浙江省2018年4月数学学考真题试卷

合集下载

浙江学考数学真题试卷和答案解析[wold版]新

浙江学考数学真题试卷和答案解析[wold版]新

2018年4月浙江省学考数学试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。

每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。

) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A.{}M ⊆2,1,0B.{}M ⊆3,1,0C.{}M ⊆3,2,0D.{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A.{}0>x x B.{}0≥x x C.{}0≠x x D.R 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A.(3,1)-B.)3,1(-C.)3,1(D.)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA.1B.6log 2C.3D.9log 25. 双曲线1322=-y x 的渐近线方程为 A.x y 31±= B.x y 33±= C.x y 3±= D.x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A.31B.33C.32D.367. 若锐角α满足53)2πsin(=+α,则=αsinA.52 B.53 C.43 D.548.在三棱锥ABC O -中,若D 为BC 的中点,则=ADA.1122OA OC OB +- B. 1122OA OB OC ++ C.1122OB OC OA +- D. 1122OB OC OA ++9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A.{}n n a b ⋅B.{}n n a b +C.{}1n n a b ++D.{}1n n a b +- ABC D 1A1D 1C 1B(第6题图)A. ⎭⎬⎫⎩⎨⎧<<-313x x B. ⎭⎬⎫⎩⎨⎧<<-331x x C. ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D. ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A.)2(+x f 为奇函数B. )2(+x f 为偶函数C.)2(-x f 为奇函数D. )2(-x f 为偶函数 12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A.01222=++-+y x y x B.012222=+-++y x y x C.01222=-+-+y x y x D.012222=-+-+y x y x 13. 设a 为实数,则“21aa >”是“a a 12>”的 A.充分不必要条件 B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=aA.14 B.34 C.1 D.4315. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A.乙甲乙甲,V V S S >>B. 乙甲乙甲,V V S S <>C.乙甲乙甲,V V S S ><D. 乙甲乙甲,V V S S <<22y x ABCDxy oa a a a正视图a a 侧视图俯视图 15题图①)aa a aaa 侧视图15题图②)点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A.52或53B.51或54C. 510或515D.55或55217.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A.1或3B. 2或3C. 2或4D.3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A. C AB F --B. D EF B --C. C BF A --D. D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是 ▲ . 20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.ABCDEF(第18题图)xyO ABPD(第24题图)24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(1) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(2)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),)3A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由. ABxoyt x =(第25题图)2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,;(第25题图②) 所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22ttttttf⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(tttttttg(Ⅱ)由(1)中)(tf的解析式可知,函数)(tf的单调递减区间是)45,1(,所以)45,1(),(⊆ba.另一方面,任取)45,1(,21∈tt,且21tt<,则)()(21tgtg-])2)(2(31)1)(1(211)[(21212112ttttt ttt-----+-=.由45121<<<tt知,1625121<<t t,81)1)(1(221<--<tt,1639)2)(2(321>--tt.从而<--<)1)(1(221tt)2)(2(321tt--,即0)2)(2(31)1)(1(212121>-----tttt所以0)()(21>-tgtg,得)(tg在区间)45,1(上也单调递减,证得)45,1(),(=ba.所以,存在区间)45,1(,使得函数)(tf和)(tg在该区间上均单调递减,且ab-的最大值为41.。

浙江省2018年4月数学学考真题试题(Word版+答案+解析)

浙江省2018年4月数学学考真题试题(Word版+答案+解析)

浙江省2018年4月数学学考真题试卷一、选择题1.已知集合 P={x|0≤x<1},Q={x|2≤x≤3} 记 M=P ∪Q ,则( )A. {0,1,2}⊆MB. {0,1,3}⊆MC. {0,2,3}⊆MD. {1,2,3}⊆M2.已知函数 f(x)=√x +1x 的定义域是( )A. {x|x >0}B. {x|x ≥0}C. {x|x ≠0}D. R3.设不等式组 {x −y +1≥0x +y −1≥0,所表示的平面区域记为 Ω ,则属于 Ω 的点是( ) A. (−3,1) B. (1,−3) C. (1,3) D. (3,1)4.已知函数 f(x)=log 2(3+x)+log 2(3−x), 则 f(1)= ( )A. 1B. log 26C. 3D. log 295.双曲线 x 2−y 23=1 的渐近线是( )A. y =±13xB. y =±√33xC. y =±√3xD. y =±3x 6.如图,在正方体 ABCD −A 1B 1C 1D 1 中,直线 A 1C 与平面 ABCD 所成角的余弦值是( )A. 13B. √33C. 23D. √63 7.若锐角 α 满足 sin(α+π2)=35 ,则 sinα= ( )A. 25B. 35C. 34D. 458.在三棱锥 O −ABC 中,若 D 为 BC 的中点,则 AD⃗⃗⃗⃗⃗ = ( ) A. 12OA ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ B. 12OA ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ C. 12OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ D. 12OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ 9.数列 {a n },{b n } (n ∈N ∗) 是公差不为零的等差数列,下列数列中,不构成等差数列的是( )A. {a n ⋅b n }B. {a n +b n }C. {a n +b n +1}D. {a n −b n +1}10.不等式的 |2x −1|−|x +1|<1 解集是( )A. {x|−3<x <13}B. {x|−13<x <3}C. 2 {x|x <−3或x >13}D. {x|x <−13或x >3} 11.用列表法将函数 f(x) 表示为 ,则( )A. f(x +2) 为奇函数B. f(x +2) 为偶函数C. f(x −2) 为奇函数D. f(x −2) 为偶函数12.如图,在直角坐标系 xoy 中,坐标轴将边长为4的正方形 ABCD 分割成四个小正方形,若大圆为正方形 xoy 的外接圆,四个小圆圆分别为四个小正方形的内切圆,则图中某个圆的方程是( )A. x 2+y 2−x +2y +1=0B. x 2+y 2+2x −2y +1=0C. x 2+y 2−2x +y −1=0D. x 2+y 2−2x +2y −1=013.设 a 为实数,则“ a >1a 2 ”是 a 2>1a 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14.在直角坐标系 xoy 中,已知点 A(0,−1),B(2,0) ,过 A 的直线交 x 轴于点 C(a,0) ,若直线 AC 的倾斜角是直线 AB 倾斜角的2倍,则 a = ( )A. 14B. 34C. 1D. 4315.甲、乙几何体的三视图分别如图•图 所示,分别记它们的表面积为 S 甲,S 乙 ,体积为 V 甲,V 乙 ,则( )A. S甲>S乙, V甲>V乙B. S甲>S乙, V甲<V乙C. S甲<S乙, V甲>V乙D. S甲<S乙, V甲<V乙16.如图,设F为椭圆x2a2+y2b2=1(a>b>0)的右焦点,过F作x轴的垂线交椭圆于点P,点A、B分别为椭圆的右顶点和上顶点,O为坐标原点,若ΔOAB的面积是ΔOPF面积的52倍,则该椭圆的离心率()A. 25或35B. 15或45C. √105或√155D. √55或2√5517.设a为实数,若函数f(x)=2x2−x+a 有零点,则函数y=f[f(x)]零点的个数是()A. 1或3B. 2或3C. 2或4D. 3或418.如图,设矩形ABCD 所在的平面与梯形ACEF 所在平面交于AC ,若AB=1,BC=√3,AF=EF= EC=1,则下面二面角的平面角大小为定值的是()A. F−AB−CB. B−EF−DC. A−BF−CD. B−AF−D二、填空题19.已知函数f(x)=2sin(2x+π3)+1,则f(x)的最小正周期是________,的最大值是________.20.若平面向量a ,b⃗满足2a+b⃗=(1,6),a+2b⃗=(−4,9),则a⋅b⃗=________.21.若ΔABC中,已知AB=2,AC=3,则cosC的取值范围是________.22.若不等式2x2−(x−a)|x−a|−2≥0对任意x∈R恒成立,则实数a的最小值是________.三、解答题23.在等差数列{a n}(n∈N∗)中,已知a1=2,a5=6,(Ⅰ)求{a n}的公差d及通项a n;(Ⅱ)记b n=2a n(n∈N∗),求数列的前{b n}项和.24.如图,已知抛物线y=x2−1与x交于A、B两点,P是该抛物线上位于第一象限内的点.(Ⅰ)记直线PA,PB的斜率分别为k1,k2,求证k2−k1为定值;(Ⅱ)过点A作AD⊥PB,垂足为D,若D关于x轴的对称点恰好在直线上PA,求ΔPAD的面积.25.如图,在直角坐标系xoy中,已知点A(2,0),B(1,√3),直线x=t(0<t<2),将ΔABC分成两部分,记左侧部分的多边形为Ω,设Ω各边的平方和为f(t),Ω各边长的倒数和为g(t) .(Ⅰ)求分别求函数f(t)和g(t)的解析式;(Ⅱ)是否存在区间(a,b),使得函数f(t)和g(t)在该区间上均单调递减?若存在,求b−a的最大值;若不存在,说明理由.答案解析部分一、选择题1.【答案】C【考点】集合的包含关系判断及应用,并集及其运算【解析】【解答】由P={x|0≤x<1},Q={x|2≤x≤3}得M=P∪Q={x|0≤x<1或2≤x≤3},故0∈M,2∈M,3∈M,则{ 0 , 2 , 3 } ⊆ M故答案为:C.【分析】先求出两个集合的并集M,再对各选项中两个集合的元素对比得到包含关系.2.【答案】A【考点】函数的定义域及其求法【解析】【解答】要使函数有意义,则x≥0且x≠0,则x>0,即函数定义域为{ x | x > 0 }故答案为:A.【分析】含有根号和分母的函数定义域,必满足根号内非负,分母不为0.3.【答案】D【考点】二元一次不等式(组)与平面区域【解析】【解答】A、将点(-3,1)代入x−y+1≥0,不成立,则点(-3,1)不在平面区域Ω内,A不符合题意;B、将点(1,-3)代入x+y−1≥0不成立,点(1,-3)不在平面区域Ω内,B不符合题意;C、将点(1,3)代入x−y+1≥0,不成立,则点(1,3)不在平面区域Ω内,C不符合题意;D、将点(3,1)代入x−y+1≥0,x+y−1≥0,两个不等式都成立,则点(3,1)在平面区域Ω内,D符合题意.故答案为:D.【分析】将各选项点的坐标代入不等式组,能满足的点就是正确的,只有D项满足.4.【答案】C【考点】对数函数的值域与最值【解析】【解答】f (1) = log2 ( 3 + 1 ) + log2( 3 − 1 )=2+1=3故答案为:C.【分析】将x=1代入函数解析式中,直接求值.5.【答案】C【考点】双曲线的简单性质【解析】【解答】由双曲线方程得:a=1,b=√3,故其渐近线方程为:y= ±√3x.故答案为:C.x,由双曲线方程可得a,b的值,代入即得.【分析】对于标准左右型双曲线的渐近线方程是:y=±ba6.【答案】D【考点】直线与平面所成的角【解析】【解答】连接AC,则∠A1CA就是直线A1C 与平面ABCD 所成角,设棱长为a,则cos∠A1CA=√2a√3a =√62故答案为:D.【分析】正方体中体对角线A1C与底面ABCD所成的角就是A1C与其在底面的射影AC所成的角A1CA,在三角形A1CA中求角.7.【答案】D【考点】同角三角函数间的基本关系,运用诱导公式化简求值【解析】【解答】由α为锐角,sin ( α +π2) =cosα=35,得sinα=45故答案为:D.【分析】由诱导公式sin(α+π2)=cosα,先求出cosα,再由同角关系求出sinα.8.【答案】C【考点】空间向量的基本定理及其意义【解析】【解答】AD→=AD→=12(AB→+AC→)=12(OB→−OA→+OC→−OA→)=12OB→+12OC→−OA→故答案为:C.【分析】由若D为BC 的中点,根据空间向量的线性表示,选择向量OA、OB、OC为基底,表示出向量AD.9.【答案】A【考点】等差数列的性质【解析】【解答】不妨取{ a n } 为1,2,3,4…, { b n }为2.4.6.8,…则{ a n⋅ b n }为2,8,18,32,…明显不为等差数列. 故答案为:A.【分析】两个公差不为零的等差数列的和,差都会成为等差数列,但积就不能为等差数列了,用特殊例子可以说明.10.【答案】B【考点】绝对值不等式的解法【解析】【解答】当x<-1时,不等式为-2x+1+x+1<1,解得:x∈Φ;当−1≤x≤12时,不等式为-2x+1-x-1<1,解得:−13≤x≤12;当x>12时,不等式为2x-1-x-1<1,解得12≤x<3综上所述,不等式的解集为{x|−13≤x<3}故答案为:B.【分析】由绝对值内一次式的零点将x进行分类讨论,去掉绝对值,再解不等式得到解集.11.【答案】A【考点】函数的表示方法,函数奇偶性的判断【解析】【解答】由f(1)=-1,f(2)=0,f(3)=1得函数图象关于点(2,0)对称,f(x+2)是由f(x)向左平稳2个单位得到的,则f(x)的图象关于原点对称,故为奇函数.故答案为:A.【分析】由列表法表示的函数图象关于点(2,0)对称,进行向左平移2个单位后关于原点对称,则成为奇函数.12.【答案】B【考点】圆的一般方程,圆与圆的位置关系及其判定【解析】【解答】四个小正方形的的边长都为2,则其内切圆的半径为1,圆心就是四个象限的单位点坐标为(±1,±1),方程为(x±1)2+(y±1)2=1,化为一般式,只有B项正确.故答案为:B.【分析】大圆的圆心在原点,四个选项中的方程不是大圆的方程;四个小圆的半径都为1,圆心则在四个象限的单位点处,得到方程与选项对比得到正确选项为B.13.【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】由 a > 1a2得a>1,由a2>1a,得a<0或a>1,则“ a > 1a2”是a2>1a的充分不必要条件.故答案为:A.【分析】分别求出两不等式的解集,则小范围推出大范围,大范围推不出小范围得到充分不必要条件.14.【答案】B【考点】二倍角的正切公式,直线的倾斜角,斜率的计算公式【解析】【解答】设直线AB的倾斜角为α,则由A ( 0 , − 1 ) , B ( 2 , 0 )得:tanα=k AB=0+12−0=12,故tan2α=11−14=43,即直线AC的方程为:y=43x-1,令y=0得x=34,故答案为:B.【分析】由A,B两点的坐标结合斜率公式求出直线AB的斜率,由两倍角正切公式求出直线AC的斜率,由斜截式得到直线AC的方程,再求直线AC与x轴交点的横坐标a的值.15.【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】甲几何体是棱长为2a的下方体去掉一个棱长为a的小正方体后的几何体,则其体积V甲=8a3−a3=7a3,表面积S甲=24a2;乙几何体是一个棱长为2a的正方体去掉一个底面为直角边为a的等腰直角三角形,高为a的三棱柱后的几何体,其体积V乙=8a3−12a3=152a3,表面积S乙=24a2−a2+√2a2=(23+√2)a2;则S甲> S乙, V甲< V乙.故答案为:B.【分析】分别由三视图还原出几何体的形状和数据,甲是一个棱长为2a 的正方体去掉一个棱长为a 的小正方体后的几何体,求出表面积和体积;乙是一个棱长为2a 的正方体去掉一个底面为直角边为a 的等腰直角 三角形,高为a 的三棱柱后的几何体,求出表面积和体积,再比较大小.16.【答案】 D【考点】椭圆的简单性质【解析】【解答】由A(a,0),B(0,b),F(c,0),P(c,-b 2a ), 得S ΔOA B =12ab ,S ΔOPF =cb 22a ,则12ab =52×cb 22a ,故2a 2=5cb , 即4a 4−25a 2c 2+25c 4=0,解得e=√55或2√55, 故答案为:D.【分析】由椭圆的方程求出点A,B,P 的坐标,得到 ΔOAB 和 ΔOPF 的面积,由面积的关系得到a,b,c 的齐次方程,转化为离心率的方程,求离心率.17.【答案】 C【考点】二次函数的性质,函数的零点【解析】【解答】当f(x)有一个零点时,Δ=1−8a =0,a =18 , 则f(x)=2(x-14)2,即x=14是f(x)的零点。

2018年4月浙江省学考选考稽阳联谊学校高三数学联考及参考答案解析

2018年4月浙江省学考选考稽阳联谊学校高三数学联考及参考答案解析

2018年4月稽阳联谊学校高三联考数学试题考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷密封线内填写学校、班级和姓名.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束,只需上交答题卷.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{211}P x x =-<,{0,1,2,3,4}Q =,则P Q = ()A .{2,3,4}B .(0,1)C .{0,1}D .∅2.若x y 2=是双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线,则C 的离心力为()A .3BCD .33.已知实数y x ,满足y x )21()21(<,则下列关系式中恒成立的是()A .tan tan x y>B .22ln(2)ln(2)x y +>+C .11x y <D .33x y >4.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥-≥+≤020y x y x m x (0>m )表示的平面区域为Ω,点),(y x P 为Ω内(含边界)的点,当y x +2的最大值为8时,Ω的面积为()A .12B .8C .4D .65.已知)1,0(),3(log )(2≠>+-=a a ax x x f a 满足:对任意]2,(,21ax x -∞∈,不等式0)()(2121<--x x x f x f 恒成立,则a 的取值范围是()A .(1,+)∞B.C.)+∞D .(0,1)6.已知数列{}n a 是等比数列,前n 项和为n S ,则“7352a a a +>”是“012<-n S ”的()A .充分不必要条件B .必要不充分条件C .充要条件2ab e >D .既不充分又不必要条件7.函数⎪⎩⎪⎨⎧≥<++=0,20,142)(2x e x x x x f x 的图象上关于坐标原点对称的点共有()A .0对B .1对C .2对D .3对8.甲乙两个人玩一种游戏,甲乙两人分别在两张纸片上各写一个数字,分别记为b a ,,其中b a ,必须是集合{}6,5,4,3,2,1中的元素,如果b a ,满足1≤-b a ,我们就称两人是“友好对”.现在任意找两人玩这种游戏,则他们是“友好对”的概率是()A .187B .92C .185D .949.过点)0,3(P 作直线02)(2=+++b y b a ax (b a ,不同时为零)的垂线,垂足为M ,已知点)3,2(N ,则当b a ,变化时,MN 的取值范围是()A .55,55[+-B.[5C.[5,5+D.[0,5+10.)(x f 是定义在R 上的函数,若504)2(=f ,对任意R x ∈,满足)1(2)()4(+≤-+x x f x f 及)5(6)()12(+≥-+x x f x f ,则=)2()2018(f ()A .2017B .2018C .2019D .2020非选择题部分(共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2018年4月浙江省高中学业水平考试数学试题(解析版)

2018年4月浙江省高中学业水平考试数学试题(解析版)

2018年4月浙江省普通高校招生学考科目考试数学试题一、选择题(每小题3分,共54分)1.已知集合P={x|0≤x<1},Q={x|2≤x≤3},记M=P∪Q,则( )A. {0,1,2}⊆MB. {0,1,3}⊆MC. {0,2,3}⊆MD. {1,2,3}⊆M【答案】C2.函数f(x)=+的定义域是( )A. {x|x>0}B. {x|x≥0}C. {x|x≠0}D. R【答案】A3.将不等式组,表示的平面区域记为Ω,则属于Ω的点是( )A. (−3,1)B. (1,−3)C. (1,3)D. (3,1)【答案】D【解析】将点逐一代入,知D符合4.已知函数f(x)=log2(3+x)+log2(3−x),则f(1)=( )A. 1B. log26C. 3D. log29【答案】C5.双曲线x2−=1的渐近线方程是( )A. y=±xB. y=±xC. y=±xD. y=±3x【答案】C6.如图,在正方体ABCD−A1B1C1D1中,直线A1C与平面ABCD所成角的余弦值是( )B1C1D1A1DCBAA .B .C .D .【答案】 D【解析】直线A 1C 与平面ABCD 所成角即为1ACA ∠,求得1cos ACA ∠= 7. 若锐角α满足sin (α+)=,则sinα=( )A .B .C .D .【答案】 D【解析】由诱导公式知3cos 5α=, α是锐角,4 sin 5α∴= 8. 在三棱锥O −ABC 中,若D 为BC 的中点,则=( )A . +−B . ++C . +−D . ++【答案】 C【解析】1()2AD OD OA OB OC OA =-=+-,故选C 9. 设{a n },{b n }(n ∈N *)时公差均不为零的等差数列,下列数列中,不构成等差数列的是( )A . {a n ∙b n }B . {a n +b n }C . {a n +b n +1}D . {a n −b n +1}【答案】 A10.不等式|2x−1|−|x+1|<1的解集是( )A. {x|−3<x<}B. {x|−<x<3}C. {x|x<−3或x>}D. {x|x<−或x>3}【答案】B【解析】分111,1,22x x x<--≤≤≥三种情况打开绝对值讨论,可得11.用列表法将函数f(x)表示为则( )A. f(x+2)为奇函数B. f(x+2)为偶函数C. f(x−2)为奇函数D. f(x−2)为偶函数【解析】显然偶函数不可能,又f(1)= -1,f(3)=1,则f(-1+2)= -f(1+2),符合f(-x+2)= -f(x+2),故选A12. 如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形,若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是( ) A . x 2+y 2−x +2y +1=0 B . x 2+y 2+2x −2y +1=0C . x 2+y 2−2x +y −1=0D . x 2+y 2−2x +2y −1=0【答案】B13. 设a 为实数,则“21a a >”是“21a a>”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A 【解析】由21a a >,得1a >;由21a a>,得0a <或1a >,故选A14. 在直角坐标系xOy 中,已知点A (0,−1),B (2,0),过A 的直线交x 轴于点C (a ,0),若直线AC 的倾斜角是直线AB 倾斜角的2倍,则a =( )A .B .C . 1D .【答案】B【解析】设直线AB 的倾斜角为θ,则直线AC 的倾斜角为2θ,011 tan 202AB k θ+===- 22t a n3t a n 21t a n 4AC k θθθ∴===-,故选B15. 甲、乙两个几何体的三视图分别如图1,图2所示,分别记它们的表面积为S 甲,S 乙,体积为V 甲,V 乙,则( ) A . S 甲>S 乙,V 甲>V 乙B . S 甲>S 乙,V 甲<V 乙C . S 甲<S 乙,V 甲>V 乙D . S 甲<S 乙,V 甲<V 乙【答案】B【解析】图甲为正方体挖去一个棱长为a 的小正方体,图2为正方体挖去一个小三棱柱,显然S S V V ><甲乙甲乙,16. 如图,F 为椭圆+=1(a >b >0)的右焦点,过F 作x 轴的垂线交椭圆于点P ,点A ,B分别为椭圆的右顶点和上顶点,O 为坐标原点,若△OAB 的面积是△OPF 面积的倍,则该椭圆的离心率是( ) A . 或 B . 或C . 或D . 或【答案】D【解析】将x c =代入,得2(,)b P c a-,由已知,2251125222OABOPF b S S ab c a bc a∆∆=⇒=⋅⇒=图2图1俯视图俯视图42224221425() 2525405a a c c e e e ⇒=-⇒-+=⇒=或245e =,故选D17. 设a 为实数,若函数f (x )=2x 2−x +a 有零点,则函数y =f [f (x )]零点的个数是( )A . 1或3B . 2或3C . 2或4D . 3或4【答案】C 【解析】18. 如图,设矩形ABCD 所在平面与梯形ACEF所在平面相交C BADEF于AC,若AB=1,BC=,AF=FE=EC=1,则下列二面角的平面角大小为定值的是A. F−AB−C B. B−EF−DC. A−BF−CD. B−AF−D【答案】B【解析】二、填空题(每空3分,共15分)19. 已知函数f (x )=2sin (2x +)+1,则f (x )的最小正周期是_________________________,f (x )的最大值是_________________________【答案】;3π20. 若平面向量a ,b 满足2a +b =(1,6),a +2b =(−4,9),则a ∙b =____________________【答案】2-【解析】由2a +b =(1,6),a +2b =(−4,9),解得(2,1),(3,4), 2(3)142a b a b ==-∴⋅=⨯-+⨯=-21. 在△ABC 中,已知AB =2,AC =3,则cosC 的取值范围是_______________________【答案】3【解析】222255cos 26663a b c a a C ab a a +-+===+≥=<∴∈又cosC1,cosC22.若不等式2x2−(x−a)|x−a|−2≥0对于任意x∈R恒成立,则实数a的最小值是________________【解析】三、解答题(3小题,共31分)23.(10分)在等差数列{a n}(n∈N*)中,已知a1=2,a5=6(1)求{a n}的公差d及通项a n(2)记b n=(n∈N*),求数列{b n}的前n项和S n【解析】24.(10分)如图,已知抛物线y=x2−1与x轴相交于A,B两点,P是该抛物线上位于第一象限内的点(1)记直线P A,PB的斜率分别为k1,k2,求证:k2−k1为定值(2)过点A作AD⊥PB,垂足为D,若D关于x轴的对称点恰好在直线P A上,求△P AD的面积【解析】25.(11分)如图,在直角坐标系xOy中,已知点A(2,0),B(1,),直线x=t(0<t<2),将△OAB分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为f(t),Ω各边长的倒数和为g(t)(1)分别求函数f(t)和g(t)的解析式(2)是否存在区间(a,b),使得函数f(t)和g(t)在该区间上均单调递减?若存在,求b−a的最大值,若不存在,说明理由【解析】。

浙江省2018年4月学考科目数学真题试卷(含答案)

浙江省2018年4月学考科目数学真题试卷(含答案)
2 2 2 2 2 2
y
A
D
o
B
C. x y 2 x y 1 0 D . x y 2 x 2 y 1 0
2 2
x
C
1 1 13.设 a 为实数,则“ a 2 ”是“ a 2 ”的 a a
A.充分不必要条件 C.充分必要条件 B. 必要不充分条件 D. 既不充分也不必要条件
(第 12 题图)
14. 在直角坐标系 xOy 中,已知点 A(0,1) , B(2,0) ,过 A 的直线交 x 轴于点 C (a,0) ,若直 线 AC 的倾斜角是直线 AB 倾斜角的 2 倍,则 a A.
1 3 4 B. C. 1 D . 4 4 3
15. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为 S甲,S乙 ,体 积为 V甲,V乙 ,则




x
A . x x 0 B. x x 0 C. x x 0 D . R 3. 将不等式组


1 的定义域是 x


x y 1 0 ,表示的平面区域记为 ,则属于 的点是 x y 1 0
A. (3,1) B. (1,3) C. (1,3) D. (3,1) 4. 已知函数 f ( x) log 2 (3 x) log 2 (3 x) ,则 f (1) A. 1 B. log 2 6 C. 3 D. log 2 9
16.如图,设 F 为椭圆
5 OPF 面积的 倍,则该椭圆的离心率是 2
A.
2 3 1 4 或 B. 或 C . 5 5 5 5
10 15 5 2 5 或 D. 或 5 5 5 5
2

2018年4月浙江省普通高校招生学考数学试卷

2018年4月浙江省普通高校招生学考数学试卷
【考点】
平面向量数量积的性质及其运算律
向量加减混合运算及其几何意义
【解析】
根据向量的坐标运算和向量的数量积即可求出.
【解答】
解:∵平面向量 , 满足 , ,
∴ ,
∴ , ,
∴ .
故答案为: .
【答案】
【考点】
三角函数的最值
基本不等式在最值问题中的应用
余弦定理
【解析】
由已知利用余弦定理,基本不等式及余弦函数的性质即可得解.
【解析】
根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.
【解答】
解:若“ ”,则 ,则“ ”成立,
若 ,当 时不等式 也成立,但此时 不成立,
即“ ”是“ ”的充分不必要条件.
故选 .
14.
【答案】
B
【考点】
二倍角的正切公式
斜率的计算公式
直线的倾斜角
【解析】
设直线 的倾斜角 是直线 倾斜角 的 倍,即有 ,运用两点的斜率公式和二倍角公式,解方程可得 的值.
正方体棱长为 ,则 , ,
, .
∴ , .
故选 .
16.
【答案】
D
【考点】
椭圆中的平面几何问题
椭圆的离心率
【解析】
由 ,可得 .
由 , , ,解得 即可得 或 .
【解答】
解:设 ,则 ,可得 .
, ,
∵ 的面积是 面积的 倍,
∴ ,


∴ ,

或 .
故选 .
17.
【答案】
C
【考点】
根的存在性及根的个数判断
【解析】
先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.

2015年-2018年4月浙江省数学学考题分类汇编

2015年-2018年4月浙江省数学学考题分类汇编

2015年-2018年4月浙江省数学学考题分类汇编D命题,是真命题5、(14.)设,则“数列为等比数列”是“数列为等比数列”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2016年10月6、(1.)已知集合}6,5,4,3{=A ,}{a B =,若}6{=⋂B A ,则=aA .3B .4C .5D .67、(8.)已知向量a ,b ,则“b a //”是“||||||b a b a -=-”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2017年4月8、(1.)已知全集{}1,2,3,4U =,若{}1,3A =,则UA =( )A .{}1,2B .{}1,4C .{}2,3 D .{}2,49、(13.)设实数a ,b 满足||||a b >,则“0a b ->”是“0a b +>”的( )q *n N ∈{}na 21n a ⎧⎫⎨⎬⎩⎭A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2017年11月10、(1.)已知集合A={1,2,3},B={1,3,4},则A∪B=()A. {1,3}B. {1,2,3}C. {1,3,4}D. {1,2,3,4,}11、(13.)已知a,b是实数,则“|a|<1且|b|<1”是“a2+b2<1”的()A. 充分不必要条件B. 必要不充分条件 C. 充要条件 D.既不充分也不必要条件2018年4月12、(1.)已知集合{}{}=≤<=≤<记M P Q01,23P x x Q x x=,则A.{}M3,1,0⊆2,1,0B.{}M⊆C.{}M⊆3,2,13,2,0D.{}M⊆学考复习分类练习2——函数2015年10月1、(1.)函数2=f x-()3xA.(-∞,0)B.[0,+∞)C. [2,+∞)D. (-∞,2)2、(22.)已知函数f(x)=||2x a x a ++-,g(x)=ax+1,其中a>0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,所表示的平面区域记为的渐近线是(
答案第2页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A. B. C. D.
7.若锐角满足,则()
A. B. C. D.
8.在三棱锥中,若为的中点,则()
A .
B .
C .
D .
9.数列是公差不为零的等差数列,下列数列中,不构成等差数列的是()
A.
B.
C.
D.
10.不等式的解集是()A .
B .
C .2
D .
11.用列表法将函数表示为,则()
A.为奇函数
B.为偶函数
C.
为奇函数
D.
为偶函数
12.如图,在直角坐标系中,坐标轴将边长为4的正方形分割成四个小正方形,若大圆为正方形的外接圆,四个小圆圆分别为四个小正方形的内切圆,则图中某个圆的方程是()
第3页,总14页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A .
B .
C .
D .
13.设为实数,则“”是的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
14.在直角坐标系
中,已知点,过
的直线交轴于点
,若直线
的倾
斜角是直线倾斜角的2倍,则()
A.
B.
C.
D.
15.甲、乙几何体的三视图分别如图 图 所示,分别记它们的表面积为,体积为,则(

A .
,B .,C .,D .
,
16.如图,设为椭圆=1()的右焦点,过作轴的垂线交椭圆于点
,点分
别为椭圆的右顶点和上顶点,为坐标原点,若的面积是面积的
倍,则该椭圆的离心



答案第4页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A.或
B.或
C.或
D.或
17.设为实数,若函数有零点,则函数零点的个数是()
A.1或3
B.2或3
C.2或4
D.3或4
18.如图,设矩形所在的平面与梯形所在平面交于,若,则下面二面角的平面角大小为定值的是(

A. B. C. D.
第Ⅱ卷主观题
第Ⅱ卷的注释
评卷人
得分
一、填空题(共4题)
1.已知函数,则
的最小正周期是
,的最大值是
.
2.若平面向量满足

.
3.若中,已知
则的取值范围是
.
4.若不等式
对任意恒成立,则实数的最小值是
.
,垂足为轴的对称点恰好在直线上的面积中,已知点
,使得函数和的最大值;
答案第6页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
1.【答案】:
【解释】:
2.【答案】:
【解释】:
3.【答案】:
【解释】:
4.【答案】:
【解释】:
5.【答案】:
【解释】:
第7页,总14页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
6.【答案】
:【解释】:7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】
:【解释】:
答案第8页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
10.【答案】:
【解释】:
11.【答案】:
【解释】:
12.【答案】:
【解释】:
13.【答案】:
【解释】:
第9页,总14页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
14.【答案】
:【解释】:15.【答案】:【解释】:16.【答案】
:【解释】:
答案第10页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
17.【答案】:
【解释】:
18.【答案】:
【解释】:
【答案】:
【解释】:
第11页,总14页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【答案】:
【解释】:【答案】:【解释】:【答案】:【解释】:
答案第12页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【答案】:
【解释】:
【答案】:
第13页,总14页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:
【答案】:
答案第14页,总14页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:。

相关文档
最新文档