多维随机变量及其分布

合集下载

多维随机变量及其分布

多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={w},若随机变量X1(w),X2(w),…,X n(w)定义在S上,则称(X1(w),X2(w),…,X n(w))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§二维随机变量的分布一.离散型随机变量1.联合分布律定义若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i ,j=1,2,…——称式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij 3 0,i, j=1,2,… (2) ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.30②S p i.=1= p{Y=y i }j=1,2, (30)S =1我们称p i.和分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,j∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij 同理可得=i∑p ij例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y 随机地在1到X中取一值。

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

多维随机变量及其分布的概念

多维随机变量及其分布的概念

多维随机变量及其分布对于多维随机变量应理解其概念及其性质,在多位随机变量中,二维随机变量是基础,很多结论都是可以从二维随机变量推广到多维的。

对于二维随机变量,不仅要理解联合分布的概念与性质,还要理解二维离散型随机变量的联合概率分布、边缘分布、条件分布和二维连续型随机变量的联合概率密度、边缘密度、和条件密度。

一、多维随机变量的联合分布函数、边缘分布函数 [1]多维随机变量的及其分布的概念:如果N 维向量12{,}n X X X ⋅⋅⋅的每个分量都是随机变量,则,称之为N 维随机变量,并称函数121122(,){,,}n n n F x x x P X x X x X x ⋅⋅⋅=≤≤⋅⋅⋅≤是N 维随机变量12{,}n X X X ⋅⋅⋅的联合分布函数。

称函数(){}(,,,,i i ii F x P X x F x =≤=+∞+∞⋅⋅⋅+∞+∞为N 维向量12{,}n X X X ⋅⋅⋅关于i X 的边缘分布,或为12(,)n F x x x ⋅⋅⋅的边缘分布函数。

[2]二维随机变量的联合分布函数的概念和性质a) 二维随机变量的联合分布函数的概念:二维随机变量的联合分布函数定义如下:(,)(,)F x y P X x Y y =≤≤b) 二维随机变量的联合分布函数的性质:① 对于任意x,y, 0(,)1F x y ≤≤② (,)F x y 为关于x 或y 均为单调非降、右连续的函数。

③ (,)(,)(,)F F y F x -∞+∞=-∞=-∞=④ (,)1F +∞+∞=⑤ 发生在矩形区域上的概率:(,)(,P a X b c Y d F a<≤<≤=[3]二维随机变量的边缘分布的概念二维随机变量(,)X Y 关于X 与Y 的边缘分布函数分别定义为: ①(){}{,}(,)x F x P X x P X x Y F x =≤=≤<+∞=+∞ ②(){}{,}(,)y F y P Y y P X Y y F Y =≤=<+∞≤=+∞二、二维离散型随机变量[1]二维离散型随机变量的联合概率分布的概念:二维离散型随机变量(,)X Y 是只能去有限个或可列个值,其相应的概率表示为:(,)i i ij P X x Y y p === (,1,2,3i j =⋅⋅⋅并称为联合概率分布或联合分布律: [2] 二维离散型随机变量的联合概率分布的性质:(a,d )①(,)0i i ij P Xx Y y p ===≥ (,1,2,3i j =⋅⋅⋅②1ijijp=∑∑③(,)i j ij x x y yF x y p ≤≤=∑∑[3]二维离散型随机变量的边缘分布:二维离散型随机变量(,)X Y 关于X 和Y 的边缘概率分布(或边缘分布律)分别定义为:{}{,}i i ij i jjjp P X x P X x Y y p ∙======∑∑ {}{,}j i ij i jiip P Y y P X x Y y p ∙======∑∑ 依据边缘分布函数的定义:(){}{}i i x i i x xx xF x P X x p X x p ∙≤≤=≤===∑∑(){}{}j j y ijy yy yF x P Y y p Y y p∙≤≤=≤===∑∑[4]二维离散型随机变量的条件分布① 定义:设{}0j j p P Y y ∙==>,在事件“j Y y =”发生的条件下,事件“i X x =”发生的条件概率为:{,}{}()i j iji j j jP X x Y y p P X x Y y P Y y p ∙=======(,1,2,3)i j =⋅⋅⋅称为在“j Y y =”条件下,X 的条件分布律。

第三章多维随机变量及其分布.doc

第三章多维随机变量及其分布.doc
(2)正则性 ;
可以证明,凡满足性质(1)的任意一个二元函数f(x,y),必可作为某个二维随机变量的联合密度函数。
(3)若f(x,y)在点(x,y)处连续,则
证明
(4)设G是xOy平面上的一个区域,则有
在几何上z=f(x,y)表示空间的一张曲面。由性质(1)知,介于该曲面和xOy平面之间的空间区域的体积是1。由性质(3)知, 的值等于以G为底,以曲面z=f(x,y)为顶的曲顶柱体的体积。
3.1.3联合分布列
定义3.1.3若二维随机变量(X,Y)的所有可能取的值是有限多对或可列无限多对(xi,yj),则称(X,Y)为二维离散型随机变量。称
,i,j=1,2,…,n,
为二维离散型随机变量(X,Y)的联合分布列,也可用如下表格记联合分布列。
Y
联合分布列的基本性质:
(1)非负性
(2)正则性
例1盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到白球的只数,求X,Y的联合分布列和 。
解(1) 的分布函数为
(2)将 的共同分布函数 代入上式得
(3)Y的分布函数仍为上式,密度函数可对上式关于 求导得
(4)将指数分布的分布函数和密度函数代入(2)和(3)的结果中得
二、最小值分布设 是相互相互独立的n个随机变量,若 ,在以下情况下求Y的分布。(1) ~ ;(2) 同分布,即 ~ ;(3) 为连续随机变量,且 同分布,即 的密度函数为 , ;(4) ~ 。
0.216 0 0 0
二、多维超几何分布
袋中有N只球,其中有Ni只 号球, ,记 。从中任意取出n只,若记Xi为取出的n只球中 号球的个数, ,则
其中 。
例4在例3中改为不放回抽样,求二维随机变量(X,Y)的联合分布列。

概率论与数理统计第11讲

概率论与数理统计第11讲
2
§3.1 多维随机变量及其分布
3
一, 二维随机变量 定义1 设随机试验的样本空间为S, e∈S为 样本点, 而 X=X(e), Y=Y(e) 是定义在S上的两个随机变量, 称(X,Y)为 定义在S上的二维随机变量或二维随机向 量. 注: 一般地, 称n个随机变量的整体 X=(X1,X2,…,Xn)为n维随机变量或n维随机 向量.
18
于是(X,Leabharlann )的分布律为Y 1 2 3 4 X 1 1/4 0 0 0 2 1/8 1/8 0 0 3 1/12 1/12 1/12 0 4 1/16 1/16 1/16 1/16
19
例2 把一枚均匀硬币抛掷三次, 设X为三 次抛掷中正面出现的次数, 而Y为正面出 现次数与反面出现次数之差的绝对值, 求 (X,Y)的概率分布及(X,Y)关于X,Y的边缘分 布. 解 (X,Y)可取值(0,3),(1,1),(2,1),(3,3) P{X=0,Y=3}=(1/2)3=1/8, P{X=1,Y=1}=3(1/2)3=3/8, P{X=2,Y=1}=3/8, P{X=3,Y=3}=1/8
j
p = P{ = Y y = j j}
j ∑ p ,=
ij i
1, 2, (1.8)
分别称pi•(i=1,2,…)和p•j(j=1,2,…)为(X,Y) 关于X和Y的边缘概率分布. 注: pi•和p•j分别等于联合概率分布表的行 和与列和.
17
例1 设随机变量X在1,2,3,4四个整数中等 可能地取一个值, 另一个随机变量Y在 1~X中等可能地取一整数值, 试求(X,Y)的 分布律. 解 由乘法公式容易求得(X,Y)的分布律, 易知{X=i,Y=j}的取值情况是:i=1,2,3,4, j 取不大于i的正整数, 且 P{ X = i, Y = j= } P{Y = j| X = i}P{ X = i} 11 = = , i 1, 2,3, 4, j ≤ i. i 4

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第3章多维随机变量及其分布

第3章多维随机变量及其分布

f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)

(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn

PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0

0)
... ... ... ... ... ...

第三章多维随机变量及其分布

第三章多维随机变量及其分布

第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。

例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。

⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。

在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。

1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。

1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。

因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。

随机变量X常称为⼀维随机变量。

2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。

定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。

⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。

(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。

概率论第三章

概率论第三章

8 July 2010
联合密度函数的基本性质 (1) p(x, y) ≥ 0. (非负性) (2) (正则性)
注意: P{(X,Y) ∈D} = ∫∫ p(x, y)dxdy
D
8 July 2010
3.1.5
一,多项分布
常用多维分布 常用多维分布
若每次试验有r 种结果:A1, A2, ……, Ar 记 P(Ai) = pi , i = 1, 2, ……, r 记 Xi 为 n 次独立重复试验中 Ai 出现的次数. 则 (X1, X2, ……, Xr)的联合分布列为:
2x
+∞
1 2x +∞ 1 3y +∞ = A e × e 2 0 3 0
=A/6 所以, A=6
8 July 2010
例3.1.4
6e(2x+3y) , x ≥ 0, y ≥ 0 若 (X, Y) ~ p( x, y) = 其 它 0,
试求 P{ X< 2, Y< 1}.
8 July 2010
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ), 则 XN( ), YN( ).
二维均匀分布的边际分布不一定是一维均匀分布.
8 July 2010
例3.2.1 设 (X, Y)服从区域 D={(x, y), x2+y2 <1} 上的均匀分布,求X 的边际密度p(x). 解: 由题意得
e y , 0 < x < y p( x, y) = 其 他 0,
求概率P{X+Y≤1}. 解: P{X+Y≤1}=
1/2
1x x
y=x
x+y=1
= ∫ dx∫

多维随机变量及其分布

多维随机变量及其分布

第三章多维随机变量及其分布习题3.1 1432.100件产品中有50件一等品,30件二等品,20件三等品.从中不放回地抽取5件,以X,Y 分别表示取出的5件中一等品,二等品的件数,求(X,Y)的联合分布列.5.设随机变量(X,Y)的联合密度函数为k(6 x y),0 x 2,2 y 4; p(x,y)o,其他.试求(1)常数k;⑵P(X<1,Y<3);⑶P(X<1.5);⑷P(X+Y W .6.设随机变量(X,Y)的联合密度函数为ke (3x 4y),x 0, y 0;P(x,yP0,其他.试求(1)常数k;⑵(X,Y)的联合分布函数F(x,y);(3) P(0<X W 1,0<Y w 2).11.设二维随时机变量(X,Y)的联合密度函数为x2空,0 x 1,0 y 2; p(x,y) 30,其他.求P(X+Y> 1).13.设二维随时机变量(X,Y)的联合密度函数为求X与Y中至少有一个小于0.5的概率.1了,0 x 1,0 y 2;p(x,y) 20,其他.习题3.2 P1534.设平面区域D由曲线及直线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X.,Y)在区域D上服从均匀分布,试求X的边际密度函数.6.设二维随机变量(X,Y)的联合密度函数为6,0 x y x 1;P(x, y)0,其他.试求边际密度函数p X (x)和p Y(y).12.设X与Y是两个相互独立的随机变量,X~U(0,1), Y~Exp(1). 试求(1)X与Y的联合密度函数;(2)P(Y < X);⑶P(X+Y < 1).14.设随机变量(X,Y)的联合密度函数为1,|x| y,0 y 1;P(x,y) 0,其他.试求(1)边际密度函数P x(X)和p Y(y) ;(2)X与Y是否独立?16.设二维随机变量(X,Y)的联合密度函数为p(x,y). 证明:X与Y相互独立的充要条件是p(x,y)可分离变量,即p(x,y)=h(x)g(y). 又问h(x),g(y)与边际密度函数有什么关系?习题3.3 P1631.设二维随机变量(X,Y)的联合分布列为试分别求U=max(X,Y)和V=min(X,Y)的分布列.3.设随时机变量X和Y的分布列分别为X -1 0 1P(t) te It 0; 0,t 0.已知P(XY=0)=1,试求5.设X和Y为两个随机变量,且3 4P(X 0,Y 0) P(X 0) P(Y 0)试求P(max(X,Y) 0).6.设X与Y的联合密度函数为(、e(xy),x 0,y 0;P(x,y)0,其他.试求以下随机变量的密度函数⑴Z=(X+Y)/2;(2)Z=Y-X.8.某种商品一周的需要量是一个随机变量,其密度函数为设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p2(x);⑵ 三周需要量的密度函数p3(x).10.设二维随机变量(X,Y)在矩形G {(x, y) |0 x 2,0 y 1}上服从均匀分布,试求边长分别为X和Y的矩形面积Z的密度函数16.设随机变量X1,X2, , X n相互独立,且X i~Exp( i),试证:P(X i min (X1,X2, ,X n)) ------- i------1 2 n18.设随机变量X与Y独立同分布,其密度函数为p(x)e x,x 0; 0,x 0.(1)求U X 丫与V X/(X Y)的联合密度函数P u,V(u,v);⑵以上的U与V独立吗?19.设随机变量X与Y相互独立,且X~Ga( 1, ),Y ~ Ga( 2,)•试证:U=X+丫与C=X/Y相互独立.习题3.4 P1812.求掷n颗骰子出现点数之和的数学期望与方差.3.从数字0,1,…,n中任取两个不同的数字,求这两个数字之差的绝对值的数学期望5.盒中有n个不同的球,其上分别写有数字1,2,…,n.每次随机抽出一个,记下其号码,放回去再抽. 直到抽到有两个不同的数字为止. 求平均抽球次数.9.设X1,X2, X5是独立同分布的随机变量,其共同密度函数为2x,0 x 1;p(x)0,其他使求Y maXX1,X2, , X5)的密度函数、数学期望和方差。

概率论与数理统计课件:多维随机变量及其分布

概率论与数理统计课件:多维随机变量及其分布

多维随机变量及其分布
首页 返回 退出2
在实际问题中, 试验结果有时需要同时用两个或两
个以上的随机变量来描述.
如, 炮弹的弹着点的位置, (X, Y)是一个二维随
机变量.
又如,研究天气变化状况,令X, Y, Z分别表示
温度、湿度、风速,则(X, Y, Z)是一个三维随机变量.
研究多维随机变量有必要将多个变量作为一个整
二元函数
F ( x , y ) P{( X x ) (Y y )} P ( X x , Y y )
称为随机变量(X,Y)的联合分布函数。
一维随机变量X的联合分布
函数F ( x ) P ( X x ).
多维随机变量及其分布
首页 返回 退出
F(x,y)=P(X≤x,Y≤y)
y
F ( , y ) 0,
o
F ( x , ) 0,
F ( , ) 0, F ( , ) 1;
4 F ( x , y )关于x和y分别右连续;
x1
F ( x1 , y ) F ( x2 , y )
5 对于任意x1 x2 , y1 y2 , 有矩形公式




X
性质: 1 pij 0, i , j 1, 2, ;
2


p
i 1 j 1
多维随机变量及其分布
ij
1.
首页 返回 退出
例1 从1,2,3,4中任取一个数记为X、再从1,2, ⋯ ,
中任取一个数记为Y,求 ( X, Y ) 的联合分布律及P
( X=2Y ).
解:
可以证明,f(x,y)满足联合密度的性质。

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。

仅研究身高H 的分布或仅研究体重W 的分布是不够的。

需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。

问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。

每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。

一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。

S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。

{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。

多维随机变量及其分布

多维随机变量及其分布

x−
µ1 )( y− σ1σ 2
µ2
)
+
(
y−µ2 σ 22
)2
− ∞ < x < +∞,−∞ < y < +∞
则称( X ,Y ) 服从参数为µ1,σ12,µ2,σ22,ρ 的 正态分布, 记作( X ,Y ) ~ N(µ1,σ12;µ2,σ22;ρ )
其中σ1,σ2>0, -1< ρ < 1 .
一 . 离散型随机变量的条件分布律
设 ( X ,Y ) 是离散型随机变量,其分布律为
( ) 例 设二维随机变量 (X, Y )~ N µ1, µ2, σ12, σ 22, ρ
试求 X 及Y 的边缘密度函数.
解:(X, Y )的联合密度函数为
f (x, y) =
1
2πσ1σ 2 1− ρ 2
( ) ⋅
exp−
2
1 1−
ρ
2
(x
− µ1 )2
σ
2 1

2ρ(x
− µ1)(y
σ1σ 2
5.3 条件分布
• 条件分布律 • 条件分布函数 • 条件概率密度
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的概率
P(A | B) = P(AB) P(B) 推广到随机变量
设有两个随机变量 X, Y , 在给定 Y 取 某个值的条件下,求 X 的概率分布.
这个分布就是条件分布.
F(x, y) = P(X ≤ x,Y ≤ y)
分布函数的几何意义
如果用平面上的点 (x, y) 表示二维r.v. (X , Y )的一组可能的取值,则 F (x, y) 表示 (X , Y ) 的取值落入图所示角形区域的概率.

多维随机变量及其分布

多维随机变量及其分布

多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向平面上有界区域G上任投一质点,若质 点落在G内任一小区域B的概率与小区域的 面积成正比,而与B的形状及位置无关. 则 质点的坐标( X,Y)在G上服从均匀分布.
P(X=0, Y=3)=(1/2)3=1/8 P(X=1, Y=1)=3(1/2)3=3/8
列表如下
P(X=2, Y=1)=3/8
P(X=3, Y=0)=1/8
二维联合分布全面地反映了二维随机变 量(X,Y)的取值及其概率注规意这律两. 而个单分布个正随好机是变 量X,Y也具有自己的概率分表布的行. 那和么与要列和问.: 二者之间有什么关系呢?
在打靶时,命中点的位置是由 一对r.v(两个坐标)来确定的.
飞机的重心在空中的位置是由三个r.v (三 个坐标)来确定的等等.
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
二维随机变量(X,Y) 离散型 联合分布
f (x, y) 2F(x, y) xy
在 f (x,y)的连续点
xy
F(x, y)
f (u,v)dudv
例2 设(X,Y)的概率密度是
f
(
x,
y
)
cy(
2 0
x ), ,
0 x 1,0 y x 其它
求 (1) c的值; (2)两个边缘密度.
解:(1)
f ( x, y)dxdy
f (x, y)dy
( X,Y )关于Y的边缘概率密度为
fY ( y )
f ( x, y )dx
对任意r.v (X,Y),
X和Y的联合分布函数为来自F(x, y)则(X,Y)关于X的边缘分布函数为
FX
(
x)
lim
y
F
(
x,
y)
(X,Y)关于Y的边缘分布函数为
FY
(
y
)
lim
x
F(
x,
y
)
不难得出,对连续型r.v(X,Y),其 概率密度与分布函数的关系如下:
F(x, y) P(X x,Y y) x, y
X的分布函数
F(x) P(X x) x
例1 把一枚均匀硬币抛掷三次,设X为三 次抛掷中正面出现的次数,而Y为正面出 现次数与反面出现次数之差的绝对值, 求 (X,Y)的概率函数 .
解:( X, Y)可取值(0,3),(1,1),(2,1),(3,3)
多维随机变量及其分布
我们开始学习——多为随机变量 它是第一章内容的推广. 一维随机变量及其分布
多维随机变量及其分布 由于从二维推广到多维一般无实质性的 困难,我们重点讨论二维随机变量 .
到现在为止,我们只讨论了一维r.v及其 分布. 但有些随机现象用一个随机变量来描述 还不够,而需要用几个随机变量来描述.
y
解: (2)
fX (x)
y=x
x 24 y(2 x)dy 05
12 x2(2 x), 0 x 1
5
0
1
x
注意取值范围
例2 设(X,Y)的概率密度是
cy(2 x), 0 x 1,0 y x
f (x, y)
0,
其它
求 (1) c的值; (2) 两个边缘密度 注. 意积分限
则(X,Y)关于X的边缘概率函数为
P(X xi ) pi• pij , i 1,2,
j
(X,Y)关于Y 的边缘概率函数为
P(Y yi ) p• j pij, j 1,2,
i
对连续型 r.v ( X,Y ),
X和Y的联合概率密度为
f (x, y)
则( X,Y )关于X的边缘概率密度为
fX (x)
y
解:
(2) fY
y=x
(
1
y) y 24
24 y(2 5 y(3 2y
x)dx y2
),
0 y 1
52
2
0
1
x
注意取值范围

f
X
(
x)
12 5
x2
(2
x),
0 x 1
0,
其它
fY ( y)
24 5
y( 3 2
2y
y2 2
),
0 y 1
0,
其它
在求连续型 r.v 的边缘密度时,往往要 对联合密度在一个变量取值范围上进行积 分. 当联合密度函数是分片表示的时候,在 计算积分时应特别注意积分限 .
X和Y 的联合概率函数
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率函数
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1
k
二维随机变量(X,Y) 连续型
X和Y 的联合密度函数
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A. 若二维随机变量( X,Y)具有概率密度
f
(
x,
y)
1 A
,
(x, y) G
0, 其它
则称(X,Y)在G上服从均匀分布.

向平面上有界区域G上任投一质点,若质 点落在G内任一小区域B的概率与小区域的 面积成正比,而与B的形状及位置无关. 则 质点的坐标( X,Y)在G上服从均匀分布.
1x
0 [0 cy(2 x)dy]dx

f (x, y)dxdy 1 确定C
c
1
[
x
2
(2
x)
/
2]dx
=5c/24=1,
0
c =24/5
例2 设(X,Y)的概率密度是
cy(2 x),
f (x, y)
0,
0 x 1,0 y x 其它注意积分限
求 (1) c的值; (2) 两个边缘密度 .
我们常将边缘概率函数写在联合概率 函数表格的边缘上,由此得出边缘分布这 个名词.
如表 所示
联合分布与边缘分布的关系
由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
一般,对离散型 r.v ( X,Y ),
X和Y 的联合概率函数为
P(X xi ,Y y j)pij, i, j 1,2,
f (x, y)
P{( x, y) A}
f (x, y)dxdy
A
A 2
f (x, y) 0
f (x, y)dxdy 1
一维随机变量X 连续型
X的密度函数
P{a X b}
b
a f (x)dx
f (x) 0
f (x)dx 1
二维随机变量(X,Y) 一维随机变量X
X和Y的联合分布函数
从表中不难求得: P(X=0)=1/8, P(X=1)=3/8 P(X=2)=3/8, P(X=3)=1/8,
P(Y=1)=P(X=1, Y=1)+P(X=2, Y=1)=3/8+3/8=6/8,
P(Y=3)=P(X=0, Y=3)+P(X=3, Y=3)=1/8+1/8=2/8.
这里称X,Y各自的概率函数分别为(X,Y) 关于X和Y的边缘概率函数.
相关文档
最新文档