第三章多维随机变量及其分布

合集下载

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

本讲主要内容:1.二维离散随机变量2.二维连续随机变量(重点)3.二维随机变量函数的分布(重点)设X与Y为两个随机变量,那么我们称二元组(X,Y)为二维随机变量.一、二维离散随机变量定义7:设X与Y均为离散随机变量,取值分别x1, x2,…, x i,…,y1, y2,…,y j,…那么我们称(X,Y)为二维离散随机变量,并称P(X=x i, Y=y j)=p ij, i, j =1,2,…为(X,Y)的联合分布列.联合分布列的性质:① p ij≥0②边际分布列:X与Y独立的任何两行或者两列都成比例离散随机变量的独立性:设(X,Y)为二维离散随机变量,如果即联合分布列等于边际分布列的乘积,则称X与Y相互独立.条件分布列与乘法公式:二、二维随机变量的联合分布函数定义8:设(X,Y)为二维随机变量,我们称二元函数为(X,Y)的联合分布函数.联合分布函数的性质:(1)F(x,y)为x与y的右连续函数.(2)F(x,y)为x与y的不减函数.(3)(4)三、二维连续随机变量定义9:设(X,Y)为二维随机变量,如果(X,Y)的联合分布函数可以写成则称(X,Y)为二维连续随机变量,并称f(x,y)为(X,Y)的联合密度函数. 易知:联合密度函数的性质:(1),(2)边际密度函数:随机变量X的边际密度:随机变量Y的边际密度:连续随机变量的独立性:设(X,Y)为二维连续随机变量,如果则称X与Y相互独立.条件密度:我们称为在给定Y=y时X的条件密度.为在给定X=x时Y的条件密度.如果二维连续随机变量(X,Y)的联合密度为则称(X,Y)服从区域G上的二维均匀分布.其中为区域G的面积.【例39·解答题】假设随机变量Y服从参数的指数分布,随机变量求X1和X2的联合概率分布.[答疑编号986303101:针对该题提问]解:P(X1=0, X2=0)=P(Y≤1,Y≤2)=P(X1=1, X2=0)=P(Y>1,Y≤2)=【例40·解答题】某射手向一目标进行连续射击,每次命中的概率都是p,各次命中与否相互独立.以X表示第二次命中时的射击次数,以Y表示第三次命中时的射击次数.求(X,Y)的联合分布列以及Y的边际分布列.[答疑编号986303102:针对该题提问]解:P(X=m,Y=n)=令m-1=k=n=3, 4, 5……【例41·解答题】设(X,Y)具有联合分布列:且已知EX=-0.2,记Z=X+Y.求(1)a,b,c的值;[答疑编号986303103:针对该题提问](2)Z的概率分布;[答疑编号986303104:针对该题提问](3)P(X=Z).[答疑编号986303105:针对该题提问]解:(1)a+b+c=0.4-(a+0.2)+c+0.1= -0.2解得a=0.2 , b=c=0.1(2)Z的概率分布(3)【例42·解答题】设某汽车的车站人数X~P(),每个人在中途下车的概率都是P,且下车与否相互独立,以Y表示中途下车的人数。

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

第三章 多维随机变量及其分布

第三章  多维随机变量及其分布
xy
F(x, y) f (u,v)dudv ,
则称 (X ,Y) 为二维连续型随机变量, f (x, y) 称为 (X ,Y) 的概率密度或称为 X 和 Y 的联合概率密度或联合密 度函数.
(X ,Y) 的联合密度函数 f (x, y) 具有性质:
性质 1 非负性: f (x, y) 0 .
第三章 多维随机变量及其分布
在实际问题中,一个随机试验往往用几个随机变 量整体地讨论其结果.如射击时考虑子弹在靶标 上的位置,我们用定义在同一个样本空间Ω 上的 两个随机变量 X 和 Y 分别表示子弹在靶标上的横 坐标与纵坐标,则子弹在靶标上的位置可用二维 随机变量或二维随机向量(X,Y)表示.
一般地,设随机试验 E 的样本空间为 {} , X X () 和 Y Y() 分别是定义在同一个样本空间Ω 上的随 机变量,我们称向量(X,Y)为二维随机变量或二 维随机向量.类似地可定义三维随机变量以及任意 有限维随机变量.我们把二维及二维以上的随机变 量称为多维随机变量.本章主要讨论二维随机变量, 其结果只要形式上加以处理,可以推广到三维或三 维以上的随机变量.
证 对任意的 x1 x 2
因为 (X x 1 ,Y y ) (X x 2 ,Y y )
所以 P ( X x 1 ,Y y ) P ( X x 2 ,Y y ) 即 F(x1,y)F(x2,y)
同理可证,对任意的 y1 y 2

F(x,y1)F(x,y2)
边缘分布函数完全由联合分布函数确定. 设 (X ,Y) 的联合分布函数为 F(x, y) ,则
F X ( x ) P ( X x ) P ( X x , Y ) F ( x , ) y l i m F ( x , y ) F Y ( y ) P ( Y y ) P ( X , Y y ) F ( , y ) x l i m F ( x , y )

高等数学之多维随机变量及其分布

高等数学之多维随机变量及其分布
f (x, y)d xd y
YX
G
2e(2 x y) d x d y 0y
G
O
x
1. 3
练习题
1. 设二 维随 机变量( X ,Y ) 具有 概率 密度
f
(
x,
y)
ce
x2
y
,
0,
x 1, y 0, 其 它.
(1) 确 定 常 数c; (2) 求P{ X 2Y 1};
2.设随机变量X和Y的联合分布函数为F (x, y), 而F1(x)和F2 ( y)分别为X和Y的分布函数,则 a,b, P{X a,Y b} B
a
3.设二维随机变量( X ,Y )的概率密度为
ey ,0 x y
f (x, y) 0,
其它
求P{X Y 1}.
解:
P{X Y 1} f (x, y)dxdy
y
y=x
G
1/2 dx 1x eydy 1 2 1
0
x
e1/ 2 e
1
0 1/2 1
x
x+y=1
4.设 二 维 随机 变 量( X ,Y )的 分 布 函数 为
例3 设二 维随 机变 量( X , Y ) 具有 概率 密度
2e (2 x y) , x 0, y 0,
f (x, y) 0,
其 它.
(1) 求分 布函 数F ( x, y); (2) 求概 率 P{Y X }.
解: (1) F ( x, y) y
x
f (u, v)d ud v
yx
F ( x, y)
f (u, v) d ud v
则 称( X ,Y )是 连 续 型 的 二 维 随 机 变量,函 数f ( x, y)

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第3章多维随机变量及其分布

第3章多维随机变量及其分布

f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)

(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn

PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0

0)
... ... ... ... ... ...

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)


f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立

第三章多维随机变量及其分布

第三章多维随机变量及其分布

第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。

例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。

⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。

在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。

1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。

1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。

因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。

随机变量X常称为⼀维随机变量。

2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。

定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。

⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。

(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。

三章节多维随机变量及其分布.ppt

三章节多维随机变量及其分布.ppt
P X 1或 2 | Y 1
0.0375 0.035 0.6444 0.1125
15
(三)条件分布
对 于 两 个 事 件 A , B , 若 P ( A ) 0 , 可 以 考 虑 条 件 概 率 P ( B |A ) ,
对 于 二 维 离 散 型 随 机 变 量 (X ,Y ), 设 其 分 布 律 为 P (Xxi, Yyj)p ij i,j 1 ,2 ,
P (X x i) P (X x i, Y ) p ij= =p i•i 1 ,2 , j 1
11
注意:记号pi•表示是由pij关于j求和 后得到的;同样p•j是由pij关于 i求和后得到的.
X Y y1
x1
p 11
x2
p 21 …

xi
p i1


P Y yj p·1
y2 … yj … PX xi
第三章 多维随机变量及其分布 关键词:二维随机变量 联合分布 边缘分布 条件分布 随机变量的独立性 随机变量函数的分布
1
二维随机变量
问题的提出
例1:研究某一地区学龄儿童的发育情况。仅研 究身 高H的分布或仅研究体重W的分布是不够 的。需要同时考察每个儿童的身高和体重值, 研究身高和体重之间的关系,这就要引入定义 在同一样本空间的两个随机变量。
e S
x
§1 二维离散型随机变量
(一)联合概率分布
定义:若二维随机变量(X,Y)全部可能取到的 不同值是有限对或可列无限对,则称(X,Y)是 离散型随机变量。
离散型随机变量的联合概率分布律:
为二维离散型随机变量(X,Y) X Y y1
的联合概率分布律。可以用
x 1 p11
x 2 p21

3.3-多维随机变量及其分布

3.3-多维随机变量及其分布

f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。

仅研究身高H 的分布或仅研究体重W 的分布是不够的。

需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。

问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。

每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。

一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。

S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。

{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。

概率论与数理统计讲义第三章 多维随机变量及其分布

概率论与数理统计讲义第三章 多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=0, X2=1) = P(|Y|≥1, |Y|<2) = P(1≤|Y|<2) = 2[Φ(2) Φ(1)] = 0.2719
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021

第3章 多维随机变量及其分布

第3章  多维随机变量及其分布

0,
x 0, y 0,求(1)A ? 其它
(2)( X ,Y )的联合分布函数; (3)P{Y X }; (4)P{ X 1}.
解(1)由 f ( x, y)dxdy 1,得
y
1=
f ( x, y)dxdy=
dx
Ae (2 x y)dy
0
0
O
x
A
e2 xdx
(X1, X2, , Xn) 本章主要以二维随机变量 ( X ,Y ) 为例进行讨论。
3
第一节 二维随机变量的联合分布
1、联合分布函数
定义1 设( X ,Y )是二维随机变量, 对于任意实数x, y, 称二元函数
F ( x, y) P{X x,Y y}
为二维随机变量( X ,Y )的分布函数或X和Y的联合分布函数。
(乘法公式)
P{Y y j }P{ X xi Y y j };
(2) ( X ,Y )的联合分布函数为F ( x, y) P{ X x,Y y} p ij xi x y j y
8
例1 箱子中有10张彩票,其中3张可中奖,甲乙二人先后各抽取
一张彩票,定义两个随机变量X ,Y:
则称( X ,Y )是连续性二维随机变量,并将f ( x, y)称为( X ,Y )的联
合概率密度函数.
概率密度f ( x, y)的性质:
(1) f ( x, y) 0;
(2)
f ( x, y)dxdy F (, ) 1;
10
(3)若f ( x, y)连续, 则F ( x, y)偏导存在且 2F ( x, y) f ( x, y); xy
0
e ydy
0
e2 x
A
2
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1 二维随机变量
P{X 1,Y 1} 1312

8 2


3 14
,
P{ X

0,Y

2}

2 2

82

1 28
,
P{X 1,Y 0} 1313

8 2

6/45
§3.1 二维随机变量
分布函数的性质:
1°F(x,y)是变量x,y的不减函数 2°0≤F(x,y)≤1且
对任意的y,当x2>x1时F(x2,y)≥F(x1,y) 对任意的x,当y2>y1时F(x,y2)≥F(x,y1)
对任意固定的y,F(-∞,y)=0 (边界无限向左,趋于不可能事件)
其 它.
(1) 求分布函数F ( x, y); (2) 求概率 P{Y X }.
19/102
§3.1 二维随机变量

y
(1) F( x, y)
x
f (x, y)d x d y



y 0
x 2e(2x y) d x d y, x 0, y 0,
0
0,
二元函数: F(x,y)=P{(X≤x)∩(Y≤y)},记做P{X≤x,Y≤y} 称为二维随机变量(X,Y)的分布函数,或称为随机 变量X和Y的联合分布函数。
5/45
§3.1 二维随机变量
二维随机变量分布函数的意义
将(X,Y)看成是平面上随机点的坐标,则分布函数F(x,y) 在点(x,y)处的函数值是随机点(X,Y)落在以(x,y)为顶点的 左下方的无穷矩形区域内的概率
记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有:


pij≥0, pi=j 1
i1 j1
则称P{X=xi,Y=yj}=pij,i,j=1,2,…为二维离散型随机变
量(X,Y)的分布律,或随机变量X和Y的联合分布律。
10/45
§3.1 二维随机变量
也可以用表格的形式给出:
4°若f(x,y)在点(x,y)处连续,则有 2 F (x, y)=f(x,y) xy
此时的分布函数关于x或y均是连续的
O
17/102
y
z=f(x,y)
x G
§3.1 二维随机变量
面密度的概念:由性质,在f(x,y)的连续点(x,y)处


f(x,y)=
2
F ( x, xy
y)= lim x0 y0
X Y
x1
x2

xi

y1
p11
p21

pi1

y2
p12
p22
pi 2





yj
p1 j
p2 j

pij





11/102
§3.1 二维随机变量
例1:设随机变量X在1,2,3,4四个整数中等可能地取一 个值,另一个随机变量Y在1~X中等可能地取一整数值。 试求(X,Y)的分布律。
解:Y的取值与X的取值有关, i=1,2,3,4,j取不大于i 的正整数,由乘法定理 P{X=i,Y=j}=P{Y=j|X=i}P{X=i}= (1/i)(1/4),i=1,2,3,4,1ji
具有同二维类似的性质。
9/45
§3.1 二维随机变量
二维离散型的随机变量:
定义:若二维随机变量(X,Y)全部可能取到的不相同的值 是有限对或可列无限多对,则称(X,Y)是离散型随机变量
二维离散型随机变量的分布律:
设二维离散型随机变量(X,Y)所有可能取的值为(xi,yj),i, j=1,2,…,

F(x,y)= pij
xi x y j y
其中和式是对一切满足xi≤x,yj≤y的i,j来求和

15/45
§3.1 二维随机变量
二维连续型随机变量的概率密度:
对于二维随机变量(X,Y)的分布函数F(x,y),如 果存在非负的函数f(x,y),使对任意x,y有

F(x,y)= y
f
(
x,
y)


1 S
,
(x, y) D,
0, 其它.
则称( X , Y )在 D 上服从 均匀分布. 这一是一种几何概型
22/45
§3.1 二维随机变量
2.二维正态分布
若二维随机变量 ( X,Y ) 具有概率密度
f (x, y)
1
e 1 2(1 ρ2
)

(
x μ1 σ12
即随机点落在长方形(x, x+Δx]×(y, y+Δy]内的概率近似
等于长方体的体积,以上比值表明,概率密度为:单位
面积上的概率值:面密度
18/45
§3.1 二维随机变量
例 设二维随机变量( X , Y ) 具有概率密度
2e(2x y) , x 0, y 0,
f (x, y) 0,
)2

2
ρ
(
x
μ1 )( σ1σ 2
y

μ2
)

(
y
μ2
σ
2 2
)2

2πσ1σ2 1 ρ2
( x , y ),
其中μ1, μ2,σ1,σ2, ρ均为常数,且σ1 0,σ2 0,1 ρ 1.
则称( X ,Y )服从参数为μ1, μ2 ,σ1,σ2 , ρ的二维 正态分布.记为

9 28
,
P{X 2,Y 0}


3 2

82

3 28
.
X Y
0
1
2
故所求分布律为 0 1
3 28 3 14
9 28 3 14
3 28 0
2
1 28
0
0
14/102
§3.1 二维随机变量
二维离散型随机变量(X,Y)的分布函数
将(X,Y)看作一个随机点的坐标,则离散型随机 变量X和Y的联合分布函数为:包含在以(x,y)为 顶点的左下方无穷矩形区域内的所有可能取值 点的概率的和,即
随机点落在矩形区域的概率:
P{x1<X≤x2,y1<Y≤y2}= F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1)
y
y
(x, y)
(x1 , y2) y2
(x2 , y2)
(X, Y )
X x,Y y
y1 (x1 , y1)
(x2 , y1)
o
xo
x1
x
x2
o
x1
(x2 , y2)
(x2 , y1) x
x2 8/45
§3.1 二维随机变量
推广到n维:
定义:一般,设E是一个随机试验,它的样本空间是S=
{e},设X1=X1(e),X2=X2(e),…,Xn=Xn(e)是定义在S 上的随机变量,由它们构成的一个n维向量(X1,X2, …,Xn) 叫做n维随机向量,或n维随机变量
实例2 考查某一地 区学前儿童的 发育情况 , 则儿童的身高 H 和 体重 W 就构成二维随机变量 (H,W)
两个分量是有内在联系的,因 此要将X,Y作为整体来研究
其性质与X、Y及X,Y之间的关系 均有关,逐个研究X,Y的性质是不 够的。
4/45
§3.1 二维随机变量
二维随机变量分布函数的定义 定义 设(X,Y)是二维随机变量,对于任意实数x,y,
F(x,y)关于x右连续,关于y也右连续
4°对于任意点(x1,y1),(x2,y2),x1<x2,y1<y2, 下述不等式成立:
F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1)≥0
y
矩形区内的概率,及概率非负性
y2
(x1 , y2) (X, Y )
y1 (x1 , y1)
f ( x, y)d x d y
YX
G
2e(2x y) d x d y 0y
G
O
x
1. 3
一般的,涉及到几个随机变量的表达式,在求解概率时就要用几
维分布来求解
21/102
§3.1 二维随机变量
两个常用的分布
1.均匀分布
定义 设 D 是平面上的有界区域,其面积为 S,若二 维随机变量 ( X , Y ) 具有概率密度
第三章 多维随机变量及其分布
§3.1 二维随机变量 §3.2 边缘分布 §3.3 条件分布 §3.4 相互独立的随机变量 §3.5 两个随机变量的函数的分布
1/45
第三章 多维随机变量及其分布
§3.1 二维随机变量 §3.2 边缘分布 §3.3 条件分布 §3.4 相互独立的随机变量 §3.5 两个随机变量的函数的分布
x
f (u, v)dudv

则称(X,Y)是连续型的二维随机变量,函数f(x,y)
称为二维随机变量(X,Y)的概率密度,或称随机
变量X和Y的联合概率密度。 y
(x, y)
(X, Y ) o
x 16/45
§3.1 二维随机变量
f(x,y)的性质:
1°非负性 f(x,y)≥0
曲线z=f(x,y)表示一个曲面,位于xOy平面的上方
对任意固定的x,F(x, -∞)=0 (边界无限向下,趋于不可能事件)
y X x,Y y
(x, y)
F(-∞, -∞)=0,
相关文档
最新文档