2021年广东省中考数学解答题压轴题练习及答案 (98)

合集下载

2021年广东省中考数学解答题压轴题练习及答案 (20)

2021年广东省中考数学解答题压轴题练习及答案 (20)

2021年广东省中考数学解答题压轴题练习1.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设P A=x.(1)求证:△PF A∽△ABE;(2)当点P在线段AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x 满足的条件:x=或0≤x<1.【分析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠P AF=∠AEB,又∵PF⊥AE,∴∠PF A=90°=∠ABE,∴△PF A∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴P A=EB=3,即x=3.…(6分)②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠P AF=∠AEB,∴∠PEF=∠P AF.∴PE=P A.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)。

人教版_2021年广东省中考数学试卷及答案解析

人教版_2021年广东省中考数学试卷及答案解析

广东省2021年中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2021•广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点: 有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2021•广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是() A.B.C.D.考点: 中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2021•广东)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点: 合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)(2021•广东)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9) B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点: 提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2021•广东)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点: 多边形内角与外角分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2021•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点: 概率公式分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2021•广东)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC考点: 平行四边形的性质分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2021•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为()A.B.C.D.考点: 根的判别式专题: 计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2021•广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点: 等腰三角形的性质;三角形三边关系分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2021•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=D.当﹣1<x<2时,y>0C.当x<,y随x的增大而减小考点: 二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2021•广东)计算2x3÷x=2x2.考点: 整式的除法分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2021•广东)据报道,截止2021年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点: 科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2021•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点: 三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2021•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为3.考点: 垂径定理;勾股定理分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC 中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2021•广东)不等式组的解集是1<x<4.考点: 解一元一次不等式组专题: 计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2021•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点: 旋转的性质分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2021•广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点: 实数的运算;零指数幂;负整数指数幂分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2021•广东)先化简,再求值:(+)•(x2﹣1),其中x=.考点: 分式的化简求值分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2021•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点: 作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2021•广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点: 解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2021•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点: 分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2021•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点: 条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2021•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点: 反比例函数与一次函数的交点问题分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2021•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点: 切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2021•广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD 于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点: 相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

2021年广东广州中考数学试卷及参考答案(真题)

2021年广东广州中考数学试卷及参考答案(真题)

2021年广州市初中毕业生学业考试数 学满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD,直线分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140°3. 实数、在数轴上的位置如图3所示,则与的大小关系是( C )(A )(B ) (C ) (D )无法确定4. 二次函数的最小值是( A )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D )(A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低l a b a b b a <b a =b a >2)1(2+-=xy6. 下列运算正确的是( B )(A )(B )(C ) (D )7. 下列函数中,自变量的取值范围是≥3的是( D )(A ) (B ) (C ) (D )8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )(A )正十边形 (B )正八边形 (C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B )(A ) (B ) (C ) (D )10. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E,交DC 的延长线于点F,BG ⊥AE,垂足为G,BG=,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数,当=1时,的值是________212. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.313. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第个“广”字中的棋子个数是________2n+5222)(n m n m -=-)0(122≠=-m m m 422)(mn n m =⋅642)(m m =x x 31-=x y 31-=x y 3-=x y 3-=x y 1251351310131224xy 2=x y n16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。

广东省广州市2021年中考数学试题(解析版)

广东省广州市2021年中考数学试题(解析版)

2021年广东省广州市中考数学试卷解析一、选择题〔本大题共10小题,每题3分,总分值30分.在每题给出的四个选项中只有一项为哪一项符合题目要求的〕1.〔2021•广州〕实数3的倒数是〔〕A.﹣B.C.﹣3D.3考点:实数的性质。

专题:常规题型。

分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.应选B.点评:此题考查了实数的性质,熟记倒数的定义是解题的关键.2.〔2021•广州〕将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为〔〕A.y=x2﹣1B.y=x2+1C.y=〔x﹣1〕2D.y=〔x+1〕2考点:二次函数图象与几何变换。

专题:探究型。

分析:直接根据上加下减的原那么进行解答即可.解答:解:由“上加下减〞的原那么可知,将二次函数y=x2的图象向下平移一个单位,那么平移以后的二次函数的解析式为:y=x2﹣1.应选A.点评:此题考查的是二次函数的图象与几何变换,熟知函数图象平移的法那么是解答此题的关键.3.〔2021•广州〕一个几何体的三视图如下图,那么这个几何体是〔〕A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;应选D.点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力.4.〔2021•广州〕下面的计算正确的选项是〔〕A.6a﹣5a=1B.a+2a2=3a3C.﹣〔a﹣b〕=﹣a+b D.2〔a+b〕=2a+b考点:去括号与添括号;合并同类项。

分析:根据合并同类项法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法那么:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣〔a﹣b〕=﹣a+b,故此选项正确;D、2〔a+b〕=2a+2b,故此选项错误;应选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.5.〔2021•广州〕如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,那么梯形ABCD的周长是〔〕A.26B.25C.21D.20考点:等腰梯形的性质;平行四边形的判定与性质。

2021年广东省中考数学解答题压轴题练习及答案 (88)

2021年广东省中考数学解答题压轴题练习及答案 (88)

2021年广东省中考数学解答题压轴题练习1.如图,在平面直角坐标系中,已知A(﹣2,0),B(0,m)两点,且线段AB=2,以AB为边在第二象限内作正方形ABCD.(1)求点B的坐标.(2)在x轴上是否存在点Q,使△QAB是以AB为腰的等腰三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由;(3)如果在坐标平面内有一点P(a,3),使得△ABP的面积与正方形ABCD的面积相等,求a的值.【分析】(1)在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长即可;(2)存在,以AB为腰,有两种情况:分别以A、B为顶点作等腰三角形的顶角,根据AB =2,结合图形可得Q的坐标;(3)作辅助线,构建高线PG,分两种情况:P在y轴的左侧和右侧,根据三角函数可得PH的长,从而得a的值.【解答】解:(1)∵A(﹣2,0),∴OA=2,∵AB=2,由勾股定理得:OB==4,∴B(0,4);(2)分两种情况:①以AB为腰,∠BAQ为顶角时,如图1,AB=AQ=2,∴Q1(﹣2﹣2,0),Q2(2﹣2,0),②以AB为腰,∠ABQ为顶角时,如图1,A与Q3关于y轴对称,∴Q3(2,0);综上,点Q的坐标是(﹣2﹣2,0)或(2﹣2,0)或(2,0),(3)分两种情况:①当P在y轴的右边时,如图2,作直线l:y=3,直线l交AB于H,交y轴于E,∵P(a,3),∴点P在直线l上,过P作PG⊥AB于G,∵S△ABP=S正方形ABCD,∴•AB•PG=AB2,PG=2AB=4,∵l∥x轴,∴∠PHG=∠OAB,∴sin∠PHG=sin∠OAB,即,∴,PH=10,∵EH∥OA,∴,即,∴EH=,∴PE=10﹣0.5=9.5,∴P(9.5,3)即a=9.5;②当点P在y轴的左侧时,如图3,同理可得PH=10,∴P(﹣10.5,3),∴a=﹣10.5,综上,a的值是9.5或﹣10.5.。

2021年广东省广州市中考数学压轴题总复习(附答案解析)

2021年广东省广州市中考数学压轴题总复习(附答案解析)

2021年广东省广州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;
(2)如图2,若∠DBC=15°,求证:AD:AC=√2:√3;
(3)如图3,若AC、BD交于点E,连接OE,且OE=2√7,若BD=3CD,求AD的长.
2.(1)初步思考:
如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=1
2PC
(2)问题提出:
如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求
PD+1
2PC的最小值.
(3)推广运用:
如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一
个动点,求PD−1
2PC的最大值.。

2021年广东省中考数学解答题压轴题练习及答案 (99)

2021年广东省中考数学解答题压轴题练习及答案 (99)

2021年广东省中考数学解答题压轴题练习1.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的好点.等边△DEF的三个顶点刚好在坐标轴上,其中D 点坐标为(0,4).(1)求等边△DEF内切圆C的半径;(2)当⊙O的半径为2时,若直线DE上的点P(m,n)是⊙O的好点,求m的取值范围;(3)若线段EF上的所有点都是某个圆的好点,求这个圆的半径r的取值范围.【分析】(1)设⊙C与DE相切于点Q,如图1,易得∠DEO=30°,从而可以证到CE=2OC,只需利用三角函数求出OE的长,就可求出等边△DEF内切圆C的半径.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,由新定义可推出0≤d≤2r.当⊙O的半径为2时,只需考虑临界位置(OP=2r=4)所对应m的值,就可得出m的取值范围.(3)若线段EF上的所有点都是某个圆的好点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点,如图4,只需考虑临界位置(KF=KE=2r)所对应的r的值,就可得到圆的半径r的取值范围.【解答】解:(1)设⊙C与DE相切于点Q,设⊙C的半径为r,如图1,则有CQ⊥DE,OC=CQ=r.∵⊙C是等边△DEF的内切圆,∴∠DEO=∠FEO=∠DEF=30°.∴CE=2CQ=2r.∵D点坐标为(0,4),∴OD=4.∵∠DOE=90°,∴tan∠DEO===.∴OE=4.∴OE=OC+CE=3r=4.∴r=.∴等边△DEF内切圆C的半径为.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,则有P A=PB,∠APC=BPC=∠APB,∠PBC=90°.由题可知:若P刚好是⊙C的好点,则∠APB=60°,∴∠BPC=30°.∴PC=2BC.设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,则有0≤d≤2r.由上述证明可知:若直线DE上的点P(m,n)是⊙O的好点,则0≤OP≤4.过点O作OH⊥DE于H,如图3所示,在Rt△DOE中,∵DO=4,∠DEO=30°,∴DE=8.∴OH===2.∴直线DE上必存在点P1、P2(P1在P2左边),使得OP1=OP2=4.∵OP1=OD=4,∴点D与点P1重合,此时m=0.过点P2作P2M⊥x轴于点M,∵OD=OP2,∠ODP2=60°,∴△DOP2是正三角形.∴∠DOP2=60°.∴∠P2OM=30°.∴OM=OP2•cos30°=4×=2.此时m=2.∵点P为⊙O的好点,∴P点必在线段P1P2上,∴0≤m≤2.(3)若线段EF上所有点都是某个圆的好点,则最小圆的圆心应在线段EF的中点,如图4.此时有KF=KE=EF=DE=4,KE=2r.则有r=2.所以若线段EF上的所有点都是某个圆的好点,则这个圆的半径r的取值范围是r≥2.。

2021年广东省中考数学解答题压轴题练习及答案 (7)

2021年广东省中考数学解答题压轴题练习及答案 (7)

2021年广东省中考数学解答题压轴题练习1.如图,点B为长为5的线段AC上一点,且AB=2,过B作BE⊥BC于B,且BE=4,以BC、BE为邻边作矩形BCDE,将线段AB绕点B顺时针旋转,得到线段BF,优弧交BE于N,交BC于M,设旋转角为a(1)若扇形MBF的面积为π,则a的度数为200;(2)连接EC,判断CE与扇形ABF所在圆⊙B的位置关系,并说明埋由.(3)设P为直线AC上一点,沿EP所在直线折叠矩形,若折叠后DE所在的直线与扇形ABF所在的⊙B相切,求CP的长.【分析】(1)由扇形的面积公式得:=,则∠MBF=20°,即可求解;(2)过点B作BG⊥CE于点G,则CB×BE=CE×BG,求出BG=>2,即可求解;(3)分点Q在BE的左侧、点Q在BE右侧两种情况,分别求解即可.【解答】解:(1)由扇形的面积公式得:=,则∠MBF=20°,a=180°+20°=200°,答案为:200;(2)相离.如图1,∵BE⊥BC,∴∠EBC=90°,∵BE=4,BC=3,∴EC=5,过点B作BG⊥CE于点G,∴CB×BE=CE×BG,∴BG=>2,∴CE与扇形ABF所在圆⊙B相离;(3)①当折叠后DE所在的直线与扇形ABF所在的圆B相切时,切点为Q,如图2,当点Q在BE的左侧时,连接BQ,则∠BQE=90°,∵BQ=2,BE=4,sin∠QEB=,∴∠QEB=30°,∵四边形EBCD为矩形,∴∠DEB=90°,∴∠QED=120°,又由题意得:∠QEP=∠PED=60°,∴∠EPB=30°,∵BE=4,∴PB=,∴CP=3﹣;②如图3,当点Q在BE右侧时,同理可得:∠QEB=30°,又由题意得:∠QEP=∠PED=30°,∵BE=4,∴PB=4,∠BEP=60°,∴CP=4﹣3.③当D′E于圆相切时,如图3,由折叠知:∠1=∠2,在Rt△BQE中,∵BQ=BE,∴∠BEC=30°,又∠B′EC=90°,∴∠1=∠2=30°,在Rt△PBE中,PB=tan∠PEB•BE=×4=,PC=3+;④当D′E同左侧圆相切时,如图4,同理可得:PB=4,PC=4+3;综上,PC=3﹣或4﹣3或3+或4+3.。

2021年广东省中考数学解答题压轴题练习及答案 (1)

2021年广东省中考数学解答题压轴题练习及答案 (1)

2021年广东省中考数学解答题压轴题练习1.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.【分析】(1)连接BD,OC,得出∠BEC=45°,由圆周角定理可得出结论(2)延长ED至G,使ED=DG,连接AG,证明△BFC≌△DEC,可得出BF=DE,证明△ABF≌△ADG,则∠BAF=∠DAC,证明DM∥AG,得出∠DNF=∠F AG=90°,则可得出结论;(3)连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,设DE=x,则BE=7x,得出BD=5x,求出x=2,求出BK=KF=,由tan∠BCF=tan ∠DCE=,求出CF,可求出TB=7,AM=4,则可求出OM的长.【解答】(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠F AD=∠BAD=90°,∴∠DAG+∠F AD=90°,∴∠F AG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠F AG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT ⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.。

广东省2021年中考数学试题真题(Word版+答案+解析)

广东省2021年中考数学试题真题(Word版+答案+解析)

广东省2021年中考数学试卷一、单选题1.(2021·广东)下列实数中,最大的数是( )A. πB. √2C. |−2|D. 32.(2021·广东)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( ) A. 0.510858×109 B. 51.0858×107 C. 5.10858×104 D. 5.10858×1083.(2021·广东)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( ) A. 112 B. 16 C. 13 D. 124.(2021·广东)已知 9m =3,27n =4 ,则 32m+3n = ( ) A. 1 B. 6 C. 7 D. 125.(2021·广东)若 |a −√3|+√9a 2−12ab +4b 2=0 ,则 ab = ( ) A. √3 B. 92 C. 4√3 D. 9 6.(2021·广东)下列图形是正方体展开图的个数为( )A. 1个B. 2个C. 3个D. 4个7.(2021·广东)如图, AB 是⊙O 的直径,点C 为圆上一点, AC =3,∠ABC 的平分线交 AC 于点D , CD =1 ,则⊙O 的直径为( )A. √3B. 2√3C. 1D. 28.(2021·广东)设 6−√10 的整数部分为a , 小数部分为b , 则 (2a +√10)b 的值是( ) A. 6 B. 2√10 C. 12 D. 9√109.(2021·广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a , b , c , 记 p =a+b+c 2,则其面积S =√p(p −a)(p −b)(p −c) .这个公式也被称为海伦-秦九韶公式.若 p =5,c =4 ,则此三角形面积的最大值为( )A. √5B. 4C. 2√5D. 510.(2021·广东)设O 为坐标原点,点A 、B 为抛物线 y =x 2 上的两个动点,且 OA ⊥OB .连接点A 、B , 过O 作 OC ⊥AB 于点C , 则点C 到y 轴距离的最大值( ) A. 12 B. √22C. √32D. 1二、填空题11.(2021·广东)二元一次方程组 {x +2y =−22x +y =2的解为________. 12.(2021·广东)把抛物线 y =2x 2+1 向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.13.(2021·广东)如图,等腰直角三角形 ABC 中, ∠A =90°,BC =4 .分别以点B 、点C 为圆心,线段 BC 长的一半为半径作圆弧,交 AB 、 BC 、 AC 于点D 、E 、F , 则图中阴影部分的面积为________.14.(2021·广东)若一元二次方程 x 2+bx +c =0 (b , c 为常数)的两根 x 1,x 2 满足 −3<x 1<−1,1<x 2<3 ,则符合条件的一个方程为________. 15.(2021·广东)若 x +1x =136 且 0<x <1 ,则 x 2−1x2= ________. 16.(2021·广东)如图,在 ▱ABCD 中, AD =5,AB =12,sinA =45 .过点D 作 DE ⊥AB ,垂足为E , 则 sin ∠BCE = ________.17.(2021·广东)在 △ABC 中, ∠ABC =90°,AB =2,BC =3 .点D 为平面上一个动点, ∠ADB =45° ,则线段 CD 长度的最小值为________.三、解答题18.(2019·宿迁模拟)解不等式组 {2x −4≥3(x −2)4x >x−72. 19.(2021·广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.(2021·广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1321.(2021·广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=4图象的一个交点为P(1,m).x(1)求m的值;(2)若PA=2AB,求k的值.22.(2021·广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.23.(2021·广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE 折叠得到△FBE,BF交AC于点G,求CG的长.24.(2021·广东)如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF//CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.25.(2021·广东)已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】A【考点】实数大小的比较【解析】【解答】解:π≈3.14,√2≈1.414,|-2|=2,3.14>3>2>1.414π>3>|-2|>√2故π最大。

2021年广州市中考数学压轴题总复习题及答案解析

2021年广州市中考数学压轴题总复习题及答案解析

2021年广东省广州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;
(2)如图2,若∠DBC=15°,求证:AD:AC=√2:√3;
(3)如图3,若AC、BD交于点E,连接OE,且OE=2√7,若BD=3CD,求AD的长.
2.(1)初步思考:
如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=1
2PC
(2)问题提出:
如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求
PD+1
2PC的最小值.
(3)推广运用:
如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一
个动点,求PD−1
2PC的最大值.
3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。

2021年广东省数学中考真题含答案解析及答案(word解析版)

2021年广东省数学中考真题含答案解析及答案(word解析版)

2021年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.2答案:C解析:2的相反数为-2,选C,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。

3.据报道,2021年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数。

当原数的绝对值<1时,n 是负数.1 260 000 000 000=1.26×1012元4.已知实数、,若>,则下列结论正确的是A. B. C.D.答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。

2021年广东省中考数学解答题压轴题练习及答案 (32)

2021年广东省中考数学解答题压轴题练习及答案 (32)

2021年广东省中考数学解答题压轴题练习1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b且填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a、b的式子表示).(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2所示,分别以AB,AC 为边,作等边三解形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且P A=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=P A=2,BN=AM,根据当N在线段BA 的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=6;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2 ,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上所述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2 +3.。

2021年广东省中考数学解答题压轴题练习及答案 (13)

2021年广东省中考数学解答题压轴题练习及答案 (13)

2021年广东省中考数学解答题压轴题练习1.已知:AB为⊙O直径,弦CD⊥AB,垂足为H,点E为⊙O上一点,=,BE与CD交于点F.(1)如图1,求证:BH=FH;(2)如图2,过点F作FG⊥BE,分别交AC、AB于点G、N,连接EG,求证:EB=EG;(3)如图3,在(2)的条件下,延长EG交⊙O于M,连接CM、BG,若ON=1,△CMG 的面积为6,求线段BG的长.【分析】(1)连接AE,AB为直径,弧AE=弧BE,则AE=BE,而∠HFB=45°,即可求解;(2)证明Rt△CGQ≌Rt△CBS(AAS)、△CBE≌△CGE(SAS),即可求解;(3)证明△CMG≌△CNG(AAS)、△CGT≌△BCH(AAS),利用BC2=BH•BA,即可求解.【解答】解:(1)连接AE,∵AB为直径,∴∠AEB=90°∵弧AE=弧BE,∴AE=BE,∴∠B=45°又∵CD⊥AB于H∴∠HFB=45°∴HF=HB;(2)过点C作CQ⊥FG,CS⊥FB,连接CE、BC.AB为直径,∴∠ACB=∠QCS=90°∴∠GCQ=∠BCS,∴Rt△CGQ≌Rt△CBS(AAS),∴CG=CB,同理△CBE≌△CGE(SAS),∴EG=EB,(3)过点G作GT⊥CD于T,连接CN设∠CAB=α由(2)知:,∴CM=CB,∵HB=HF,∴∠HBF=∠HFB=45°,GF⊥BE,∴∠NFH=45°,∴NH=BH,∴CN=BC,∴CM=CB=CN则:∠MEB=2α∠AEG=90°﹣2α∴∠EAG=∠EGA=45°+α∴∠M=∠MGC=45°+α∴△CMG≌△CNG(AAS),∵△CMG面积为6,∴S△CAN﹣S△GAN=6设BH=NH=x,OA=OB=2x+1,AN=2x+2则△CGT≌△BCH(AAS),∴CT=BH=x,∴AN•CH﹣AN•TH=6∴(2x+2)•CT=6,解得:x=2,而BC2=BH•BA,BC2=2×10,则BC=2,BG=BC=2.。

2021年广东省中考数学解答题压轴题练习及答案 (2)

2021年广东省中考数学解答题压轴题练习及答案 (2)

2021年广东省中考数学解答题压轴题练习1.已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM∥AC,动点P在射线BM上(点P不与B重合),连结P A并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.【分析】(1)用解直角三角形的方法,求出AH和BC长即可求解;(2)证明△ABP∽△CQA,利用,即可求解;(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,利用cos∠PQC=cosα==,即可求解.【解答】解:(1)过点A作AH⊥BC交于点H,在Rt△ABH中,tan∠ABC==2,设BH=m,∴AH=2m,根据勾股定理得,m2+(2m)2=36,∴m=﹣2(舍)或m=2,∴BH=2,AH=2m=4,在Rt△AHC中,AC=9,根据勾股定理得,CH==7,∴BC=BH+CH=9,S△ABC=AH•BC=×4×9=18;(2)过点A作AG⊥P A交于点G,由(1)知,BC=9,∵AC=9,∴AC=BC,∴∠ABC=∠BAC,∵BM∥AC,∴∠BAC=∠ABP,∴∠ABP=∠ABC,∵AH⊥BC,AG⊥BP,∴AG=AH=4,BG=BH=2,∴PG=BP﹣BG=x﹣2根据勾股定理得,AP==,∵BM∥AC,∴∠QAC=∠APB,又∠AQC=∠ABP,∴△ABP∽△CQA,∴,其中:AB=6,BP=x,QA=y,AP=,AC=9,∴,∴CQ=,y=①(x>0);(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,在Rt△ABH中,cos∠ABH==,∴cos∠PQC=cosα==其中CQ=,PQ=AP+AQ=y+AP,AP=,∴=②联立①②解得:x=﹣14(舍)或x=9,即BP的长为9.。

2021年广东省广州市中考数学试卷及答案解析

2021年广东省广州市中考数学试卷及答案解析

2021年广东省广州市中考数学试卷一、选择题(本大题共10题,每小题3分,满分30分) 1.(3分)下列四个选项中,为负整数的是( ) A .0B .﹣0.5C .−√2D .﹣22.(3分)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣63.(3分)方程1x−3=2x的解为( )A .x =﹣6B .x =﹣2C .x =2D .x =64.(3分)下列运算正确的是( ) A .|﹣(﹣2)|=﹣2 B .3+√3=3√3 C .(a 2b 3)2=a 4b 6D .(a ﹣2)2=a 2﹣45.(3分)下列命题中,为真命题的是( ) (1)对角线互相平分的四边形是平行四边形 (2)对角线互相垂直的四边形是菱形 (3)对角线相等的平行四边形是菱形 (4)有一个角是直角的平行四边形是矩形 A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4)6.(3分)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( ) A .23B .12C .13D .167.(3分)一根钢管放在V 形架内,其横截面如图所示,钢管的半径是24cm ,若∠ACB =60°,则劣弧AB 的长是( )A .8πcmB .16πcmC .32πcmD .192πcm8.(3分)抛物线y =ax 2+bx +c 经过点(﹣1,0)、(3,0),且与y 轴交于点(0,﹣5),则当x =2时,y 的值为( ) A .﹣5B .﹣3C .﹣1D .59.(3分)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,将△ABC 绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,连结BB ′,则sin ∠BB ′C ′的值为( )A .35B .45C .√55D .2√5510.(3分)在平面直角坐标系xOy 中,矩形OABC 的顶点A 在函数y =1x (x >0)的图象上,顶点C 在函数y =−4x(x <0)的图象上,若顶点B 的横坐标为−72,则点A 的坐标为( ) A .(12,2)B .(√22,√2) C .(2,12)D .(√2,√22) 二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)代数式√x −6在实数范围内有意义时,x 应满足的条件是 . 12.(3分)方程x 2﹣4x =0的实数解是 .13.(3分)如图,在Rt △ABC 中,∠C =90°,∠A =30°,线段AB 的垂直平分线分别交AC 、AB 于点D 、E ,连接BD .若CD =1,则AD 的长为 .14.(3分)一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=mx上的两个点,若x1<x2<0,则y1y2(填“<”或“>”或“=”).15.(3分)如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为.16.(3分)如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=7 5三、解答题(本大题共9小题,满分72分)17.(4分)解方程组{y =x −4x +y =6.18.(4分)如图,点E 、F 在线段BC 上,AB ∥CD ,∠A =∠D ,BE =CF ,证明:AE =DF .19.(6分)已知A =(m n−n m)•√3mnm−n. (1)化简A ;(2)若m +n ﹣2√3=0,求A 的值.20.(6分)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4 根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6 人数12a6b2(1)表格中的a = ,b = ;(2)在这次调查中,参加志愿者活动的次数的众数为 ,中位数为 ; (3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.(8分)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次. (1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少? 22.(10分)如图,在四边形ABCD 中,∠ABC =90°,点E 是AC 的中点,且AC =AD . (1)尺规作图:作∠CAD 的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.23.(10分)如图,在平面直角坐标系xOy中,直线l:y=12x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.24.(12分)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.25.(12分)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.2021年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题3分,满分30分)1.(3分)下列四个选项中,为负整数的是()A.0B.﹣0.5C.−√2D.﹣2【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、−√2是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.2.(3分)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.3.(3分)方程1x−3=2x的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.4.(3分)下列运算正确的是()A .|﹣(﹣2)|=﹣2B .3+√3=3√3C .(a 2b 3)2=a 4b 6D .(a ﹣2)2=a 2﹣4【解答】解:A 、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意; B 、3与√3不是同类二次根式,不能合并,原计算错误,故本选项不符合题意; C 、(a 2b 3)2=a 4b 6,原计算正确,故本选项符合题意; D 、(a ﹣2)2=a 2﹣4a +4,原计算错误,故本选项不符合题意. 故选:C .5.(3分)下列命题中,为真命题的是( ) (1)对角线互相平分的四边形是平行四边形 (2)对角线互相垂直的四边形是菱形 (3)对角线相等的平行四边形是菱形 (4)有一个角是直角的平行四边形是矩形 A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4)【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意; (2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意; (3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意; (4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意, 真命题为(1)(4), 故选:B .6.(3分)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( ) A .23B .12C .13D .16【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为612=12,故选:B .7.(3分)一根钢管放在V 形架内,其横截面如图所示,钢管的半径是24cm ,若∠ACB =60°,则劣弧AB 的长是( )A .8πcmB .16πcmC .32πcmD .192πcm【解答】解:由题意得:CA 和CB 分别与⊙O 相切于点A 和点B , ∴OA ⊥CA ,OB ⊥CB , ∴∠OAC =∠OBC =90°, ∵∠ACB =60°, ∴∠AOB =120°, ∴120π×24180=16π(cm ),故选:B .8.(3分)抛物线y =ax 2+bx +c 经过点(﹣1,0)、(3,0),且与y 轴交于点(0,﹣5),则当x =2时,y 的值为( ) A .﹣5B .﹣3C .﹣1D .5【解答】解:如图∵抛物线y =ax 2+bx +c 经过点(﹣1,0)、(3,0),且与y 轴交于点(0,﹣5),∴可画出上图, ∵抛物线对称轴x =−1+32=1, ∴点(0,﹣5)的对称点是(2,﹣5), ∴当x =2时,y 的值为﹣5. 故选:A .9.(3分)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,将△ABC 绕点A 逆时针旋转得到△AB ′C ′,使点C ′落在AB 边上,连结BB ′,则sin ∠BB ′C ′的值为( )A .35B .45C .√55D .2√55【解答】解:∵∠C =90°,AC =6,BC =8, ∴AB =√AC2+BC2=√36+64=10,∵将△ABC 绕点A 逆时针旋转得到△AB ′C ′, ∴AC =AC '=6,BC =B 'C '=8,∠C =∠AC 'B '=90°, ∴BC '=4, ∴B 'B =√C′B′2+BC′2=√16+64=4√5,∴sin ∠BB ′C ′=BC′BB′=4√5=√55, 故选:C .10.(3分)在平面直角坐标系xOy 中,矩形OABC 的顶点A 在函数y =1x (x >0)的图象上,顶点C 在函数y =−4x (x <0)的图象上,若顶点B 的横坐标为−72,则点A 的坐标为( ) A .(12,2)B .(√22,√2) C .(2,12)D .(√2,√22) 【解答】解:如图,作AD ⊥x 轴于点D ,CE ⊥x 轴于点E , ∵四边形OABC 是矩形, ∴∠AOC =90°,∴∠AOD +∠COE =90°, ∵∠AOD +∠OAD =90°, ∴∠COE =∠OAD , ∵∠CEO =∠ODA , ∴△COE ∽△OAD , ∴S △COE S △AOD=(OCOA)2,OEAD=CE OD=OC OA,∵S △COE =12×|﹣4|=2,S △AOD =12×1=12, ∴212=(OCOA)2,∴OC OA =2, ∴OE AD=CE OD=OC OA=21,∴OE =2AD ,CE =2OD , 设A (m ,1m )(m >0),∴C (−2m ,2m ), ∴OE =0﹣(−2m)=2m, ∵点B 的横坐标为−72, ∴m ﹣(−72)=2m , 整理得2m 2+7m ﹣4=0,∴m 1=12,m 2=﹣4(不符合题意,舍去), 经检验,m =12是方程的解, ∴A (12,2),故选:A .二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)代数式√x−6在实数范围内有意义时,x应满足的条件是x≥6.【解答】解:代数式√x−6在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.12.(3分)方程x2﹣4x=0的实数解是x1=0,x2=4.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.13.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为2.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠A=∠ABD,∵∠A=30°,∴∠ABD=30°,∴∠BDC=∠A+∠ABD=30°+30°=60°,∵∠C=90°,∴∠CBD=30°,∵CD=1,∴BD=2CD=2,∴AD=2.故答案为2.14.(3分)一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=mx上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=mx图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.15.(3分)如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为33°.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B 关于直线CD 的对称点为B ′,∴∠CDB ′=∠CDB =12(38°+180°)=109°,∴∠BCD =180°﹣∠B ﹣∠CDB =180°﹣38°﹣109°=33°. 故答案为33°.16.(3分)如图,正方形ABCD 的边长为4,点E 是边BC 上一点,且BE =3,以点A 为圆心,3为半径的圆分别交AB 、AD 于点F 、G ,DF 与AE 交于点H .并与⊙A 交于点K ,连结HG 、CH .给出下列四个结论.其中正确的结论有 (1)(3)(4) (填写所有正确结论的序号). (1)H 是FK 的中点 (2)△HGD ≌△HEC (3)S △AHG :S △DHC =9:16 (4)DK =75【解答】解:(1)在△ABE 与△DAF 中, {AD =AB∠DAF =∠ABE AF =BE, ∴△ABE ≌△DAF (SAS ), ∴∠AFD =∠AEB ,∴∠AFD +∠BAE =∠AEB +∠BAE =90°, ∴AH ⊥FK , 由垂径定理, 得:FH =HK ,即H 是FK 的中点,故(1)正确;(2)如图,过H 分别作HM ⊥AD 于M ,HN ⊥BC 于N ,∵AB =4,BE =3, ∴AE =√AB 2+BE 2=5, ∵∠BAE =∠HAF =∠AHM , ∴cos ∠BAE =cos ∠HAF =cos ∠AHM , ∴HM AH=AH AF=AB AE=45,∴AH =125,HM =4825, ∴HN =4−4825=5225, 即HM ≠HN , ∵MN ∥CD , ∴MD =CN ,∵HD =√HM 2+MD 2, HC =√HN 2+CN 2, ∴HC ≠HD ,∴△HGD ≌△HEC 是错误的,故(2)不正确; (3)过H 分别作HT ⊥CD 于T , 由(2)知,AM =√AH 2−HM 2=3625, ∴DM =4−3625=6425, ∵MN ∥CD , ∴MD =HT =6425, ∴S △AHG S △HCD=12AG⋅HM 12CD⋅HT =916,故(3)正确;(4)由(2)知,HF =√AF 2−AH 2=95, ∴FK =2HF =185, ∴DK =DF ﹣FK =75,故(4)正确. 三、解答题(本大题共9小题,满分72分) 17.(4分)解方程组{y =x −4x +y =6.【解答】解:{y =x −4①x +y =6②,将①代入②得,x +(x ﹣4)=6, ∴x =5,将x =5代入①得,y =1, ∴方程组的解为{x =5y =1.18.(4分)如图,点E 、F 在线段BC 上,AB ∥CD ,∠A =∠D ,BE =CF ,证明:AE =DF .【解答】证明:∵AB ∥CD , ∴∠B =∠C .在△ABE 和△DCF 中, {∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (AAS ). ∴AE =DF . 19.(6分)已知A =(m n−n m)•√3mnm−n. (1)化简A ;(2)若m +n ﹣2√3=0,求A 的值. 【解答】解:(1)A =(m n −n m)•√3mnm−n=m 2−n 2mn ⋅√3mnm−n =(m+n)(m−n)mn⋅√3mnm−n =√3(m +n ) =√3m +√3n ;(2)∵m +n ﹣2√3=0, ∴m +n =2√3,当m +n =2√3时,A =√3m +√3n =√3(m +n )=√3×2√3=6.20.(6分)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4 根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6 人数12a6b2(1)表格中的a = 4 ,b = 5 ;(2)在这次调查中,参加志愿者活动的次数的众数为 4 ,中位数为 4 ; (3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.【解答】解:(1)由该20名学生参加志愿者活动的次数得:a =4,b =5, 故答案为:4,5;(2)该20名学生参加志愿者活动的次数从小到大排列如下: 1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6, ∵4出现的最多,有6次,∴众数为4,中位数为第10,第11个数的平均数4+42=4,故答案为:4,4; (3)300×620=90(人).答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.21.(8分)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.22.(10分)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠F AD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EF A=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EF A=30°,∴∠BEF=60°,∴△BEF是等边三角形.23.(10分)如图,在平面直角坐标系xOy中,直线l:y=12x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.【解答】解:(1)∵直线y =12x +4分别与x 轴,y 轴相交于A 、B 两点, ∴当x =0时,y =4; 当y =0时,x =﹣8, ∴A (﹣8,0),B (0,4);(2)∵点P (x ,y )为直线l 在第二象限的点, ∴P (x ,12x +4),∴S △APO =12OA ×(12x +4)=4×(12x +4)=2x +16(﹣8<x <0); ∴S =2x +16(﹣8<x <0); (3)∵A (﹣8,0),B (0,4), ∴OA =8,OB =4,在Rt △AOB 中,由勾股定理得: AB =√OA 2+OB 2=√82+42=4√5, 在⊙C 中,∵PQ 是直径, ∴∠POQ =90°, ∵∠BAO =∠Q , ∴tan Q =tan ∠BAO =12, ∴PO OQ=12,∴OQ =2OP ,∴S △POQ =12OP ×OQ =12OP ×2OP =OP 2, ∴当S △POQ 最小时,则OP 最小,∵点P 在线段AB 上运动,∴当OP ⊥AB 时,OP 最小,∴S △AOB =12×OA ×OB =12×AB ×OP ,∴OP =OA×OB AB =4√5=8√55, ∵sin Q =sin ∠BAO ,∴OP PQ=OB AB , ∴8√55PQ =4√5,∴PQ =8,∴⊙C 半径为4.24.(12分)已知抛物线y =x 2﹣(m +1)x +2m +3.(1)当m =0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E (﹣1,﹣1)、F (3,7),若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.【解答】解:(1)当m =0时,抛物线为y =x 2﹣x +3,将x =2代入得y =4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y =x 2﹣(m +1)x +2m +3的顶点为(m+12,4(2m+3)−[−(m+1)]24), 化简得(m+12,−m 2+6m+114),顶点移动到最高处,即是顶点纵坐标最大, 而−m 2+6m+114=−14(m ﹣3)2+5, ∴m =3时,纵坐标最大,即是顶点移动到了最高处,此时该抛物线解析式为y =x 2﹣4x +9,顶点坐标为:(2,5);(3)设直线EF 解析式为y =kx +b ,将E (﹣1,﹣1)、F (3,7)代入得:{−1=−k +b 7=3k +b ,解得{k =2b =1,∴直线EF 的解析式为y =2x +1,由{y =2x +1y =x 2−(m +1)x +2m +3得:{x =2y =5或{x =m +1y =2m +3, ∴直线y =2x +1与抛物线y =x 2﹣(m +1)x +2m +3的交点为:(2,5)和(m +1,2m +3), 而(2,5)在线段EF 上,∴若该抛物线与线段EF 只有一个交点,则(m +1,2m +3)不在线段EF 上,或(2,5)与(m +1,2m +3)重合,∴m +1<﹣1或m +1>3或m +1=2(此时2m +3=5),∴此时抛物线顶点横坐标x 顶点=m+12<−12或x 顶点=m+12>32或x 顶点=m+12=1+12=1. 25.(12分)如图,在菱形ABCD 中,∠DAB =60°,AB =2,点E 为边AB 上一个动点,延长BA 到点F ,使AF =AE ,且CF 、DE 相交于点G .(1)当点E 运动到AB 中点时,证明:四边形DFEC 是平行四边形;(2)当CG =2时,求AE 的长;(3)当点E 从点A 开始向右运动到点B 时,求点G 运动路径的长度.【解答】解:(1)证明:连接DF ,CE ,如图所示:,∵E 为AB 中点,∴AE =AF =12AB ,∴EF =AB =CD ,∵四边形ABCD 是菱形,∴EF ∥AB ∥CD ,∴四边形DFEC 是平行四边形.(2)作CH ⊥BH ,设AE =F A =m ,如图所示,,∵四边形ABCD 是菱形,∴CD ∥EF ,∴△CDG ∽△FEG ,∴CD CG =EF FG ,∴FG =2m ,在Rt △CBH 中,∠CBH =60°,BC =2,sin60°=CH BC,CH =√3, cos60°=BH BC ,BH =1,在Rt △CFH 中,CF =2+2m ,CH =√3,FH =3+m ,CF ²=CH ²+FH ²,即(2+2m )²=(√3)²+(3+m )²,整理得:3m ²+2m ﹣8=0,解得:m 1=43,m 2=﹣2(舍去),∴AE =43.(3)G 点轨迹为线段AG ,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴AEDH =AGHG,AFHC=AGHG,∴AEDH =AFCH,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=DNAD,DN=√3.cos60°=ANAD,AN=1,在Rt△AHM中,HM=DN=√3,AM=AN+NM=AN+DH=2,tan∠HAM=√32,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD ∥BF ,BD =2,∴△CDG ∽△FBG ,∴CD BF =DG BG ,即BG =2DG ,∵BG +DG =BD =2,∴BG =43,在Rt △GHB 中,BG =43,∠DBA =60°, sin60°=GH BG ,GH =2√33,cos60°=BH BG ,BH =23, 在Rt △AHG 中,AH =2−23=43,GH =2√33, AG ²=(43)²+(2√33)²=289, ∴AG =2√73.∴G 点路径长度为2√73.解法二:如图,连接AG ,延长AG 交CD 于点W .∵CD ∥BF ,∴FA CW =AG GW ,AG GW =AE DW , ∴FA CW =AE DW ,∵AF =AE ,∴DW =CW ,∴点G 在AW 上运动.下面的解法同上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年广东省中考数学解答题压轴题练习
1.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.
(1)当时,
①若=130°,求∠C的度数;
②求证AB=AP;
(2)当AB=15,BC=20时
①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;
②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为7<CP<12.5.(直接写出结果)
【分析】(1)①连接BE,由圆周角定理得出∠BEC=90°,求出=50°,=100°,则∠CBE=50°,即可得出结果;
②由=,得出∠CBP=∠EBP,易证∠C=∠ABE,由∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,得出∠APB=∠ABP,即可得出结论;
(2)①由勾股定理得AC==25,由面积公式得出AB•BC=AC•BE,求出BE=12,连接DP,则PD∥AB,得出△DCP∽△BCA,求出CP==CD,
△BDE是等腰三角形,分三种情况讨论,当BD=BE时,BD=BE=12,CD=BC﹣BD=8,CP=CD=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,得出CD=BC=10,CP=CD=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,求出AE==9,CE=AC﹣AE=16,CH=20﹣BH,由EH∥AB,得出=,求出BH
=,BD=2BH=,CD=BC﹣BD=,则CP=CD=7;
②当点Q落在∠CPH的边PH上时,CP最小,连接OD、OQ、OE、QE、BE,证明四边形ODQE是菱形,求出PC=AC﹣PE﹣AE=7;当点Q落在∠CPH的边PC上时,CP最大,连接OD、OQ、OE、QD,同理得四边形ODQE是菱形,连接DF,求出PC=AC=12.5,即可得出答案.
【解答】(1)①解:连接BE,如图1所示:
∵BP是直径,
∴∠BEC=90°,
∵=130°,
∴=50°,
∵=,
∴=100°,
∴∠CBE=50°,
∴∠C=40°;
②证明:∵=,
∴∠CBP=∠EBP,
∵∠ABE+∠A=90°,∠C+∠A=90°,
∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,
∴∠APB=∠ABP,
∴AP=AB;
(2)解:①由AB=15,BC=20,
由勾股定理得:AC===25,
∵AB•BC=AC•BE,
即×15×20=×25×BE
∴BE=12,
连接DP,如图1﹣1所示:
∵BP是直径,
∴∠PDB=90°,
∵∠ABC=90°,
∴PD∥AB,
∴△DCP∽△BCA,
∴=,
∴CP===CD,
△BDE是等腰三角形,分三种情况:
当BD=BE时,BD=BE=12,
∴CD=BC﹣BD=20﹣12=8,
∴CP=CD=×8=10;
当BD=ED时,可知点D是Rt△CBE斜边的中线,
∴CD=BC=10,
∴CP=CD=×10=;
当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,
∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,
∵EH∥AB,
∴=,
即=,
解得:BH=,
∴BD=2BH=,
∴CD=BC﹣BD=20﹣=,
∴CP=CD=×=7;
综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;
②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,
由对称的性质得:DE垂直平分OQ,
∴OD=QD,OE=QE,
∵OD=OE,
∴OD=OE=QD=QE,
∴四边形ODQE是菱形,
∴PQ∥OE,
∵PB为直径,
∴∠PDB=90°,
∴PD⊥BC,
∵∠ABC=90°,
∴AB⊥BC,
∴PD∥AB,
∴DE∥AB,
∵OB=OP,
∴OE为△ABP中位线,
∴PE=AE=9,
∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;
当点Q落在∠CPH的边PC上时,CP最大,如图3所示:
连接OD、OQ、OE、QD,
同理得:四边形ODQE是菱形,
∴OD∥QE,
连接DF,
∵∠DBC=90°,
∴DF是直径,
∴D、O、F三点共线,
∴DF∥AQ,
∴∠OFB=∠A,
∵OB=OF,
∴∠OFB=∠OBF=∠A,
∴P A=PB,
∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,
∴PB=PC=P A,
∴PC=AC=12.5,
∴7<CP<12.5,
故答案为:7<CP<12.5.。

相关文档
最新文档