与轴对称相关的线段之和最短问题(初二版)

合集下载

苏科版八年级上册第二章轴对称图形 线段和最值问题(有答案)

苏科版八年级上册第二章轴对称图形  线段和最值问题(有答案)

八上第二章线段和最值问题班级姓名得分一、选择题1.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A. 6B. 8C. 10D. 122.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为A. 12B. 16C. 24D. 323.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 7B. 72C. 9 D. 1124.如图,∠MON=90°,OB=2,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两角平分线所在的直线交于点F,求点A在运动过程中线段BF 的最小值为()A. 2B. 4C. √2D. √3二、填空题5.如图,等腰△ABC的底边BC长为4,面积是14,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为____.6.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.7.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.8.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长的最小值为_________cm.9.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.10.如图,四边形ABCD为菱形,∠C=120°,AB=4,H为边BC上的动点,连接AH,作AH的垂直平分线GF交CD于F点,则线段GF的最小值为.11.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.12.如图,在锐角△ABC中,AB=4√3,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为13.如图,在锐角△ABC中,AB=3√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.14.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC=√6,若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC的最小值是__________.三、解答题16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.17.如图,BD是ΔABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30∘,∠C=45∘,ED=2√10,点H是BD上的一个动点,求HG+HC的最小值.18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是______度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.19.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM 的长;(2)若CD=13,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求2AP+PQ+QB的最小值.答案和解析1.【答案】C【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ×AD =12×4×AD =16,解得AD =8, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=8+2=10. 故选C .2.【答案】A【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,从而得到AD 长,由等腰三角形三线合一的性质可得AD 为BC 边上的高,最后由三角形面积公式求得答案.【解答】解:连接AD ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,△CDM 的周长为CM +DM +CD ,∴AD 的长为CM +MD 的最小值,∵CD =2,∴AD =6,∵AB =AC ,D 为BC 中点,∴AD ⊥BC ,∴△ABC 的面积为4×6÷2=12. 故选A .3.【答案】C【解析】【分析】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=7+2=9. 故选C .4.【答案】C【解析】【分析】作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,由角平分线的性质得出FD =FC ,证出点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,BF 最小,△OBF 为等腰直角三角形,即可得出BF =√22OB =√2. 【解答】解:作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,如图所示:∵∠MAB 与∠ABN 的角平分线AF 与BF 交于点F ,∴FD =FE ,FE =FC ,∴FD =FC ,∴点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,F 为垂足,BF 最小,此时,△OBF 为等腰直角三角形,BF =√22OB =√2; 故选C .5.【答案】9【解析】【分析】本题考查垂直平分线的性质,轴对称的性质和等腰三角形的性质,得出AD 的长为CM +MD 的最小值是解题的关键,先做C 点关于EF 的对称点A ,连接AD 交EF 于M ,此时CM +MD 的值最小,求出周长即可.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=8+2=9. 故答案为9.6.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.7.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.8.【答案】8【解析】【分析】本题考查的是轴对称 -最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6cm , ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM +MD 的最小值,∴△BDM 的周长最短=(BM +MD )+BD =AD +12BC =6+12×4=6+2=8cm . 故答案为8.9.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.10.【答案】3【解析】【分析】这是一道考查菱形的性质以及线段垂直平分线的性质的题目,解题关键在于知道当AH ⊥BC 时,GF 最短,即可求出答案.【解答】解:连接AF 、HF ,则当AH 最短时,GF 最小,此时AH ⊥BC ,AH ⊥AB ,∵GF 为AH 的垂直平分线,∴G 为AH 中点,F 为CD 中点,∴GF =12(AD +HC )=3.故答案为3.11.【答案】8【解析】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12.【答案】6【解析】【分析】本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM +MN 进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【解答】解:如图,在AC 上截取AE =AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM =∠NAM ,在△AME 与△AMN 中,{AE =AN∠EAM =∠NAM AM =AM,∴△AME ≌△AMN (SAS ),∴ME =MN .∴BM +MN =BM +ME ≥BE .∵BM +MN 有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√3,∠BAC=60°,此时,在Rt△ABE中,得出BE=6,即BE取最小值为6,∴BM+MN的最小值是6.故答案为6.13.【答案】3【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAM AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=3√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=3,即BE取最小值为3,∴BM+MN的最小值是3.故答案为3.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.14.【答案】3√22【解析】【分析】本题考查了垂线段最短的性质,角的平分线的性质,勾股定理以及直角三角形的性质.解题关键是根据角平分线的性质和垂线段最短得出CE的长是PN+PC的最小值.作CE⊥AB 于点E,则CE的长就是PN+PC的最小值,在Rt△ACE中利用勾股定理求解即可.【解答】解:作CE⊥AB于点E,交AD于P点,∵AD是∠BAC的平分线,PN⊥AC,CE⊥AB,∴PN =PE ,∴PN +PC =PE +PC =CE ,∴根据“垂线段最短”可知CE 的长就是PN +PC 的最小值.在Rt △ACE 中,∠BAC =60°,AC =√6, ∴AE =12AC =√62, 由勾股定理得:CE =3√22. 故答案是3√22.15.【答案】8【解析】【分析】本题主要考查三角形周长的知识,关键是知道线段垂直平分线的性质,知道等腰三角形的性质.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.故答案为8.16.【答案】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,{∠EDF=∠GBF ∠EFD=∠GFB DF=BF,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2√10,∴EM=12BE=√10,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=√10,MN=DE=2√10,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=√10,∴MC=3√10,在RT△EMC中,∵∠EMC=90°,EM=√10.MC=3√10,∴EC=√EM2+MC2=√(√10)2+(3√10)2=10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.【解析】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可;(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.17.【答案】(1)50(2)①6②14【解析】解:(1)∵AB =AC ,∴∠C =∠ABC =70°,∴∠A =40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM =90°,∴∠NMA =50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM =BM ,∴△MBC 的周长=BM +CM +BC =AM +CM +BC =AC +BC ,∵AB =8,△MBC 的周长是14,∴BC =14-8=6;②当点P 与M 重合时,△PBC 周长的值最小,理由:∵PB +PB =PA +PC ,PA +PC ≥AC ,∴P 与M 重合时,PA +PC =AC ,此时PB +PC 最小,∴△PBC 周长的最小值=AC +BC =8+6=14.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM =BM ,然后求出△MBC 的周长=AC +BC ,再代入数据进行计算即可得解,②当点P 与M 重合时,△PBC 周长的值最小,于是得到结论.本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.18.【答案】解:(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .在Rt △ACM 中,AM 2=AC 2+CM 2=32+(6-x )2,在Rt △BDM 中,BM 2=DM 2+BD 2=x 2+62,∵AM =MB ,∴32+(6-x )2=x 2+62,解得x =34,∴CM =CD -MD =6-34=214.(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.根据对称的性质可知:PA =PA ′,QB =QB ′,∴PA +PQ +QB =PA ′+PQ +QB ′=A ′B ′,∴PA +PQ +PB 的最小值为线段A ′B ′的长,在Rt △A ′B ′H 中,∵HB ′=CD =132,HA ′=DB ′+CA ′=7+6=13,∴A ′B ′=√HA′2+B′H 2=√132+(132)2=132√5, ∴AP +PQ +QB 的最小值为132√5.【解析】(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .根据MA =MB 构建方程即可解决问题;(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.最小值为线段A ′B ′的长;本题考查轴对称-最短问题,平行线的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用轴对称解决问题问题,学会利用参数构建方程解决问题,属于中考压轴题.。

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

与轴对称相关的线段之和最短问题

与轴对称相关的线段之和最短问题

与轴对称相关的线段之和最短问题在中考复习课中,有一种题型我们不可避免地要帮学生复习,即求:某种情节下的最短距离、最短路线;以何种情况下由3点围成的三角形、由4点围成的四边形的周长最小,等等。

试题虽然花样翻新,但其实质还是一样的。

当这类题目呈现在学生面前时,学生的感觉往往是一个字——难,不善于做这类题。

现以“用轴对称知识解决最值问题”的题组为例,通过几个强有力的数学模型,例说相关中考试题的解决方法,供老师们参考。

一、基本模型【数学模型1】:已知一条直线l与这条直线同侧的两点A、B,如图(1),在直线上找出一点P,使得这点与已知两点的距离和PA+PB最短。

作为题组的“基石”,中考复习时,我们重在让学生明白相关的解题策略。

如何解决线段的和的最短的问题?我们需要寻求和其中一条线段长度相等的线段,充分利用轴对称的有关性质,从而将线段的和最短转化为线段最短的问题。

让学生记住这个模型,并理解其中相关的数学原理,从而利用这个基本模型,轻松解决“最短”问题,这才是我们的最终目的。

二、变式模型通过基本问题结构的局部灵活重组,或者结论的拓展延伸,或者与其他问题的有机组合,加深学生对相关知识的理解,同时强化策略及思想等高层次的能力。

拓展延伸型问题也可以通过设问方式的改变,丰富问题设计的立意及内涵。

【数学模型2】:已知两条平行直线l1,l2及位于这两条直线上的两点A、B(线段AB与直线l1,l2不垂直),如图(3),分别在这两条直线上找出两点N、M,使得路径A-M-N-B最短。

解决方法:如图(3),分别作出A、B两点关于直线l2,l1的对称点A′、B′,连接 A′B′,分别交直线l2,l1于点M、N,有轴对称的有关性质,则路径A-M-N-B的长度就是线段A B′的长度,最短。

对比图(4),折线A-M-N-B的长度不是最短。

从一条定直线上的一个动点到分布在两条直线上的两个动点,孤立地看,变量增多(AM、MN、NB),问题较模型1复杂。

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题一、知识重点1、最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.2、运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3、利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.二、经典例子解析【例一】有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.【例二】如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点解:如图,【例三】如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短。

解:先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B【例四】在图中直线l上找到一点M,使它到A,B两点的距离和最小解:如图,作点B关于直线l的对称点B′;连接AB′交直线l于点M.则点M即为所求的点.【例五】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A 村与B村供水。

初二数学十二种轴对称最短路线

初二数学十二种轴对称最短路线

初二数学中,轴对称是一个重要的几何概念,而在轴对称的基础上,寻找最短路线是一个有趣的数学问题。

本文将围绕初二数学中的轴对称和最短路线展开讨论,探究十二种不同情形下的最短路线问题。

1. 轴对称轴对称是初中数学中的基础概念之一,它指的是一个图形相对于某条直线对称。

在平面几何中,轴对称是一种非常常见的对称现象,例如正方形、矩形、圆形等图形都具有轴对称性质。

学生在初中数学学习中,通过理解和掌握轴对称的概念和特点,可以更好地理解图形的性质和变化。

2. 最短路线最短路线是数学中的一个经典问题,它可以运用在不同的领域和场景中,例如交通运输、网络规划、资源分配等。

在初中数学中,最短路线问题可以通过几何知识和数学推理进行解决,帮助学生培养逻辑思维和问题解决能力。

3. 十二种情形接下来我们将具体讨论初二数学中关于轴对称最短路线的十二种情形:1) 单个点关于坐标轴的对称;2) 直线段关于某一轴的对称;3) 圆关于圆心的对称;4) 长方形关于中心横纵轴的对称;5) 正方形关于对角线的对称;6) 三角形关于三条中线的对称;7) 五边形关于中心轴的对称;8) 六边形关于中心轴的对称;9) 人字形关于中心轴的对称;10) 对称图形的最短路线为直线;11) 非对称图形的最短路线为折线;12) 非对称图形的最短路线为曲线。

通过逐一分析这十二种情形,我们可以发现不同对称图形的最短路线具有不同的特点和规律。

例如对于对称图形,其最短路线往往为直线,而对于非对称图形,其最短路线则可能为折线或曲线。

通过解决这十二种情形下的最短路线问题,学生可以锻炼几何推理和数学建模能力,培养对数学问题的思考和解决能力。

总结回顾通过对初二数学中轴对称最短路线的十二种情形进行探讨,我们不仅加深了对轴对称和最短路线的理解,还培养了数学建模和问题解决能力。

在学习数学的过程中,我们不仅要注重理论知识的掌握,更要注重数学方法和思维能力的培养,这样才能更好地应用数学知识解决现实生活中的问题。

与轴对称相关的线段之和最短问题

与轴对称相关的线段之和最短问题

〇教育教学研究与轴对称相关的线段之和最短问题李志若(泉州师范学院附属鹏峰中学,福建泉州362300)摘要:本文通过实例说明利用对称性实现“化折为直”“化斜为垂”,从而解决线段之和最短问题的方法。

关键词:线段和最小值;轴对称在学习了轴对称图形之后,学生在解答求线段和最小值问题时,常常思维受阻,无从入手。

解此类题的总体思路是利用对称性实现“化折为直”“化斜为垂”,现选取几例进行分析。

一、此类题的数学模型一是归于“两点之间线段最短)二是归于“垂线段最短”(一)“两点之间线段最短型”"如图1,直线/和/的异侧两点A,B,在直线Z上求作一点P,使P A5P B最小。

2.如图2,直线/和/的同侧两点A,B,在直线/上求作 一点P,使P A5P B最小。

3.如图3,点P是$¥0#内的一点,分别在O M,ON 上作点A,B,使A P A B的周长最小。

+如图+点P,Q S$M0N内的两点,分别在O M,O N上作点A,B,使四边形P A Q B的周长最小。

(二)“垂线段最短型”5.如图5,点A是$¥0#外的一点,在射线O N上作点P,使P A与点P到射线O M的距离之和最小。

6.如图6,点A是之…口#内的一点,在射线O N上作点P,使P A与点P到射线O M的距离之和最小。

二、“一线上一动点”两线段和最小值求解【例1】如图7,A、B两个小集镇在河流C D的同侧,分 别到河的距离为AC=10千米,=30千米,且CL»=30千 米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水 管的费用为每千米3万,请你在河流C D上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?BA:、、、:E ‘-------------、B'图#解析:作点B关于直线C D的对称点连接A B7,交CD 于点 M,则A M+B M^A M+B'M^A B7,水厂建在 M 点时,费用最小,如图,在直角A A B卞中,A E=A C5CE= 10530=+0,=30 所以:A£T =50 总费用为:50X3 = 150 万。

八年级数学线段(和)最小值问题(教师版)

八年级数学线段(和)最小值问题(教师版)

线段(和)最小值问题轴对称与等腰三角形1、如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是 10 。

(第1题)(第2题)2、如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2 cm时,这个六边形的周长为 60 cm。

3、如图,△ABC为等边三角形,在平面内找一点P,使△PAB、△PBC、△PAC均为等腰三角形,则这样的点P共有 10 个。

(备用图)知识点轴对称与线段和最小1、两定一动(1)如图,点A、B在直线l的两侧,在l上求一点P,使得PA+PB最小。

(2)如图,点A、B在直线l的同侧,在l上求一点P,使得PA+PB最小。

2、三定一动平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0)。

3、一定两动型如图,点A是∠MON内部一点,在∠MON的两边OM、ON上各取一点B、C,与点A组成三角形,使△ABC的周长最小。

4、两定两动型(1)AB是∠MON内部一条线段,在∠MON的两边OM、ON上各取一点C、D组成四边形,使四边形周长最小。

(2)平面直角坐标系中有两点A(6,4)、B(4,6),在y轴上找一点C,在x轴上找一点D,使得四边形ABCD的周长最小,则点C的坐标应该是(0,2),点D的坐标应该是(2,0)。

5、定点与定长线段点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小。

(轴对称与平移的结合)【例题精讲一】例1:1、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是(0,3)。

2、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小。

数学八年级-轴对称;最短路径问题

数学八年级-轴对称;最短路径问题

三角形第3节多边形及其内角和【知识梳理】路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解。

所以最短路径问题,需要考虑轴对称。

典故:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.这个问题提炼出数学问题为:设C 为直线l上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小(如图)作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 交于点C.则点C 即为所求.证明:如图,在直线l上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC ′=B′C′.∴ AC +BC = AC +B′C = AB′,AC ′+BC′= AC′+B′C′.在△AB′C′中,AB ′<AC′+B′C′,∴ AC +BC <AC′+BC′.即 AC +BC 最短.预备知识:在直角三角形中,三边具有的关系如下:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+【诊断自测】1、如图,直线l 是一条河,A 、B 两地相距5km ,A 、B 两地到l 的距离分别为3km 、6km ,欲在l 上的某点M 处修建一个水泵站,向A 、B 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )A .B .C .D .2、如图所示,四边形OABC 为正方形,边长为3,点A ,C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D 的坐标为(1,0),P 是OB 上的一动点,则“求PD+PA 和的最小值”要用到的数理依据是( )A .“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.【考点突破】例1、如图,在矩形ABCD中,点E为BC的中点,点F在CD上,要使△AEF的周长最小时,确定点F的位置的方法为.答案:作点E关于DC的对称点E′,连接AE′交CD于点F.解析:根据题意可知AE的长度不变,△AEF的周长最小也就是AF+EF有最小值.作点E关于DC的对称点E′,连接AE′交CD于点F.故答案为:作点E关于DC的对称点E′,连接AE′交CD于点F.例2、如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.答案:见解析解析:(1)∵M与P关于OA对称∴OA垂直平分MP.∴EM=EP.又∵N与P关于OB对称∴OB垂直平分PN.∴FP=FN.∴△PEF的周长=PE+PF+EF=ME+EF+FN=MN=20(cm).(2)连接OM,ON,OP,∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.∴△MOE≌△POE(SSS),△POF≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°.例3、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是()A.2B. C.20 D.2答案:A解析:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==2.故选:A.例4、如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°答案:D解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.例5、如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.4 D.4答案:B解析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.例6、如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?答案:见解析。

初二数学:轴对称专题线段之和最短常见题型,建议收藏

初二数学:轴对称专题线段之和最短常见题型,建议收藏

初二数学:轴对称专题线段之和最短常见题型,建议收藏【知识梳理】路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解。

所以最短路径问题,需要考虑轴对称。

典故:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?【精华提炼】下列给出常考解题作图方法:这里一定要注意审题,是在线段上找最值点还是直线上找最值点。

①线段之和最大值对称轴为线段时,在两个端点处取到最大值对称,然后连线,与对称轴交点即为最小值时的情况这里有一个易错题型,求两条线段之差绝对值的最下值。

我们可以这样理解,任意一个量的绝对值都是大于等于0的,所以绝对值的最小是就是0.即PA=PB的时候,那么怎么确定这个最值点呢,我们说线段垂直平分线上的点到线段两端点距离相等,所以点p必然在线段AB的垂直平分线上。

那么线段之差的最小值点就是线段AB的垂直平分线与直线的交点。

这里可以这样理解:p点与AB两点不共线时,由两边差小于第三边的原理可知,PA-PB的绝对值必然小于线段AB的长度。

所以最大值即为三点共线时,此时PA-PB的绝对值等于线段B。

求三角形PAB的周长最小值,常见于下面两种题型:第一种:已知定点A点和B点,在直线上确定一点p,使三角形PAB周长最短。

这里直接应用的是将军饮马模型,因为线段AB长度是定值,所以实际上点p就是P使A+PB的最小值点。

如下图第一个图片。

第二种:在一个角的内部有一个定点P,在角的两边上确定两点A 点和B点,使三角形PAB周长最短,这里需要做两次对称。

如上图第二个图片。

第三种题型,一定两动,求两条线段之和的最短值。

常见作图方法有两种,第一种先做A点关于其中一条边的对称点,然后直接过这个对称点向另一条边做垂线,垂足和交点即为所求。

利用轴对称巧求“线段和最短”

利用轴对称巧求“线段和最短”
= . 接 连 交 MN 于 点 P, 则此
知 A, 定 在 圆 上 . 一 且
燃 气 管 道 ,上 修 建 一 个 泵 站 , J 分 别 向 』 曰两 站 供 气. 站 修 在 管 道 的什 么 地 方 ,可 使 所 用 4, 泵
时 P +朋 最 小 . 作 图 可 知 P +P A 从 A B=A B 连 接 O O . B, A , 因 为 Ⅳ=3 o曰 是 Ⅳ 的 中点 , 圆 周 角 定 理 知 /B N = 0, 由 _ O
解 析 式 为 Y:2 x一2 .
令 y=0, 则 :1 .
‘ . .
A 点 坐 标 为 ( ,) 10 .
温 馨提示 : 这 道 题 都 是 问 题 1的 变 形 , 是 把 它 放 到 只 不 同 的 图 形 中 ,并 利 用 图 形 的 对 称 性 找 到 对 称 点 . 初 中 阶 在 段 涉 及 求 线 段 和 最 短 的 问 题 就是 作 对 称 点 的 问题 .
学生 的 品质 形 成 、内化 至关 重要 . 然 这 种 教 师 的 情 感 引 导 虽
是潜 移 默 化 的 . 影 响 却 是 永 恒 的 . 但
数 学 学 习与 研 究 2 1 6 0 01
的 输 气 管线 最 短 ? 以下 简 称 问 题 1 .
由 此题 可 以 引 申 出不 同情 形 的 以 下几 个 问题 : 1 如 图 ( ) 正 方 形 ABC 边 长 为 2, 为 C 的 中 点 , . 1. D M D 在
3 。又 0,
: 、 . 4O Ⅳ 知 N=6  ̄故 / O = 0 . 直 径 为 0 , _B A 9 。由
图() 1 图 () 2
( 接 9 页 ) 上 2

八年级数学线段(和)最小值问题(一)

八年级数学线段(和)最小值问题(一)

线段(和)最小值问题轴对称与等腰三角形1、如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是。

(第1题)(第2题)2、如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2 cm时,这个六边形的周长为cm。

3、如图,△ABC为等边三角形,在平面内找一点P,使△PAB、△PBC、△PAC均为等腰三角形,则这样的点P共有个。

(备用图)知识点轴对称与线段和最小1、两定一动(1)如图,点A、B在直线l的两侧,在l上求一点P,使得PA+PB最小。

(2)如图,点A、B在直线l的同侧,在l上求一点P,使得PA+PB最小。

2、三定一动平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是。

3、一定两动型如图,点A是∠MON内部一点,在∠MON的两边OM、ON上各取一点B、C,与点A组成三角形,使△ABC的周长最小。

4、两定两动型(1)AB是∠MON内部一条线段,在∠MON的两边OM、ON上各取一点C、D组成四边形,使四边形周长最小。

(2)平面直角坐标系中有两点A(6,4)、B(4,6),在y轴上找一点C,在x轴上找一点D,使得四边形ABCD的周长最小,则点C的坐标应该是,点D的坐标应该是。

5、定点与定长线段点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小。

【例题精讲一】例1:1、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是。

2、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小。

八年级轴对称最短路径问题

八年级轴对称最短路径问题

轴对称:课题学习最短路径问题(第1课时)一、内容和内容解析1.内容从生活中抽象出、转化数学问题,利用轴对称研究某些最短路径问题.2.内容解析最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短” (或“三角形两边之和大于第三边”)问题.二、教学目标和重难点知识与技能:利用两点之间线段最短和轴对称知识解决简单的最短路径问题过程与方法:体会图形的变化在解决最值问题中的作用,感悟转化思想情感态度与价值观:体会数学与生活的关系,在小组合作学习中培养数学的兴趣重难点:会用转化思想解决简单的最短路径问题三、教学问题诊断分析最短路径问题从本质上说是最值问题,作为初中学生,在此前很少在几何中涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.解答“当点A,B在直线l的同侧时,如何在l找到点C,使AC与CB的和最小”,需要将其转化为“直线l异侧的两点,与l上的点的线段和最小值问题”,为什么需要这样转化、怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到.教学时,教师可以让学生首先思考“直线l异侧的两点,与l上的点的线段和最小值问题”,为学生搭建“脚手架”.在证明“最短”时,教师要适时点拨学生,让学生体会“任意”的作用.本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.四、教学过程设计引言前面我们研究过一些关于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用说学知识探究数学史中著名的“将军饮马问题”.1.将实际问题抽象为数学问题问题 1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图1 中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?图1图2 (1)这是一个实际问题,你打算首先做什么?师生活动:学生回答——将A ,B 两地抽象为两个点,将河l 抽象为一条直线(图2).(2)你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?师生活动:学生先互相交流,尝试回答,并相互补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线l 上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(图3).图3B ·· A l B Al C BAl设计意图:让学生将实际问题抽象为数学问题,即将最短路径问题抽象为“线段和最小问题”.2.尝试解决数学问题问题2 如图3,点A ,B 在直线l 的同侧,点C 是直线l 上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?师生活动:学生独立思考,互相交流,画图分析,并尝试回答,相互补充.如果学生有困难,教师可作如下提示:(1)如图4,点A ,B 分别是直线l 异侧的两个点,如何在l 上找到一个点,使得这个点分别到点A 与点B 的距离和最短? (2)对于问题2,如何将点B “移”到l 的另一侧B′处,满足直线l 上的任意一点C ,都保持CB 与CB′的长度相等?(3)你能利用轴对称的有关知识,找到(2)中符合条件的点B′吗?对于(1),学生利用已经学过的知识,很容易解决这个问题.即:连接AB ,与直线l 相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求;对于(2)(3),学生独立思考后,尝试画图,寻找符合条件的点,然后小组交流,学生代表汇报交流结果,师生共同补充.得出:只要作出点B 关于l 的对称点B′,就可以满足CB′=CB (图5).再利用(1)的方法,连接AB′,则AB′与直线l 的交点即为所求.学生叙述,教师板书,并画图(图5),同时学生在自己的练习本上画图.作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB ′,与直线l 相交于点C .则点C 即为所求.设计意图:通过搭建台阶,为学生探究问题提供“脚手架”,将“同侧”难于解决的问题转化为“异侧”容易解决的问题,渗透转化思想.3.证明“最短”问题3:你能用所学的知识证明AC +BC 最短吗?先小组讨论十分钟师生活动:师生共同分析,然后学生说明证明过程,教师板书: B · 图4lA ·l 图5证明:如图6,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C ,BC′=B′C′.∴ AC +BC =AC +B′C =AB′,AC′+BC′=AC′+B′C′. 在△AB′C′中,AB′<AC′+B′C′,∴ AC +BC <AC′+BC′.即AC +BC 最短. 追问1:证明AC +BC 最短时,为什么要在直线l 上任取一点C ′(与点C 不重合),证明AC +BC <AC ′+BC ′?这里的“C ′”的作用是什么?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l 上任意一点(与点C不重合)与A ,B 两点的距离和都大于AC +BC ,就说明AC +BC 最小.设计意图:让学生进一步体会作法的正确性,提高逻辑思维能力.追问2: 回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?师生活动:学生回答,并相互补充.设计意图:让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,丰富数学活动经验.练习如图7,一个旅游船从大桥AB 的P 处前往山脚下的Q处接游客,然后将游客送往河岸BC 上,最后回到P 处,请画出旅游船的最短路径.师生活动:学生分析解题思路,并相互补充,然后独立完成画图.其基本思路为:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 找到一点R ,使PR 与QR 的和最小”.设计意图:让学生进一步巩固解决最短路径问题的基本策略和基本方法.4.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?l图6大桥A B 图7设计意图:引导学生把握研究问题的基本策略、基本思路和基本方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.5.思考题如图,一牧民需要从P处把羊赶去草地吃草,后去水渠喝水,最后回到营地Q处,牧民该如何规划路钱? m 草地.P.Q水渠n设计意图:这个问题学生们肯定有多种方案,让他们课后自己讨论,用自己的知识去说服别人,通过这种互相竞争的方式,培养他们对数学的兴趣这节课知识点虽然比较单一,内容也比较少,但是最短路径问题也不是那么好理解的,要光靠讲能讲清并不容易,索性我就把课堂教给学生,自己充当一个解惑答疑者。

与轴对称相关的线段之和最短问题(初二版)

与轴对称相关的线段之和最短问题(初二版)

与轴对称相关的线段之和最短问题一.问题的引入:在学习了作轴对称图形之后,有这样一个问题在这个问题中,利用轴对称,将折线转化为直线,再根据“两点之间线段最短”,“垂线段最短”,等相关的知识,得到最短线段,这一类问题也是当今中考的热点题型。

通常会以:直线、角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等为载体。

本文试图对这一类问题进行分类,在每一类中有若干题型,且给出了基本的解答。

若掌握了下面列举的题型,让学生能够明白与轴对称相关的线段之和最短问题在这些载体中的表现形式,则能收到举一反三,事倍功半的效果。

二.数学模型:1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB 最小。

2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。

3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。

使△PAB 的周长最小4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。

使四边形PAQB 的 周长最小。

为方便归类,将这种情况称为“两点之间线段最短型” 三.两边之和大于第三边型(一)直线类1.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC =10千米,BD =30千米,且CD =30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少ME B'CDAB作点B 关于直线CD 的对称点B',连接AB',交CD 于点M 则AM+BM = AM+B'M = AB',水厂建在M 点时,费用最小2.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC 。

已知AB=5,DE=1,BD=8,设CD=x. (1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小(3)根据(2)中的规律和结论,请构图求出代数式x 2+4 +(12-x)2+9 的最小值3.求代数式x 2 + 1 + (4-x)2+ 4 (0≤x ≤4)的最小值(二)角类4.两条公路OA 、OB 相交,在两条公路的中间有一个油库,设为点P ,如在两条公路上各设置一个加油站,,51x8-xFE'B D A E C21x4-xFBD A EC请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.解:分别做点P 关于直线OA 和OB 的对称点P 1、P 2,连结P1P2分别交OA 、OB 于C 、D ,则C 、D 就是建加油站的位置.若取异于C 、D 两点的点,则由三角形的三边关系,可知在C 、D 两点建加油站运油车所走的路程最短.5.如图∠AOB = 45°,P 是∠AOB 内一点,PO = 10,Q 、P 分别是OA 、OB 上的动点,求△PQR 周长的最小值.分别作点P 关于OA 、OB 的对称点P 1、P 2,连接P 1P 2,交OA 、OB 于点Q ,R ,连接OP 1,OP 2,则OP = OP 1 = OP 2 = 10且∠P 1OP 2 = 90°由勾股定理得P 1P 2 = 10 2(三)三角形类6.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小作点B 关于AC 的对称点B',连接B'E ,交AC 于点P ,则B'E = PB'+PE = PB+PEB'E 的长就是PB+PE 的2OB最小值7.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与轴对称相关的线段之和最短问题一.问题的引入:在学习了作轴对称图形之后,有这样一个问题在这个问题中,利用轴对称,将折线转化为直线,再根据“两点之间线段最短”,“垂线段最短”,等相关的知识,得到最短线段,这一类问题也是当今中考的热点题型。

通常会以:直线、角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等为载体。

本文试图对这一类问题进行分类,在每一类中有若干题型,且给出了基本的解答。

若掌握了下面列举的题型,让学生能够明白与轴对称相关的线段之和最短问题在这些载体中的表现形式,则能收到举一反三,事倍功半的效果。

二.数学模型:1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。

2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。

3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。

使△PAB 的周长最小4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。

使四边形PAQB 的 周长最小。

为方便归类,将这种情况称为“两点之间线段最短型”三.两边之和大于第三边型 (一)直线类1.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC =10千米,BD =30千米,且CD =30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?MEB'C D AB作点B 关于直线CD 的对称点B',连接AB',交CD 于点M 则AM+BM = AM+B'M = AB',水厂建在M 点时,费用最小2.如图,C为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC 。

已知AB=5,DE=1,BD=8,设CD=x.(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式x 2+4 +(12-x)2+9 的最小值3.求代数式x 2 + 1+(4-x)2 + 4(0≤x ≤4)的最小值(二)角类4.两条公路OA 、OB 相交,在两条公路的中间有一个油库,设为点P ,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.解:分别做点P 关于直线OA 和OB 的对称点P 1、P 2,连结P1P2分别交OA 、OB 于C 、D ,则C 、D 就是建加油站的位置.若取异于C 、D 两点的点,则由三角形的三边关系,可知在C 、D 两点建加油站运油车所走的路程最短.5.如图∠AOB = 45°,P 是∠AOB 内一点,PO = 10,Q 、P 分别是OA 、OB 上的动点,求△PQR 周长的最小值.分别作点P 关于OA 、OB 的对称点P 1、P 2,连接P 1P 2,交OA 、OB 于点Q ,R ,连接OP 1,OP 2,则OP = OP 1 = OP 2 = 10且∠P 1OP 2 = 90°由勾股定理得P 1P 2 = 10 2(三)三角形类6.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边上的一动点,则PB+PE 的最小值为即在AC 上作一点P ,使PB+PE 最小作点B 关于AC 的对称点B',连接B'E ,交AC 于点P ,则B'E = PB'+PE = PB+PEB'E 的长就是PB+PE 的最小值7.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。

即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C',连接DC'交AB 于点E ,则线段DC'的长就是EC+ED 的最小值。

在直角△DBC'中DB=1,BC=2,根据勾股定理可得,DC'= 58.等腰△ABC 中,∠A = 20°,AB = AC = 20,M 、N 分别是AB 、AC 上的点,求BN+MN+MC 的最小值 分别作点C 、B 关于AB 、AC 的对称点C ’、B ’,连接C ’B ’交AB 、AC 于点M 、N ,则BN+MN+MC = B ’N+MN+MC ’ = B ’C ’, BN+MN+MC 的最小值就是B ’C ’的值∵∠BAC ’ = ∠BAC ,∠CAB ’ = ∠CAB ∴∠B ’AC ’ = 60° ∵AC ’ = AC ,AB ’ = AB ,AC = ABFPB'EACB51x8-xFE'B D A E C21x4-xFB D A E C'CERQP 2P 1AOBPN M CB∴AC ’ = AB ’∴△AB ’C ’是等边三角形 ∴B ’C ’ = 209.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 因为点C 关于直线AD 的对称点是点B ,所以连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3 在直角△BHE 中,BE = BH 2 + HE 2 =(33)2 + 12 = 27(四)正方形类10.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。

即在直线AC 上求一点N ,使DN+MN 最小故作点D 关于AC 的对称点B ,连接BM , 交AC 于点N 。

则DN +MN=BN +MN=BM线段BM的长就是DN +MN的最小值 在直角△BCM中,CM=6,BC=8,则BM=10故DN +MN的最小值是1011.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为()A .2 3B .2 6C .3D . 6即在AC 上求一点P ,使PE+PD 的值最小.点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P , 则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 312.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).即在AC 上求一点P ,使PB+PQ 的值最小因为点B 关于AC 的对称点是D 点,所以连接DQ , 与AC 的交点P 就是满足条件的点DQ = PD+PQ = PB+PQ 故DQ 的长就是PB+PQ 的最小值 在直角△CDQ 中,CQ = 1 ,CD = 2根据勾股定理,得,DQ = 513.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;连接AE ,交BD 于点P ,则AE 就是PE+PC 的最小值 在直角△ABE 中,求得AE 的长为5 514.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17172 B 、17174 C 、 17178 D 、3作点A 关于BC 的对称点A',连接A'D ,交BC 于点P 则A'D = PA'+PD = PA+PD.A'D 的长就是PA+PD 的最小值(五)一次函数类15.在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C (1,n ),当n =______时,AC + BC 的值最小.16.一次函数y=kx+b 的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标.(六)立体图形xBAABCCB17.桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。

问小虫至少爬多少厘米才能到达蜜糖所在的位置。

析:展开图如图所示,作A 点关于杯口的对称点A ’。

则BA ’=92 + 122 =15厘米18.一只蚂蚁欲从圆柱形桶外的A 点爬到桶内的B 点处寻找食物,已知点A 到桶口的距离AC 为12cm ,点B 到桶口的距离BD 为8cm ,CD 的长为15cm ,那么蚂蚁爬行的最短路程是多少?展开图如右图所示,作点B 关于CD 的对称点B ’,连接AB ’,交CD 于点P ,则蚂蚁爬行路线A →P →B 为最短,且AP+PB = AB+PB ’, 在直角△AEB ’中,AE = CD = 12,EB ’ = ED + DB ’ = AC + BD = 12 + 8 = 20由勾股定理知,AB ’ = 25所以,蚂蚁爬行的最短路程是25cm两点之间距离最短19.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM ⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小; ②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为 3 + 1 时,求正方形的边长.(2)①连接AC ,交BD 于点M ,则AM+CM 的值最小②连接CE 交BD 于点M ,则AM+BM+CM 的值最小 ∵AM=EN ,BM=NM ,∴AM+BM+CM=EN+NM+MC=EC 根据“两点之间,线段最短”,可知EN+NM+MC=EC 最短(3)过点E 作CB 的延长线的垂线,垂足为F 设正方形ABCD 的边长为2x 则在直角△BEF 中,∠EBF=30°,所以,EF=x ,根据勾股定理:BF= 3x 在直角△CEF 中,根据勾股定理: CE 2 = EF 2 + FC 2 得方程: ( 3 + 1)2 = x 2 + ( 3x +2x)2 解得:x =22所以:2x = 2 (六).垂线段最短型20.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.作点B 关于AD 的对称点B',过点B'作B'E ⊥AB 于点E ,交AD 于点F ,则线段B'E 的长就是BM +MN的最小值在等腰Rt △AEB'中,根据勾股定理得到,B'E = 421.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值作AB 关于AC 的对称线段AB',过点B'作B'N ⊥AB ,垂足为N ,交AC 于点M ,则B'N = MB'+MN = MB+MN B'N 的长就是MB+MN 的最小值。

相关文档
最新文档