、文化成就和历史事件。

- 中国近现代史:了解近现代中国的重大变革和发展。

- 世界历史:学习世界各主要文明的发展和交流。

地理- 自然地理:了解地球的构造、气候、水文等自然现象。

中考概率和统计知识点总结

中考概率和统计知识点总结

中考概率和统计知识点总结一、概率的基本概念1.实验、随机现象和样本空间2.事件和事件的关系(包括互斥事件、对立事件等)3.概率的定义及其性质4.等可能概型二、概率的运算与应用1.概率的加法法则2.概率的乘法法则3.条件概率4.全概率公式和贝叶斯公式5.区间估计三、统计的基本概念1.数据的收集和整理2.数据的组织和展示(包括频数分布表、频数分布直方图等)3.平均数、中位数、众数等常用统计量的计算与应用4.极差、四分位数、标准差等常用离散程度的计算与应用四、统计的运算与应用1.抽样调查和总体推断2.关联图与线性回归线的绘制与分析3.相关系数与相关性分析4.统计问题的解决思路和方法五、典型例题解析通过分析和解答一些典型的例题,总结和归纳其中的解题思路和方法,帮助学生掌握应用概率和统计知识解决实际问题的能力。

其中,概率的基本概念是理解概率的基础。

实验、随机现象和样本空间是研究概率问题的起点,通过定义事件和事件的关系可以帮助学生理解事件的概率计算。

概率的定义及性质是概率题目的出发点,通过等可能概型的学习可以对概率有更深入的理解。

概率的运算与应用是概率题目的核心内容。

概率的加法法则和乘法法则是计算复杂概率事件的基本工具,条件概率是解决复杂概率问题的重要手段。

全概率公式和贝叶斯公式是处理复杂问题的常用公式。

区间估计是概率应用的重要方法,通过样本估计可以对总体进行推断。

统计的运算与应用主要包括抽样调查和总体推断、关联图与线性回归线的绘制与分析、相关系数与相关性分析等内容。

抽样调查和总体推断是通过样本对总体进行估计的方法,关联图和线性回归线可以帮助学生分析变量之间的关系,相关系数的计算和分析可以帮助学生评价相关性的强度和方向。

最后,通过解析典型例题可以帮助学生掌握概率和统计知识的解题思路和方法。

通过分析例题,可以发现一些常见的解题方法和技巧,帮助学生在考试中更好地应对各类概率和统计题目。

综上所述,中考概率和统计知识点主要包括概率的基本概念、概率的运算与应用、统计的基本概念、统计的运算与应用以及典型例题解析等内容。

北京市西城区2019年中考复习《统计与概率》建议讲义及练习

北京市西城区2019年中考复习《统计与概率》建议讲义及练习

北京市西城区重点中学2019年3月九年级数学中考复习 《统计与概率》复习建议讲义及2019年各区县一模、二模相关题新版课程标准中指出:“统计与概率”的内容在新课程中得到了较大重视,成为和“数与代数”“图形与几何”“综合与实践”并列的四部分内容之一,而统计则成为这一部分的重点。

统计与概率的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。

中考内容中统计与概率大约占14分,15年之前是两道选择题一道解答题,15年是两道3分选择题,一道3分填空题和一道5分解答题,总体难度略有增加。

一、知识结构统计部分知识结构:描述数据分析数据样本估计总体 总体 样本中位数 众 数 平均数 收集、整理数据全面调查 统计表抽样调查条 形 图 扇 形 图 折 线 图 直 方 图方 差概率部分知识结构:二、考试说明要求三、近几年中考统计、概率考点分布统计试题涉及知识点:年份选择题考查的概念解答题考查的统计图表统计图统计表2010 平均数、方差折线图、扇形图(补全)补全2011 众数、中位数折线图、条形图(补全)√2019 众数、中位数条形图(补全)、扇形图√2019 加权平均数复合条形图(补全)、扇形图补全2019 众数、加权平均数扇形图(补全)√2019 众数、中位数、条形统计图自制统计图自制统计表另:2019年增加的填空15题为开放性题型,要求学生根据统计图进行数据预估,并阐述预估理由。

概率试题涉及知识点:2010年—2019年:选择题,求随机事件概率四、2019年中考统计题第7题、某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5C.21,22 D.22,22本题涉及到根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解。

北京市2021年中考数学复习统计与概率课时训练(十五)统计图表

北京市2021年中考数学复习统计与概率课时训练(十五)统计图表

课时训练(十五) 统计图表(限时:30分钟)|夯实根底|1.某棉纺织厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进展测量,其长度x(单位: mm)的数据分布如下表,那么棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8B.0.7C.0.4D.0.22.[2021·朝阳二模] 小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.图K15-1根据图中信息,以下说法:①这栋居民楼共有居民140人;②每周使用手机支付次数为28~35次的人数最多;③有的人每周使用手机支付的次数在35~42次;④每周使用手机支付不超过21次的有15人.其中正确的选项是()A.①②B.②③C.③④D.④3.[2021·怀柔一模] 图K15-2是某品牌毛衣和衬衫2021年9月至2021年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,以下推断不合理的是 ()图K15-2A.9月毛衣的销量最低, 10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月-11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右4.[2021·海淀第二学期练习] 在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.图K15-3(以上数据摘自?2021年中国在线少儿英语教育白皮书?)根据统计图提供的信息,以下推断一定不合理的是 ()A.2021 年12月至2021年6月,我国在线教育用户规模逐渐上升B.2021 年12月至2021年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2021 年12月至2021年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2021年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%5.[2021·丰台一模] 太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力开展太阳能.图K15-4是2021-2021年我国光伏发电装机容量统计图.根据统计图提供的信息,判断以下说法不合理的是()图K15-4A .截至2021年底,我国光伏发电累计装机容量为13078万千瓦B .2021-2021年,我国光伏发电新增装机容量逐年增加C .2021-2021年,我国光伏发电新增装机容量的平均值约为2500万千瓦D .2021年我国光伏发电新增装机容量大约占当年累计装机容量的40%6.[2021·东城一模] 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,假设其中一项三次挑战失败,那么该项成绩为0.甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):年份选手 2021 上半年 2021下半年2021上 半年 2021下 半年 2021上 半年 2021下半年甲290 (冠军) 170(没 获奖) 292 (季军) 135(没 获奖) 298(冠军) 300(冠军) 乙285(亚军) 287 (亚军) 293 (亚军) 292 (亚军) 294 (亚军) 296(亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选派 (填“甲〞或“乙〞),理由是 .7.[2021·顺义一模] 图K15-5①为北京市女生从出生到15岁的平均身高统计图,图K15-5②是北京市某女生从出生到12岁的身高统计图.图K15-5请你根据以上信息预测该女生15岁时的身高约为,你的预测理由是.8.[2021·朝阳二模] 鼓励科技创新、技术创造,北京市2021-2021年专利授权量如图K15-6所示.根据统计图中提供信息,预估2021年北京市专利授权量约件,你的预估理由是.图K15-69.[2021·朝阳二模] 在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数根本一样,他随机记录了其中某些天上学所用的时间,整理如下表:交通工具所需时间(单位:min)自行车14,14,14,15,15,15,15,15,15,15,15,15,15,15,15公共汽车10,10,11,11,11,12,12,12,12,13,15,16,17,17,19下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短;②骑自行车上学所需的时间比拟容易预计;③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车;④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车.其中合理的是(填序号).10.[2021·门头沟一模] 地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保〞的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进展调查分析,成绩如下:初一:76889365789489689550898889897794878892 91初二:74979689987469767278997297769974997398 74(1)根据上面的数据,将以下表格补充完整;整理、描述数据:成绩x人数年级50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100初一 1 2 3 6初二0 1 10 1 8 (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性)11.[2021·延庆一模] 从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进展综合治理,率先在局部村镇进展“煤改电〞改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进展空气质量监测.过程如下,请补充完整.收集数据:从2021年12月初开场,连续一年对两镇的空气质量进展监测,将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:1201151001009585807050505045永宁镇:11090105809085906090457060(1)整理、描述数据:按下表整理、描述这两镇空气污染指数的数据:空气次数质量镇空气质量为优空气质量为良空气质量为轻度污染千家店镇 4 6 2永宁镇(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻度污染)(2)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示:城镇平均数中位数众数千家店镇80 50永宁镇81.3 87.5请将以上两个表格补充完整;(3)得出结论:可以推断出镇这一年中环境状况比拟好,理由:.(至少从两个不同的角度说明推断的合理性)12.[2021·东城二模] 十八大报告首次提出建立生态文明,建立美丽中国.十九大报告再次明确,到2035年美丽中国目标根本实现.森林是人类生存开展的重要生态保障,提高森林的数量和质量对生态文明建立非常关键.截止到2021年,我国已经进展了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数森林面积(万公顷) 森林覆盖率一(1976年) 12200 12.7%二(1981年) 11500 12%三(1988年) 12500 12.98%四(1993年) 13400 13.92%五(1998年) 15894.09 16.55%六(2003年) 17490.92 18.21%七(2021年) 19545.22 20.36%八(2021年) 20768.73 21.63%表2北京森林面积和森林覆盖率清查次数森林面积(万公顷) 森林覆盖率一(1976年) 11.2%二(1981年) 8.1%三(1988年) 12.08%四(1993年) 14.99%五(1998年) 33.74 18.93%六(2003年) 37.88 21.26%七(2021年) 52.05 31.72%八(2021年) 58.81 35.84%(以上数据来源于中国林业网) 请根据以上信息解答以下问题:(1)从第次清查开场,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;图K15-7(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2021年第九次森林资源清查时,如果全国森林覆盖率到达27.15%,那么全国森林面积可以到达万公顷(用含a和b的式子表示).|拓展提升|13.[2021·丰台二模] 某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.安康与平安,C.构造与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会方案调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是;(填序号)①选择七年级1班、2班各15名学生作为调查对象;②选择机器人社团的30名学生作为调查对象;③选择各班学号为6的倍数的30名学生作为调查对象.调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表课程领域 A B C D E F G 合计人数 4 4 3 3 2 30图K15-8分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是(填A-G的字母代号),估计全年级大约有名学生喜欢这个课程领域.参考答案1.A2.B3.C4.B5.B6.答案不唯一,理由须支撑选项.7.170厘米12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米(答案不唯一,合理即可).8.答案不唯一,理由须支撑推断的合理性.9.①②③10.解:(1)补全表格如下:初一:8;众数:89;中位数:77.(2)略.可以从给出的三个统计量去判断,如果利用其他标准推断要有数据说明合理才能得分.11.解:(1)19 2(2)82.590(3)千家店理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的次数是4,永宁镇空气质量为优的次数是1,所以千家店镇空气质量为优的次数多,空气质量较好.12.解:(1)四(2)如图.(3)13.解:收集数据③整理、描述数据某校七年级学生喜欢的课程领域统计表课程领域 A B C D E F G 合计人数 4 4 3 3 2 4 10 30某校七年级学生喜欢的课程领域统计图分析数据、推断结论G60。

中考重点概率与统计

中考重点概率与统计

中考重点概率与统计中考重点:概率与统计概率与统计是数学中的一个重要分支,它与现实生活密切相关,被广泛应用于各个领域。

在中考中,概率与统计也是一个重要的考点。

本文将围绕中考重点概率与统计展开讨论,为同学们学好这一部分知识提供指导。

一、概率概率是事件发生的可能性大小的度量,在我们的日常生活中无处不在。

学习概率可以帮助我们更好地理解可能性,辨别事物间的关系。

1. 定义与基本概念概率是在一定条件下某一事件发生的可能性大小的度量。

一般用P(A)表示某一事件A发生的概率,其中0 ≤ P(A) ≤ 1,当P(A) = 0时,表示事件A不可能发生;当P(A) = 1时,表示事件A一定发生。

2. 概率计算当事件的样本空间S中的元素均等可能时,事件A发生的概率可以通过计算A中元素个数与S中元素总数的比值来计算。

即P(A) =n(A)/n(S)。

3. 事件间的关系对于事件A、B,我们可以定义并计算它们的并、交、差等关系。

- 并:事件A和B的并,表示事件A或B中至少一个发生,用A∪B表示。

- 交:事件A和B的交,表示事件A和B同时发生,用A∩B表示。

- 差:事件A和B的差,表示事件A发生而B不发生,用A-B表示。

二、统计统计是一种通过收集、整理、分析和解释数据的方法,它能帮助我们更好地理解数据背后的特征和规律。

1. 数据的收集与整理在统计中,我们需要收集和整理相关的数据,以便进行后续的分析和解释。

数据可以通过观察、实验、调查等方式进行收集,然后进行整理和分类。

2. 数据的描述与分析在获得数据后,我们可以通过图表、统计量等方式对数据进行描述和分析。

常见的统计量包括平均数、中位数、众数、方差等,它们可以帮助我们了解数据的集中趋势、离散程度等特征。

3. 统计推断统计推断是根据从样本中得到的信息,对总体进行推断和判断。

通过对样本进行抽样,我们可以得到有关总体的一些信息,并利用统计原理进行推断。

总结:概率与统计作为数学的一个重要分支,无论是在学术研究还是实际应用中都具有重要的地位。

中考复习初中数学概率与统计复习重点整理

中考复习初中数学概率与统计复习重点整理

中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。

复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。

下面是中考复习初中数学概率与统计的重点内容整理。

一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。

2. 事件间的关系- 互斥事件:两个事件不能同时发生。

- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。

- 独立事件:事件A的发生与事件B的发生没有关系。

3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。

- 排列与组合:计算不同元素的排列和组合个数。

- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。

二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。

2. 数据的收集与整理- 原始数据:未经处理的数据。

- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。

- 统计表与统计图:用于展示统计数据的表格和图形。

3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。

- 中位数:将一组数据从小到大排列,位于中间的数据。

- 众数:出现频率最高的数值。

- 极差:一组数的最大值与最小值的差别。

4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。

- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。

总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。

熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。

中考概率与统计总结知识点

中考概率与统计总结知识点

中考概率与统计总结知识点概率与统计是数学的一个重要分支,也是生活中经常会用到的一种数学方法。

通过概率与统计的学习,我们可以更深入地了解生活中发生的事情,分析数据,做出合理的判断和预测。

在中考中,概率与统计是一个重要的考试内容,也是考查学生综合运用数学知识的重要环节。

下面我们来总结一下中考概率与统计的知识点。

一、概率1. 概率的基本概念概率是事件发生的可能性的大小。

常用P(A)表示事件A的概率。

概率的范围是[0,1],表示事件发生的可能性从不可能到一定发生。

事件的互斥与对立事件,互斥事件指的是两个事件不能同时发生,对立事件指的是两个事件至少有一个发生。

事件的和与积,事件的和指的是两个事件中至少有一个发生的概率,事件的积指的是两个事件同时发生的概率。

2. 概率的计算概率的计算公式:P(A) = 事件A发生的次数 / 总的可能性次数。

概率的计算方法:古典概率、几何概率、统计概率。

古典概率指的是在有限个元素的样本空间中,每个基本事件发生的可能性相等。

几何概率指的是利用几何图形来计算概率。

统计概率指的是利用统计方法来计算概率。

3. 概率的应用事件的独立性、相关性:当一个事件的发生不受另一个事件的影响时,两个事件是独立的,否则是相关的。

事件的概率运算:事件的交、并、差。

二、统计1. 统计的基本概念统计是一种数据的搜集、整理、分析和解释的方法。

通过统计可以了解数据的分布规律、发现数据的特点、进行数据的预测和判断。

常见的统计量:均值、中位数、众数、标准差等。

2. 统计分布离散型数据与连续型数据:离散型数据指的是数据的取值是一个个的分散的,连续型数据指的是数据的取值是一段范围内的。

频数分布表:将数据按照一定的间隔划分成若干组,然后统计每一组中数据的个数。

频率分布表:将频数除以数据的总个数得到频率,用来表示数据在每一组中出现的概率。

3. 统计图表直方图:用来表示数据的频数分布。

折线图:用来表示数据的趋势变化。

饼图:用来表示各部分所占的比例。

(完整word版)北师大中考数学复习专题概率与统计复习专题

(完整word版)北师大中考数学复习专题概率与统计复习专题

A . 1号球袋B . 2号球袋考点1频率与概率 、考点讲解:1. 频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动, 这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小.2. 概率的性质:P (必然事件)=1 , P (不可能事件)=0, 0<P (不确定事件)<1.3•频率、概率的区别与联系:频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化 而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过 多次实验,用所得的频率来估计事件的概率. 二、经典考题剖析:【考题1 - 1】(2004、成都郸县,3分)某校九年级三班在体育毕业考试中,全班所有学生得分的情况如下表,那么该班共有 ________ 人,随机地抽取I 人,恰好是获得30分的学生的概率是 ________________ ,从表中你还能获取的 信息是 _______________________________ ____________ (写出一条即可)1解:65;如:随机抽了 1人恰好获得24〜26分的学生的概率为618^HTzAlt3堆,用…【考题1 - 2】(2004、贵阳,6分)质量检查员准备从一批产品中抽取 10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1) 请采用计算器模拟实验的方法,帮质检员抽取被检产品; (2) 如果没有计算器,你能用什么方法抽取被检产品. 解:(1)利用计算器模拟产生随机数与这批产品编 号相对应,产生10个号码即可;(3)利用摸球游戏或抽签等.【考题1 — 3】(2004、鹿泉,2分)如图I — 6 — I 是一个经过改造的台球桌面的示意图,图中四个角上的阴影部 分分别表示四个人球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射人那么该球最后将落人的球袋是()概率与统计复习专题4号餐3号钱ffi 1 6 )C . 3号球袋D . 4号球袋解:B 点拨:球走的路径如图I — 6 - I 虚线所示. 三、针对性训练:1、在对某次实验次数整理过程中,某个事件出现的频偶数上的概率是(2. 率随实验次数变化折线图如图I — 6— 2,这个图中折线变化的特点是_______ ,估计该事件发生的概率为(2004,南山,3分) 如图I — 6—5的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在 3. (2004,南山, 3分) 掷2枚1元钱的硬币和3枚1角钱的硬币, 1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是(M.0O4I4.列举法:(2004,汉中, 3分)小红、小明、小芳在一起做游戏时需要确定做游戏的先后顺序,他们约定用“剪子、包袱、锤子”的方式确定,问在一个回合中三个人都出包袱的概率是5. (2004,贵阳,3分)口袋中有3只红球和11只黄球,这两种球除颜色外没有任何区别,从口袋中任取一只球,取到黄球的概率是6. (2004,南山,5分)周聪同学有红、黄、蓝三件T恤和黑、白、灰三条长裤,请你帮他搭配一下,看看有几种穿法.考点2 :概率的应用与探究、考点讲解:1•计算简单事件发生的概率:列表画树状图2•针对实际问题从多角度研究事件发生的概率,从而获给理的猜测、经典考题剖析:【考题2 — 1】(2004、南宁,3分)中央电视台的“幸运 5 2”栏目中的“百宝箱”互动环节是一种竞猜游戏, 游戏规则如下:在 20个商标牌中,有 5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸, 若翻到哭脸,就不得奖.参与这个游戏的观众有 3次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )解:C 点拨:由于20个商标中共有5个商标注明奖金,翻 2次均获奖金后,只剩下 1由于翻过的牌不能再翻,所以剩余的商标总数为18个•因此第三次翻牌获奖的概率为6 -【考题2 — 2】(2004、四省区,6分)一布袋中放有红、 黄、白三种颜色的球各一个, 它们除颜色外其他都一样, 小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球•请你利用列举法(列表或画树状图)分析并求出小 亮两次都能摸到白球的概率. 解:列表如下:1答:小亮两次都能摸到白球的概率为 92•在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问 1人,上学之前吃过早餐的概率是()A . 0.8 5B . 0.085C . 0.1D . 8503. 有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,试利用树状 图和列表法,求分别从两只口袋中各取一个球,两个球都是黄球的概率.4•为了估计鱼塘中有多少条鱼,先从塘中捞出 100条做上标记,再放回塘中,待有标记的鱼完全混人鱼群后,再捞出200条鱼,其中有标记的有 20条,问你能否估计出鱼塘中鱼的数量?若能,鱼塘中有多少条鱼?若 不能,请说明理由.5•将分别标有数字1 , 2, 3的三张卡片洗匀后,背面朝上放在桌面上.⑴随机地抽取一张,求 P (奇数)⑵ 随机地抽取一张作为十位上的数字(不放回人再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少?考点3:统计初步(一)A. 1 25C.—3203个注明奖金的商标,又三、针对性训练:1 .在100张奖券中, 有 4张中奖,某人从中任抽1 1 1 1 A 、 25 B 4 C 、 100 D 、 201张,则他中奖的概率是( )舌舉魏目太多买监带有皿坏性(抽取)屮—、总体 ------------ 个休------------ 样本+f I1------------- 储十--------- i平均数二、反映集中趋势中数中位数、选择题1. 【05内江】某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则这个队队员年龄的众数和中位数是()A、19,20B、19,19C、19,20.5D、20,192. 【05资阳】某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号3. 【05嘉兴】“长三角” 16个城市中浙江省有7个城市。

中考零距离北京市中考数学 第十五单元 统计与概率(课标解读典例诠释)复习-人教版初中九年级全册数学试

中考零距离北京市中考数学 第十五单元 统计与概率(课标解读典例诠释)复习-人教版初中九年级全册数学试

第十五单元统计与概率第一节统计课标解读知识要点1.收集数据常用法与法.2.所有考查对象的称为总体;组成总体的每一个考察对象叫做;从总体中所抽取的叫做总体的一个样本;样本中个体的数量称为;样本容量没有单位.3.统计时,每个对象出现的次数叫做,频数之和等于总数;频数与数据总数之比为,频率之和为.4.描述数据常用的四种统计图表是、、、.5.图能够清楚地表示每个项目的具体数目及反映事物某一阶段属性的大小;图可以直观地反映部分占总体的百分比大小,一般不表示具体的数量;图可以反映数据的变化趋势;频数分布直方图能直观、清楚地反映数据在各个小X围内的变化分布情况.6.在扇形图中,扇形所对圆心角的度数与百分数的关系是:圆心角的度数=×.n个数的算术平均数时,如果出现了次,如果出现了次,…,出现了次(这里+…=n),那么这n个数的算术平均数=,也叫,,…,这k个数的加权平均数,其中,,…,分别叫,,…,的.8.将一组数据按照的顺序排列,如果数据个数是奇数,则处于的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的,就是这组数据的中位数.9.在一组数据中,出现次数最多的数叫做这组数据的.10.用来衡量一组数据的波动大小,并把它叫做这组数据的,记作.11.一组数据的方差越大,数据的波动,方差越小,数据的波动.典例诠释考点一数据的收集与整理例1 (2015·怀柔二模)以下问题,不适合用普查方法的是( )A.了解某种酸奶中钙的含量C.公司招聘职员,对应聘人员的面试【答案】 A【名师点评】当一项调查具有一定的破坏性或以现有的人力、物力、财力很难(或没有必要)进行普查时,应选择抽样调查;当要求调查结果准确、真实时,应选择普查.例2 (2016·丰台一模)某地区有36所中学,其中九年级学生共7 000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.排序:.(只写序号)【答案】②①④⑤③【名师点评】本题主要涉及了数据收集与整理的步骤,了解数据处理的过程是关键.考点二平均数、众数、中位数、方差例3 (2016·昌平二模)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( )A.1.65,1.70B.1.70,1.70C.1.70,1.65D.3,4【答案】 C【名师点评】本题主要考查了中位数和众数的计算方法.计算中位数之前要注意将数据按照从小到大的顺序排列.例4 (2015·门头沟二模)甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如图1-15-1所示,设甲、乙两人射击成绩的平均数依次为,,射击成绩的方差依次为,,那么下列判断中正确的是( )图1-15-1A.,B.C.,D.,【答案】 B1-15-1可以看出乙队比甲队数据的波动更小一些,更趋于稳定,因此乙队的方差小于甲队的方差.考点三制作统计图表解决实际问题例5 (2016·西城一模)阅读下列材料:据报道,2014年市环境空气中PM2.5年平均浓度为85.9微克/立方米,PM2.5一级优天数达到93天,较2013年大幅度增加了22天.PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年市环境空气中PM2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11~12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为天;PM2.5年平均浓度的国家标准限值是微克/立方米.(结果保留整数)(2)选择统计表或统计图,将2013~2015年PM2.5一级优天数的情况表示出来.(3)小明从报道中发现“2015年11~12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.【解】 (1)172;35.(2)统计表如下:2013~2015年PM2.5一级优天数统计表(单位:天)(3)不同意.因为通过计算2015年发生重污染约为42天,而2014年发生重污染为45天,所以2015年全年的PM2.5重污染天数比2014年少.【名师点评】本题考查了学生筛选和分析数据的能力.第(2)问选择统计表、条形统计图比较简单.第(3)问涉及了用样本估计总体的有关知识,选择的样本不具有普遍性,不能用来估计总体.例6 (2016·海淀一模)2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》、《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1 000万元~5 000万元、5 000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.图1-15-2根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图1-15-2所示为2015年国产..动画电影票房金字塔,则B=;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.【解】 (1)45;(2)21;(3)2.4×(1+20%)=2.88.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表【名师点评】本题的第(3)问,可以选择统计表、条形统计图来完成.在没有指明用扇形统计图完成的情况下尽量不要选择制作比较复杂的扇形图.考点四样本估计总体例7 (2016·石景山一模)某市2012~2016年春节期间烟花爆竹销售量统计如图1-15-3所示,根据统计图中提供的信息,预估2017年该市春节期间烟花爆竹销售量约为万箱,你的预估理由是.图1-15-3【答案】 8;下降趋势变缓【名师点评】本题是利用折线统计图所反映出的变化趋势,描述随机现象的变化趋势.关注变化趋势的缓和急是预测的关键.例8 (2015·西城一模)在,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图(如图1-15-4及图1-15-5). 市民过去四周乘坐地铁的次数扇形图图1-15-4图1-15-5调价后部分线路客流量及变化率(日均客流量:万人次)根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在X 围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)【解】 (1)补全扇形图:每周1~2次占37.0%,图略.(2)2号线;52<x≤72;22.2.(3)30.【名师点评】本题主要考查了利用统计图表解决有关实际问题的相关知识.正确提取有效信息、正确识别每个统计图表的含义是关键.基础精练1.(2015·顺义二模)某品牌吹风机抽样检查的合格率为99%,则下列说法中正确的是( )A.购买100个该品牌的吹风机,一定有99个合格B.购买1 000个该品牌的吹风机,一定有10个不合格C.购买10个该品牌的吹风机,一定都合格D.即使购买1个该品牌的吹风机,也可能不合格【答案】 D2.(2015·通州二模)下列说法正确的是( )A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差=0.2,乙组数据的方差=0.5,则乙组数据比甲组数据稳定【答案】 C3.(2015·顺义二模)在下列调查中,适宜采用全面调查的是( )C.检测一批电灯泡的使用寿命D.调查顺义电视台《师说》栏目的收视率【答案】 A4.(2016·海淀一模)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )【答案】 A5.(2016·门头沟一模)如图1-15-6所示是某市10月1日至7日一周内“日平均气温变化统计图”.在这组数据中,众数和中位数分别是( )图1-15-6A.13,13B.14,14C.13,14D.14,13【答案】 D6.(2016·东城二模)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )【答案】 C7.(2016·丰台二模)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.6环,方差分别是=0.96,=1.12,=0.56,=1.58.在本次射击测试中,成绩最稳定的是( )【答案】 C8.(2016·丰台二模)市2010~2015年机动车保有量统计如图1-15-7所示.根据统计图中提供的信息,预估2016年市机动车的保有量约万辆,你的预估理由是.图1-15-7【答案】答案不唯一,预估理由需包含统计图提供的信息,且支撑预估的数据即可.9.(2016·西城二模)某班级进行了一次诗歌朗诵比赛,甲、乙两组学生的成绩如下表所示(满分10分):你认为哪一组的成绩更好一些?并说明理由.答:组(填“甲”或“乙”),理由是.【答案】答案不唯一,理由包含表格所给信息,且支撑结论.如:乙,乙组的平均成绩较高,方差较小,成绩相对稳定.10.(2016·丰台二模)阅读下列材料:日前,微信发布《2016微信春节大数据报告》显示,2016年除夕当日,利用微信传递春节祝福的音视频通话时长达4.2亿分钟,是2015年除夕的4倍,“红包不要停”成为春节期间最热门微信表情,其作者共获得124 508元的“赞赏”.报告显示,除夕当日,微信红包的参与者达4.2亿人,收发总量达80.8亿个,是2015年除夕的8倍.除了通常的定额红包、拼手气红包,除夕到初一期间,微信还推出可以添加照片的拜年红包、引爆朋友圈的红包照片,以及和诸多品牌商家联合推出的摇一摇红包.其中,在除夕当日拼手气红包的收发量约为微信红包收发总量的20%.作为一款“国民社交平台”,微信在春节通过红包激活了用户的使用热情,用音视频通话、朋友圈、微信群等串联起了五湖四海的情感,实现了科技与人文的交汇,成为“过好春节”的标配.根据以上材料回答下列问题:(1)2016年除夕当日,拼手气红包收发量约为亿个;(2)选择统计表或.统计图将2015年和2016年除夕当日微信红包收发总量和音视频的通话时长表示出来.【解】 (1)16.16. (2)统计表如下:2015年和2016年除夕当日微信红包收发总量和音视频的通话时长统计表11.(2016·海淀二模)据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000~2015年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表2015年全国人口年龄构成统计图图1-15-8根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.【解】 (1)m=16.5.(2)14(估值在合理X围内即可).(3)-9.72=4.14(万人).答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医生数达到0.6.12.(2016·顺义二模)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:图1-15-9请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?【解】 (1)18,0.18.(2)如图1-15-10.图1-15-10(3)80~90.(4)350×0.30=105(人).答:约有105人.真题演练1.(2013·黔西南州)下列调查中,须用普查的是( )【答案】 C2.(2013·某某某某)2013年某某市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )【答案】 A3.(2016·)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量,绘制了统计图,如图1-15-11所示.下面有四个推断:①年用水量不超过180 的该市居民家庭按第一档水价交费;②年用水量超过240 的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150 ~180 之间;④该市居民家庭年用水量的平均数不超过180 .其中合理的是( )图1-15-11A.①③B.①④C.②③D.②④【答案】 B4.(2015·)某市6月份日平均气温统计如图1-15-12所示,则在日平均气温这组数据中,众数和中位数分别是( )图1-15-12A.21,21B.21,21.5C.21,22D.22,22【答案】 C5.(2015·)市2009~2014年轨道交通日均客运量统计如图1-15-13所示.根据统计图中提供信息,预估2015年市轨道交通日均客运量约万人次,你的预估理由是.图1-15-13【答案】答案不唯一,1 038,按每年平均增长人数近似相等进行估算.(答案在980至1038之间都可以)6.(2016·)调查作业:了解你所在小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表表2 抽样调查小区15户家庭5月份用气量统计表表3 抽样调查小区15户家庭5月份用气量统计表根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处. 【解】小芸同学比较好,小天样本容量较少,小东样本类型不全面.7.(2016·)阅读下列材料:市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文、科技、绿色”的发展战略.“十二五”期间,市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.1%.2012年,市文化创意产业继续呈现平稳发展态势,实现产业增加值 2 189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,市文化创意产业实现增加值2 406.7亿元,比上年增长9.1%,文化创意产业作为市支柱产业已经排到了第二位.2014年,市文化创意产业实现增加值2 794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.(以上数据来源于市统计局)根据以上材料解答下列问题:(1)用折线图将2011~2015年市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年市文化创意产业实现增加值约亿元,你的预估理由是 .【解】如图1-15-14.图1-15-14(2)答案不唯一,只要合理即可.8.(2015·)阅读下列材料:2015年清明小长假,市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中玉渊潭公园的樱花,植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、某某公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次,20万人次,17.6万人次;动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,晴好,市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增加了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、动物园游客接待量分别为32万人次、13万人次、14.9万人次.根据以上材料回答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次.(2)选择统计表或.统计图,将2013~2015年玉渊潭公园、颐和园和动物园的游客接待量表示出来.【解】 (1)40;(2)2013~2015年清明小长假公园游客接待量统计表2013~2015年清明小长假公园游客接待量统计图图1-15-15第二节概率课标解读知识要点1.在一定条件下,可能发生也可能不发生的事件,称为事件.2.一般地,在大量重复试验中,如果A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的.A是必然发生的事件时,P(A)为;当A为不可能发生的事件时,P(A)为;当A为随机事件时,<P(A)<.4.一般地,如果在一次试验中有n种可能的结果,并且它们发生的可能性相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)=.5.列举随机事件所有等可能的结果,方法有;.典例诠释考点一辨别三种事件例1 (2016·某某一模)下列事件为必然事件的是( )A.任意掷一枚均匀的硬币,正面朝上B.篮球运动员投篮,投进篮筐C.一个星期有七天D.打开电视机,正在播放新闻【答案】 C例2 (2016·东城期末)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )【答案】 A【名师点评】在一定条件下,有些事件必然会发生称之为必然事件;有些事件必然不会发生称之为不可能事件;在一定条件下,可能发生也可能不发生的事件称为随机事件.考点二求随机事件的概率例3 (2015·海淀一模)某游戏的规则为:选手蒙眼在一X如图1-15-16所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为( )图1-15-16A. B. C. D.【答案】 D例4 (2016·房山一模)有五X形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一X,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是( )A. B. C. D.【答案】 B【名师点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A发生的概率P(A)=.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.考点三用频率估计概率例 5 (2016·海淀二模)在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同: .【答案】 0.25;答案不唯一,如从一副去掉大小王的扑克牌中抽出一X牌,牌的花色是红桃.例6 (2016·石景山二模)某班学生分组做抛掷瓶盖实验,各组实验结果如下表:根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为.(精确到0.01)【名师点评】本类题主要考查了利用频率估计概率的方法.一般地,在大量重复试验时,可以直接用事件发生的频率或频率的平均值作为其概率的估计值.因此,计算这些组频率的平均值是解决本类型题的关键.考点四用列举法求概率例7 (2016·某某期末)党的十八大提出,倡导富强、某某、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、某某、文明、和谐”是国家..层面的价值目标;“自由、平等、公正、法治”是社会..层面的价值取向;“爱国、敬业、诚信、友善”是公民个人....层面的价值准则.小光同学将其中的“文明”“和谐”“自由”“平等”的文字分别贴在4X硬纸板上,制成如图1-15-17所示的卡片.将这4X卡片背面朝上洗匀后放在桌子上,从中随机抽取一X卡片,不放回...,再随机抽取一X卡片.A B C D图1-15-17(1)小光第一次抽取的卡片上的文字是国家..层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家..层面价值目标、一次是社会..层面价值取向的概率(卡片名称可用字母表示).【解】 (1).(2)画树状图如图1-15-18,可知共有12种情况,其中符合题意的有8种,∴P=.图1-15-18【名师点评】当一次试验涉及多个因素(对象)时,常用“列表法”或“树状图”求出事件发生的等可能性的所有结果数,然后找出所要求事件发生的结果数,根据概率的意义求出概率.基础精练1.(2016·石景山二模)从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是( )【答案】 C2.(2015·某某一模)下表是某种抽奖活动中封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( )A. B. C. D.【答案】 A3.(2016·西城二模)有一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形.在转盘的适当地方涂上灰色,未涂色部分为白色.为了使转动的转盘停止时,指针指向灰色的概率为,则下列各图中涂色方案正确的是( )A B C D【答案】 C4.(2016·昌平期末)“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其他都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为( ) A. B. C. D.【答案】 C5.(2016·丰台一模)五X完全相同的卡片上,分别写上数字-3,-2,-1,2,3,现从中随机抽取一X,抽到写有负数的卡片的概率是( )A. B. C. D.【答案】 C6.(2016·昌平二模)在一个不透明的袋子里装有3个白球和m个黄球,这些球除颜色外其余都相同.若从这个袋子里任意摸出1个球,该球是黄球的概率为,则m等于( )【答案】 A7.(2016·某某二模)一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为( )【答案】 B8.(2015·丰台一模)某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图1-15-19所示的折线图,那么符合这一结果的实验最有可能的是( )。

北京中考各科知识点归纳

北京中考各科知识点归纳

北京中考各科知识点归纳北京中考涵盖了多个学科,包括语文、数学、英语、物理、化学、生物、历史、地理和政治等。

以下是对这些学科的知识点进行的简要归纳:语文- 古诗词的背诵与鉴赏:包括唐诗、宋词等经典作品。

- 现代文阅读:理解文章主旨、作者观点和写作手法。

- 作文:包括记叙文、议论文和说明文等写作技巧。

- 古文阅读:文言文的翻译和理解。

数学- 代数:包括方程、不等式、函数等基本概念和运算。

- 几何:涉及平面几何、立体几何的定理和证明。

- 统计与概率:数据的收集、处理和概率事件的计算。

- 数学思维:逻辑推理、数学建模等。

英语- 词汇:掌握一定数量的英语单词和短语。

- 语法:英语句子结构、时态、语态等。

- 阅读理解:理解文章大意和细节。

- 写作:包括书信、议论文等写作形式。

物理- 力学:包括力和运动的基本概念、牛顿定律等。

- 热学:温度、热量传递和热力学定律。

- 电学:电路、电流、电压和欧姆定律。

- 光学:光的传播、反射和折射。

化学- 物质的组成:元素、化合物、化学式。

- 化学反应:化学反应的类型和条件。

- 化学计算:摩尔质量、物质的量和化学反应的定量计算。

- 化学实验:基本的化学实验操作和安全知识。

生物- 细胞结构和功能:细胞器、细胞分裂等。

- 遗传与进化:基因、遗传定律和物种进化。

- 生态系统:生物与环境的关系和生态系统的平衡。

- 生物技术:基因工程、克隆技术等现代生物技术。

历史- 中国古代史:重要朝代和历史事件。

- 近现代史:中国近现代的重大变革和事件。

- 世界历史:世界重要文明和历史事件。

- 历史人物和思想:对历史有重大影响的人物和思想。

地理- 自然地理:地球的运动、气候、地形等。

- 人文地理:人口、城市、文化等。

- 地图学:地图的阅读和使用。

- 地理信息技术:遥感、GIS等现代地理技术。

政治- 政治制度:中国的国家制度和政治结构。

- 法律基础:基本法律知识和法律意识。

- 思想道德:社会主义核心价值观和公民道德建设。

【精】北京市中考数学复习统计与概率课时训练(十六)概率

【精】北京市中考数学复习统计与概率课时训练(十六)概率

教学资料参考范本
【精】北京市中考数学复习统计与概率课时训练(十六)概

撰写人:__________________
部门:__________________
时间:__________________
(限时:30分钟)
|夯实基础|
1.[2016·丰台二模] 一枚质地均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字大于4的概率是( )
A. B. C. D.
2.[2017·房山一模] 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为( )
A. B. C. D.
3.[2017·顺义一模] 如图K16-1,在3×3的正方形网格图中,有3个小正方形涂成了黑色,现在从白色小正方形中任意选取一个并涂成黑色,使黑色部分的图形构成一个轴对称图形的概率是( )
图K16-1
A. B. C. D.
4.[2018·门头沟期末] 一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017北京中考复习 概率与统计专题1.下列事件中,是必然事件的是(A) 明天太阳从东方升起; (B) 射击运动员射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.2.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 A .61 B .31 C .21 D .32 3.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字2-,3,0,8-,将它们背面朝上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是 A .41 B .21 C . 43D .14.某篮球队12名队员的年龄如下表所示:年龄(岁) 18 19 20 21 人数5412则这12名队员年龄的众数和平均数分别是( ).A .18,19B .19,19C .18,19.5D .19,19.55.在某校科技节“知识竞赛”中共进行四次比赛,甲、乙两个参赛同学,四次比赛成绩情况下表所示:次数 第一次 第二次 第三次 第四次 甲 9.7 10 10 8.4 乙9.2109.79.2设两同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B .x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲D .x x <乙甲,22S S <乙甲6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是A .甲组B .乙组C .丙组D .丁组7.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.8.如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃A、方块A、黑桃A、梅花A,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张. 请用画树状图或列表的方法,求摸出的两张牌均为黑色的概率.9.(2016•北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③B.①④C.②③D.②④10甲乙丙丁平均数(cm)183 183 183 183 方差 3.6 5.4 7.2 8.5 要从中选择一名发挥稳定的运动员去参加比赛,应该选择A.甲B.乙C.丙D.丁11.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:种子个数n1000 1500 2500 4000 8000 15000 20000 30000 发芽种子个数m899 1365224536447272136801816027300发芽种子频率mn0.899 0.9100.8980.9110.9090.9120.908 0.910则该作物种子发芽的概率约为.12.(2016•北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881 估计该种幼树在此条件下移植成活的概率为.13.某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的稻种数n∕粒800800800800800发芽的稻种数m∕粒763757761760758发芽的频率mn0.9540.9460.9510.9500.948在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有万粒.14.(5分)(2016•北京)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.3家庭人数 2 3 4 5用气量14 19 21 263家庭2 2 23 3 3 3 3 3 3 3 3 3 34 人数用气10 11 15 13 14 15 15 17 17 18 18 18 18 20 22 量家庭2 2 23 3 3 3 3 34 4 4 45 5 人数用气10 12 13 14 17 17 18 19 20 20 22 26 31 28 31 量小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.15. 为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用. 到2013年底,全市已有公租自行车25000辆,租赁点600个,预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍. 预计到2015年底,全市将有租赁点多少个?16.2014年,移动电商发展迅速。

以下是某调查机构发布的相关的统计表和统计图的一部分.2014年“移动电商行业用户规模” 2014年“移动电商行业用户规模”统计图增长率统计图请根据以上信息解答下列问题:(1)2014年10月“移动电商行业用户规模”是_____亿台;(结果精确到0.1亿台)并补全条形统计图;(2)2014年9-12这三个月“移动电商行业用户规模”比上个月增长的平均数为_______亿台,若按此平均数增长,请你估计2015年1月“移动电商行业用户规模”为______亿台.(结果精确到0.1亿台)(3)2014年某电商在双11共售出手机12000台,则C品牌手机售出的台数是_______.月份月增长率%2014年某电商在双11售出手机各品牌占有率扇形统计图CB16%其它40%A32%月份亿台17.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:2013年成年国民2009~2013年成年国民倾向的阅读方式人数分布统计图年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.18.(2016•北京)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约3471.7亿元,你的预估理由用近3年的平均增长率估计2016年的增长率.。

相关文档
最新文档