二次函数中的系数a,b,c符号

合集下载

二次函数a.b.c等的符号的确定

二次函数a.b.c等的符号的确定
y
-1 o 1 x
(5)△=b2-4ac决定抛物线与x轴交点情况:
① △>0 ② △=0
抛物线与x轴有两个交点; 抛物线与x轴有唯一的公共点;
③ △<0 抛物线与x轴无交点。
y ox
y ox
y ox
勇攀高峰
1. 二次函数y=ax2+bx+c的图象如图所示,下列结论中:
①abc>0;② a+b+c<0 ③ a-b+c>0 ;
o1 特殊值法
x
y aabb cc 0 0
y=ax2+bx+c 当x 1时 y=a-b+c
y aabbcc0 0 y
y aabbcc00
-1 o
x
y aabbcc00
x=-1
比拼速度
二次函数y ax2 bx c的图象如图,用(< , >或 =)填空: a< 0,b < 0,c > 0,a+b+c< 0,a-b+c> 0, Nhomakorabeay
开口向下
a<0
数形结合法
x
⑵c决定抛物线与y轴交点(0,c)的位置:
① 图象与y轴交点在y轴正半轴;
c>0
② 图象过原点
c=0
③ 图象与y轴交点在y轴负半轴
c<0
y
指出下列二次函数与y轴交点的坐标.
(1) y=x2-8x+7 (2) y=-2x2+9x-17
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
转化 + 特殊值
根据抛物线y=ax2+bx+c图象位置,你 会判断那些字母或代数式的符号?

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结二次函数基础知识二次函数的概念是指形如22y=ax^2+bx+c(a≠0)的函数。

其中,a、b、c是常数。

与一元二次方程类似,二次函数的定义域是全体实数。

二次函数的结构特征是等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.其中,a是二次项系数,b是一次项系数,c是常数项。

二次函数的各种形式之间可以通过变换相互转化。

例如,用配方法可将二次函数y=ax^2+bx+c化为y=a(x-h)^2+k的形式,其中h=(-b/2a),k=(4ac-b^2)/4a。

二次函数的解析式可以表示为一般式、顶点式或两根式。

其中,一般式是2y=ax^2+bx+c,顶点式是y=a(x-h)^2+k,两根式是y=a(x-x1)(x-x2)。

二次函数的图象可以用五点绘图法画出。

首先将二次函数化为顶点式,然后确定其开口方向、对称轴及顶点坐标,最后在对称轴两侧左右对称地描点画图。

二次函数y=ax^2的性质与a的符号有关。

当a>0时,开口向上,顶点坐标为(0,0);当a<0时,开口向下,顶点坐标为(0,0)。

顶点坐标为b/2ac−b2/4a以上是二次函数的基本性质,其中y轴和对称轴是直线,顶点是一个点,开口方向和最值是由a的符号决定的。

在具体应用中,可以利用这些性质来帮助我们解决问题。

例如,求函数的最值、确定函数的图像等等。

顶点决定抛物线的位置。

对于几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向和大小完全相同,只是顶点位置不同。

在二次函数2y=ax^2+bx+c中,a、b、c 与函数图像的关系是:抛物线。

二次项系数a在函数中起着决定性的作用。

当a>0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a越小,开口越小,反之a 的值越大,开口越大。

因此,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

二次函数y=ax2+bx+c的图象与其系数a、b、c的符号的关系

二次函数y=ax2+bx+c的图象与其系数a、b、c的符号的关系

二次函数的图象与其系数符号的关系教学设计厦门市湖里中学林艺菁一、教学目标知识与技能使学生理解并掌握二次函数y=ax2+bx+c的图象与系数a、b、c,△,及与系数有关的代数式的符号之间的关系;能根据二次函数y=ax2+bx+c的图象确定其系数a、b、c,△及与a, b,c有关的代数式的符号。

过程与方法通过观察二次函数y=ax2+bx+c的图象,使学生经历二次函数y=ax2+bx+c的图象与系数a、b、c符号之间的关系的探索过程,培养学生观察、分析、猜测、归纳并解决问题的能力。

情感、态度、价值观渗透数形结合和分类讨论的数学思想,培养学生良好的学习习惯。

二、学情分析大部分学生不能熟练的根据二次函数y=ax2+bx+c的图象准确的判断其系数a、b、c的符号。

三、教学重点难点重点理解并掌握:①a的符号由抛物线的开口方向确定;②b的符号由对称轴的位置确定及a的符号共同决定;③c的符号由抛物线与y轴的交点位置确定;④△的符号由抛物线与X轴交点个数决定;⑤a+b+c的符号由x=1时抛物线上的点的位置确定;⑥a-b+c的符号由x=-1时抛物线上的点的位置确定;难点①理解并掌握b的符号由对称轴的位置确定;②a+b+c的符号由x=1时抛物线上的点的位置确定;③a-b+c的符号由x=-1时抛物线上的点的位置确定。

四、教学过程1.回顾知识要点:①抛物线y=ax2+bx+c的开口方向与什么有关?②抛物线y=ax2+bx+c的对称轴是___________,③抛物线y=ax2+bx+c的顶点坐标是,④抛物线y=ax2+bx+c与y轴的交点坐标是二次函数y=ax2+bx+c中,a为二次项的系数、b为一次项的系数、c为常数项,且它们均为常数,在决定二次函数在平面直角坐标系位置的关键要素2.知识点一:基本符号的判断(1)a的符号:①开口向上a>0 ②开口向下 a<0结论:a的符号由抛物线的开口方向决定。

(2)b的符号:抛物线的对称轴为:直线x= -b/2a.①对称轴在y轴左侧 a、b同号;②对称轴在y轴右侧a、b异号;③对称轴是y轴 b=0。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

二次函数:图象位置与a,b,c,(1)a决定抛物线的开口方向:;.(2)C决定抛物线与轴交点的位置,抛物线交轴于;抛物线交轴于;.(3)ab决定抛物线对称轴的位置,当同号时对称轴在轴;对称轴为;异号对称轴在轴,简称为.一、通过抛物线的位置判断a,b,c,△的符号.例1.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号2.看图填空(1)a+b+c_______0(2)a-b+c_______0(3)2a-b _______0(4)4a+2b+c_______0二、通过a,b,c,△的符号判断抛物线的位置:D例1.若,则抛物线y=ax2+bx+c的大致图象为()例2.若a>0,b>0,c>0,△>0,那么抛物线y=ax2+bx+c经过象限.例3.已知二次函数y=ax2+bx+c且a<0,a-b+c>0;则一定有b2-4ac 0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()BDCA1.若抛物线y=ax2+bx+c开口向上,则直线经过象限.2.二次函数y=ax2+bx+c的图象如图所示,则下列条件不正确的是(A、 B、C、 D、3.二次函数y=ax2+bx+c的图象如图,则点在.()A、第一象限B、第二象限C、第三象限D、第四象限4.二次函数y=ax2+bx+c与一次函数在同一坐标系中的图象大致是( O5.二次函数y=ax2+bx+c的图象,如图,下列结论①②③④其中正确的有()A、1个B、2个C、3个D、4个16.已知函数y=ax2+bx+c的图象如图所示,关于系数有下列不等式①②③④⑤其中正确个数为.7.已知直线y=ax2+bx+c不经过第一象限,则抛物线一定经过()A.第一、二、四象限 B.第一、二、三象限C.第一、二象限 D.第三、四象限8. 如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__.9. 若抛物线y=x2-bx+9的顶点在x轴上,则b的值为______若抛物线y=x2-bx+9的顶点在y轴上,则b的值为______10.已知二次函数y=ax2+bx+c(a≠0的图象如图所示,有下列结论:①abc>0;②a+b+c=2;;④b<1.其中正确的结论是(A.①② B.②③ C.②④ D.③④11.二次函数y=ax2+bx+c(a≠0的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴负半轴交于一点,给出以下结论①abc<0;②2a+b>0;③a +c=1;④a>1.其中正确的结论是(A、1个B、2个C、3个D、4个12. 二次函数y=ax2 -2x-1与x轴有交点,则k的取值范围________。

初中数学精品试题:二次函数与系数a,b,c的关系

初中数学精品试题:二次函数与系数a,b,c的关系

专题02 二次函数与系数a 、b 、c 的关系【知识梳理】知识梳理一、二次函数2y ax bx c =++中a 、b 、c 的基本认知b 2-4ac =0知识梳理二、关于a 、b 、c 代数式的取值问题.a 、b 、m知识梳理三、图像共存问题.(一般分为以下三类)(1)通过给出的系数系数信息,判断图像共存(2)通过给出的图像判断系数,再判断图像共存(3)不给出任何系数信息,通过题意判断【例题精讲】例1.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.例2.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.例3.函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象与一次函数y=mx+n的图象可能是()A.B.C.D.例4.反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.例5.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.例6.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),例7.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中所有正确结论的序号是.例8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),下列结论:①当﹣1<x<3时,y>0;②﹣1<a<﹣.③当m≠1时,a+b>m(am+b);④b2﹣4ac=15a2.其中正确的结论的序号.例9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.例10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点(x1,0),(x2,0).则下列说法正确的有:.(填序号)①该二次函数的图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1、x2满足﹣3<x1<2,﹣1<x2<0时,m的取值范围为:<m<11.【专项训练】1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.2.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.4.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.5.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.6.如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为()A.B.C.D.7.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.8.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.9.如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.10.在同一平面直角坐标系中,函数y=6ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.11.已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a 的值等于()A.﹣1B.1C.D.13.已知函数y1=mx2+n,y2=nx+m(mn≠0),则两个函数在同一坐标系中的图象可能为()A.B.C.D.14.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.15.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.16.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.17.反比例函数的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致是()A.B.C.D.18.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.19.二次函数y=ax2+bx+c的图象如图所示,则﹣次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.20.下列图中,反比例函数y=(a≠0)与二次函数y=ax2+ax(a≠0)的大致图象在同一坐标系中是()A.B.C.D.21.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的序号是.第21题图第22题图22.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.23.抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=﹣5.其中结论正确是.24.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①ab c>0;②2a+b<0;③a﹣b+c<0;④a+c>0;其中正确的说法有(写出正确说法的序号).26.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有.(写出所有正确结论的番号)27.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+c=0;③ac+b+1=0;④2+c 是关于x的一元二次方程ax2+bx+c=0的一个根,其中正确的有个.28.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有以下结论:①abc>0;②a+b+c<0;③4a+b=0;④若点(1,y1)和(3,y2)在该图象上,则y1=y2,其中正确的结论是(填序号).30.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)。

二次函数中a、b、c的符号

二次函数中a、b、c的符号
20

二次函数中的符号问题
y ax bx c(a 0)
2
1
二次函数中的符号问题
(a、b、c、△等符号)
2
回味知识点:
1、抛物线y=ax2+bx+c的开口方向与什么有关? 2、抛物线y=ax2+bx+c与y轴的交点是 (0,c) .
开口方向与a有关
3、抛物线y=ax2+bx+c的对称轴是
a、b异号 b=0 简记为:左同右异
对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴 (4)b2-4ac的符号:
由抛物线与x轴的交点个数确定:
与x轴有两个交点
b2-4ac>0 b2-4ac=0
b2-4ac<0
5
与x轴有一个交点
与x轴无交点
归纳知识点:
6
7
8
9
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
X= - b/2a .
3
归纳知识点:
抛物线y=ax2+bx+c的符号问题: (1)a的符号: 由抛物线的开口方向确定 开口向上 开口向下 a>0 a<0
(2)C的符号: 由抛物线与y轴的交点位置确定:
交点在x轴上方 交点在x轴下方 经过坐标原点
c>0
c<0
c=0
4
归纳知识点:
(3)b的符号:
由对称轴的位置确定: a、b同号
18
数学因规律而不再枯燥, 数学因思维而耐人寻味。
让我们热爱数学吧!
19
课外作业:
1.如图是二次函数y1=ax2+bx+c和 一次函数y2=mx+n的图象,观察 图象写出y2 ≥y1时,x的取值范围 是________;

二次函数图象与系数a、b、c的关系

二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B 【分析】①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++…,从而进行判断21ax bx c m ++=-无实数根.【详解】解:①Q 抛物线图象开口向上,0a \>,Q 对称轴在直线y 轴左侧,a \,b 同号,0b >,Q 抛物线与y 轴交点在x 轴下方,0c \<,0abc \<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b \+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+Q ,\点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y \>,故③错误.④Q 抛物线的顶点坐标为(1,)m -,y m \…,2ax bx c m \++…,21ax bx c m \++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++¹中a ,b ,c 与函数图象的关系.2.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x…﹣3﹣2﹣112…y … 1.8753m 1.8750…A .①④B .②③C .③④D .②④【答案】B 【分析】由表格可以得到二次函数图象经过点点(-3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a ,b ,c 的值,依次代入到①②③④中进行判断即可解决.【详解】解:由表格可以得到,二次函数图象经过点(3,1.875)-和点(1,1.875),Q 点(3,1.875)-与点(1,1.875)是关于二次函数对称轴对称的,\二次函数的对称轴为直线3112x -+==-,\设二次函数解析式为2(1)y a x h =++,代入点(2,3)-,(2,0)得,390a h a h +=ìí+=î,解得38278a h ì=-ïïíï=ïî,\二次函数的解析式为:2327(1)88y x =-++,Q 233384y x x =--+,3c \=,\①是错误的,2934430168b ac -=+´´>Q ,\②是正确的,方程20ax bx +=为233084x x --=,即为220x x +=,12x \=-,20x =,\③是正确的,3377()3088a c +=´-+=>Q ,\④是错误的,\②③是正确的,故选:B .【点睛】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴的信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .4【答案】B 【分析】根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上, ∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12ba-=,∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0,∴abc>0;故①正确;∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a ∴c =32b,∴-3<32b<-2,∴﹣2<b 43<-,故②错误;∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a ∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).4.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A 【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】解:Q 抛物线开口向下a \<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=ìí++=î2am bm a b\+=+20am bm a b \+--=(1)()0m am a b -++=21m -<<-Q 0am a b \++=,(1)am c a m b\=+=-0c \>110m \-<+<10m +<Q 11022m +\-<<1022b a\-<-<10b a\>>0a b \<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am D =+--222(1)44a m a m a=+-+2244a bb a a a--=-⋅+22444b a ab a=+++24()4b a a b a=+++2440b ac a =-+>244ac b a \-<,故④正确,即正确结论的个数是4,故选:A .【点睛】本题考查二次函数的图象与性质、二次函数与系数a 、b 、c 关系,涉及一元二次方程根的判别式,是重要考点,有难度,掌握相关知识是解题关键.5.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .5【答案】D 【分析】由题意易得1,12b c a ==--,则有0c <,进而可判定①②,当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,然后可判定③,由题意可知抛物线的对称轴为直线104x a =-<,则有当23x ££时,y 随x 的增大而增大,故可得④;联立抛物线及直线解析式即可判断⑤.【详解】解:∵13,22a b c a b c ++=--+=-,∴两式相减得12b =,两式相加得1c a =--,∴0c <,∵0,0,0a b c >><,∴0abc <,故①正确;∴12222102a b c a a a ++=+´--=>,故②正确;∵当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,∴当0y =时,则方程20ax bx c =++的两个根一个小于-1,一个根大于1,∴抛物线与x 轴正半轴必有一个交点,故③正确;由题意可知抛物线的对称轴为直线1024b x a a=-=-<,∴当23x ££时,y 随x 的增大而增大,∴当2x =时,有最小值,即为424113y a b c a a a =++=+--=,故④正确;联立抛物线2y ax bx c =++及直线y x c =-可得:2x c ax bx c -=++,整理得:22012ax x c -+=,∴1804ac D =->,∴该抛物线与直线y x c =-有两个交点,故⑤正确;∴正确的个数有5个;故选D .【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.6.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个【答案】B 【分析】先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】解:Q 抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c \<>,Q 抛物线的对称轴为122b x a =-=,0b a \=->,0abc \<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将a b =-代入得:20b c -+=,则结论②正确;Q 抛物线的对称轴为12x =,32x \=和12x =-时的函数值相等,即都为1y ,又Q 当12x ³时,y 随x 的增大而减小,且3522<,12y y \>,则结论④错误;由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+,12m ¹Q ,214b c am bm c +>++\,即1()4b c m am b c +>++,结论⑤正确;综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-,∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >【答案】D【分析】由图像可得0a <,0c >,当1x =,y a b c =++,并与x 轴交于OP 之间,得0a b c ++<,据悉可得()0M ac a b c =++>,据此求解即可.【详解】解:由图像可知,图像开口向下,并与y 轴相交于正半轴,∴0a <,0c >,当1x =,211y a b c a b c =++=++g g ,∵1OP =,并由图像可得,二次函数2y ax bx c =++与x 轴交于OP 之间,∴0a b c ++<∴()0M ac a b c =++>,故选:D .【点睛】本题考查二次函数图象及性质,熟悉相关性质是解题的关键.9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据二次函数的图像及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,∴当x =1时,0a b c ++=,故结论①正确;根据函数图像可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a-=-,根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1,故结论③正确;根据函数图像可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图像与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象与性质进行逐项判断即可求解.【详解】解:①由图象可知,a <0,b >0,c >0,∴abc <0,故①正确;②∵对称轴为直线x = 2b a-=1,且图象与x 轴交于点(﹣1,0),∴图象与x 轴的另一个交点坐标为(3,0),b=﹣2a ,∴根据图象,当x =2时,y =4a +2b +c >0,故②错误;③根据图象,当x =﹣2时,y =4a ﹣2b +c =4a +4a +c =8a +c <0,故③正确;④∵抛物线经过点()3,n -,∴根据抛物线的对称性,抛物线也经过点()5,n ,∴抛物线2y ax bx c =++与直线y =n 的交点坐标为(﹣3,n )和(5,n ),∴一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,故④正确,综上,上述结论中正确结论有①③④,故选:C .本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .4【答案】A【分析】根据抛物线的开口方向、于x 轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a >0,故①正确;∵抛物线与x 轴没有交点∴24b ac -<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)1933a b c a b c ++=ìí++=î∴8a+2b=2∴4a +b =1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x 交于这两点∴()21ax b x c +-+<0可化为2ax bx c x ++<,根据图象,解得:1<x <3故选A .【点睛】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.12.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】①根据图像开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图像开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图像与y 轴交点位于x 轴下方,可知c <0abc \>故①正确;②122b x a =-=得=-a b 0a b \+=③2y ax bx c =++Q 经过()2,0420a b c \++=又由①得c <04230a b c \++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等\ 当1x =-时0y =,即0a b c -+=a b=-Q 20a c \+=即12c a=- \ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确;⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++0a >Q\ 函数有最小值1142a b c ++\ 21142am bm c a b c ++³++化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图像的关系,结合图像逐项分析,结已知条件得出结论是解题的关键.13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c ->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【分析】依据抛物线的图像和性质,根据题意结合二次函数图象与系数的关系,逐条分析结论进行判断即可【详解】①从图像观察,开口朝上,所以0a >,对称轴在y 轴右侧,所以0b <,图像与y 轴交点在x 轴下方,所以0c <0,0a b a b c--><\,所以①不正确;②点()2,0A -和点B ,与y 轴的负半轴交于点(0,)C c ,且2OB OC=设(2,0)B c -代入2y ax bx c =++,得:2420ac bc c -+=0c ¹Q \241b ac -=,所以②正确;③Q ()2,0A -,(2,0)B c -设抛物线解析式为:(2)(2)y a x x c =++过(0,)C c 4c ac \= 14a \=,所以③正确;④如图:设,AN BM 交点为P ,对称轴与x 轴交点为Q ,顶点为D ,根据抛物线的对称性,APB △ 是等腰直角三角形,()2,0A -Q ,(2,0)B c -22AB c \=-,112PQ AB c ==- 又对称轴2(2)12c x c -+-==+ (1,1)P c c \+- 由顶点坐标公式可知24(1,)4ac b D c a-+ 14a =Q 2(1,)D c cb \+- 由题意21c b c -<-,解得1b > 或者1b <-由①知0b <\1b <-,所以④不正确.综上所述:②③正确共2个故选B .【点睛】本题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数2y ax bx c =++(a ≠0),a 的符号由抛物线的开口决定;b 的符号由a 及对称轴的位置确定;c 的符号由抛物线与y 轴交点的位置确定,此外还有注意利用特殊点1,-1及2对应函数值的正负来解决是解题的关键.14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是()A .0B .1C .2D .3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.15.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【分析】根据抛物线的开口向下,对称轴方程以及图象与y 轴的交点得到a ,b ,c 的取值,于是可对①进行判断;根据抛物线与x 轴的交点的个数可对②进行判断;根据对称轴可得12b a-=,则12a b =-,根据1x =-可得0a b c -+<,代入变形可对③进行判断;当1x =时,y a b c =++的值最大,即当(1)x m m =¹时,即a b c ++>2am bm c ++,则可对④进行判断;由于方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,则利用根与系数的关系可对⑤进行判断.【详解】解:①∵抛物线开口方向向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵对称轴在y 轴右侧,∴b >0,∴abc <0,①错误;②∵抛物线与x 轴有两个交点∴24b ac ->0∴24b ac >,故②错误;③∵抛物线的对称轴为直线x =1,∴12b a-=,∴12a b =-由图象得,当1x =-时,0y a b c =-+<,∴102b bc --+<∴23c b <,故③正确;④当1x =时,y a b c =++的值最大,∴当(1)x m m =¹时,a b c ++>2am bm c ++,∴()a b m am b +>+(1m ¹),∵b >0,∴2()a b m am b +>+(1m ¹),故④正确;⑤∵方程|ax 2+bx +c |=1有四个根,∴方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,∴所有根之和为2×(-b a)=2×2a a =4,所以⑤错误.∴正确的结论是③④,故选:A【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4【答案】B【详解】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B.。

二次函数y=ax2+bx+c的图像与系数a、b、c的关系

二次函数y=ax2+bx+c的图像与系数a、b、c的关系
抛对物称线轴与在xy轴左有侧两个交点 a, b同号b2-4ac>0
抛对物称线轴与是x轴y轴有1个交点
b=0 b2-4ac=0
对 抛称 物轴 线在 与yx轴右无侧交点
a, b异号 b2-4ac<0
例题学习
已知,y=ax2+bx+c的图象如下,试判断a,b,c,b2-4ac的符号。
解: ∵开口向上
∴a>0
抛物线与y轴交于负半轴
∴c<0
y
.·
-1
1x
∵ 对称轴在y轴右侧,
∴ ab>0,而a>0
∴b<0 由图象可知抛物线与x轴有两个交点
∴b2-4ac>0
1.根据图象判断a、b、c及b2-4ac的符号
a_>___0 b__<__0 c__<___0 b2-4ac__>___0
a__<__0 b_=___0
抛物线开口向下
a>0 a<0
2. b的符号
由于二次函数的对称轴是x= -b/2a;a、b共
同决定对称轴的位置.
交点在y轴左侧
ab>0 交点在y轴右侧
ab<0
a、b 同号
a、b 异号
左同右异
3.c的符号
决定抛物线与y轴交点的位置,交点坐标为(0,c)
交点在y轴正半轴
C>0 交点在y轴负半轴
抛物线过原点
抛物线y=ax2+bx+c的系数的符号由抛物线的 位置决定。它们具有等价的关系。
(1()3 )ac的的符符号号由由抛抛物线的与开y轴口的确交定点。确定。
交点在开y口轴向正上半轴上
a>0 c>0
交开点口是向原下点 交点在y轴负半轴上

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系若抛物线与 x 轴交于(1,0),则a + b + c = 0;若抛物线与 x 轴交于(-1,0),则a - b + c = 0. (1) 当x = 1时,①若y > 0,则a + b + c >0;②若y < 0,则a + b + c < 0 (2) 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.5 例1(重庆2004年)二次函数()02≠++=a c b a χχγ的图像如图,则点M (b ,ac )在( )A .第一象限B .第二象限C .第三象限D .第四象限 分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的右边,∴b 与a 异号,即b > 0;∴ac < 0;∴点M 在第四象限选D例2、(2004陕西)二次函数()02≠++=a c b a χχγ的图像如图,则下列关系判断正确的是( )A .ab < 0B .bc < 0C .a + b + c > 0D .a - b + c < 0分析:∵开口向下,∴a < 0; ∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴ab > 0, bc > 0 故A 、B 均错 ∵x = 1时,y < 0,∴a + b + c < 0,故C 错 ∵x = -1时,y < 0,∴a - b + c < 0.故选D例3(2004呼和浩特)如图,四个二次函数的图像中分别对应的是:①2χγa =②2χγb =③2χγc =④2χγd =,则a , b , c , d 的大小关系是 . A .a > b > c > d B .a > b > d > c C .b > a > c > dD .b > a > d > c分析:∵③、④的图像开口向下,∴c < 0,d < 0; ∵④的张口比③的张口小,∴∣d ∣ > ∣c ∣, ∴c > d ; ∵①、②的图像开口向上,∴a > 0,b > 0;∵①的张口比②的张口小,∴∣a ∣ > ∣b ∣, ∴a > b例4、已知二次函数()02≠++=a c b aχχγ的图像如图,则a 、b 、c 满足( )A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C .a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴选A 例5 二次函数()02≠++=a c b a χχγ的图像如图,13χ=为该函数图像的对称轴,根据这个函数图像,你能得到关于该函数的那些性质和结论呢?(写4个即可). 解: ①∵开口向上,∴a > 0;②∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0; ③∵顶点在y 轴的右边,∴b 与a 异号,即b < 0; ④∵x = 1时,y < 0,∴a + b + c < 0;⑤∵x = -1时,y > 0,∴a - b + c > 0.例1、已知y=ax 2+bx+c 图象如图1,则下列关系中成立的是( )120.<-<a bA 220.<-<abB 221.<-<a bC12.=abD 剖析 特别位置判定法,若抛物过O(0,0)(2,0)则x=12=-a b 这里221<-<ab ,所以选C .求值判定法,设抛物线过(α,0)(0<α<2),(2,0),则α2a+αb+c=0①,4a+2b+c=0②,①②(α2-4)a+(α-2)b=0∵α-2≠0∴(α+2)a+b=0b=-(α+2)a.121222)2(2>+=+=+=-∴αααa a a b 221<-<∴ab求中点坐标判定法,设抛物线与x 轴交于点A(α,0)(0<α<2),B(2,0), 则A 、B 中点坐标是12122>+=+αα 221<-<∴ab所以选 C . 注意:若题目为“已知抛物线y=ax 2+bx+c 过A(1,5),B(4,5),求对称轴直线”应怎样求?例2为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动路线是抛物线y=ax 2+bx+c 如图2,则下列结论: ①601-<a ,②0601<<-a ,③a-b+c>0,④a<b<-12aA .①③ B. ①④ C . ②③ D . ②④剖析 排除法判定,易知c=2.4把(12,0)代入y=ax 2+bx+c 中得: 144a+12b+2.4=0,11205a b ++=,由图象知a<0,对称轴2b x a-=11120560a a ∴+<<-,, 即①成立, ②不成立,故不可能选C 与D . 111201201255a b a b b a++=∴+-<<- ,,,000022b ba b a a<->∴<> ,,,.,12a b a -<<∴④正确,故在A ,B 中只能选B .例3、已知抛物线y=ax 2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0以下结论:①a+b>0,②a+c>0,③-a+b+c>0,④b 2-2ac>5a 2其中正确的个数有( )A .1个B .2个C .3个D .4个剖析: 特殊值判定法,∵抛物线过(-1,0)点,∴a-b+c=0, c=b-a 代入4a+2b+c>0中得.a+b>0,①正确.∵a<0,a+b>0,∴b>0,∵a-b+c=0,∴a+c=b>0,a+c>0,②正确.∵a<0,b>0,∴c=b-a>0,-a>0,∴-a+b+c>0,③正确.∵a-b+c=0,∴a+c=b ,2a+c=a+b>0,2a+c>0,∵a<0,c>0,∴c-2a>0, ∴(c-2a)(c+2a)>0,c 2-4a 2>0,c 2>4a 2,∵b=a+c ,∴b 2=c 2+a 2+2ac ,c 2=b 2-a 2-2ac ,b 2-a 2-2ac>4a 2,b 2-2ac>5a 2, ④正确. 所以选D .注意 :有时利用x=±1时,y=a±b+c ,x=±2时,y=4a±2b+c 中,y 符号判定a±b+c 和4a±2b+c 的符号.例4、已知二次函数y=ax 2+bx+c 图象与x 轴交于(-2,0)(x ,0)且1<x 1<2,与y 轴正半轴交点在(0,2)下方,下列结论,①a<b<0,②2a+c>0,③4a+c<0,④2a-b+1>0其中正确个数为( )A .1个B .2个C .3个D .4个剖析: 数形判定法,根据题意可画草图3, 1122b b x a a=->-∴< 对称轴,, 00022b ba a a<-<∴> ,, ∴a<b<0 ①正确. ∵抛物线过(-2,0),∴4a-2b+c=0, 2a+c=-2a+2b=-2(a-b)>0∴2a+c>0,②正确. ∵4a-2b+c=0,4a+c=2b<0∴4a+c<0,③正确. ∵4a-2b+c=0,2cb a 2-=-∴ ∵0<c<2,12c->-∴,2a-b>-1,即2a-b+1>0 ④正确. 所以选D .补充练习:1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( ) A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0B 、bc <0C 、a +b +c >0D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

二次函数的性质a,b,c符号问题

二次函数的性质a,b,c符号问题

二次函数的图像与性质知识点:二次函数抛物线,图像对称是关键,开口、顶点和交点,它们确定图像现。

a 的正负开口判(开口大小由a 断),c 与y 轴来相见,b 的符号较特别,符号与a 相关联,顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱。

△的符号最简便,x 轴上数交点,顶点坐标最重要,一般配方它就现,横标即为对称轴,纵标函数最值现,若求对称轴位置,括中符号正相反,一般、顶点、交点式,不同表达能互换。

二次函数a ,b ,c 及相关问题的解决:1、 a 正负性:由开口方向决定,开口向上,a >0;开口向下,a <02、 b 的正负性:由于抛物线对称轴为ab x 2-=,所以b 的正负性与对称轴的位置和a 的正负性相关联。

对称轴在y 轴的左边时,a 、b 符号相同,对称轴在y 轴的右边时,a 、b 符号相反,对称轴为y 轴时,b=0(左同右异中为0)3、 c 的正负性:c 表示抛物线与y 轴交点的纵坐标,即当x=0时,y=c ,所以当抛物线与y 轴的交点在x 轴的上方时,c >0,当抛物线与y 轴的交点在x 轴的下方时,c <0。

(c 与y 轴来相见)4、 abc 的正负性:a ,b ,c 确定,则随之确定5、 ac b 42-=∆的正负性:△是根的判别式,由于一元二次方程是二次函数y=0的特殊情况,所以可以从抛物线与x 轴的交点个数来判断△的正负性,与x 轴有两个交点时,042>-ac b ,与x 轴的交点有一个时,042=-ac b ,与x 轴没有交点时,042<-ac b6、 利用x 的特殊值判断一些代数式的正负性:当x=1时,y=a+b+c ,当x=-1时,y=a-b+c ,当x=2时,y=4a+2b+c ,当x=-2时,y=4a-2b+c ,当x=3时,y=9a+3b+c ,当x=-3时,y=9a-3b+c ,对于取x 的特殊值得到代数式的正负性,重点看此时图像在x 轴的上方还是下方。

讲义二次函数的解析式求法及a,b,c符号判断方法

讲义二次函数的解析式求法及a,b,c符号判断方法
典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式.
例3已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.
典型例题二:如果a>0,那么当x= - 时,y有最小值且y最小= ;如果a<0,那么,当x=- 时,y有最大值,且y最大= .告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式.
典型例题:已知二次函数的图像过点(0,2)(1,1)(3,5),求此二次函数解析式。
二.交点式
知识归纳:二次函数交点式:y=a(x- )(x- )(a≠0), , 分别是抛物线与x轴两个交点的横坐标.已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便.
典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式.
利用翻折型(对称性)来求函数解析式
已知一个二次函数 ,要求其图象关于 轴对称(也可以说沿 轴翻折); 轴对称及经过其顶点且平行于 轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y=a(x–h)2+k的形式.
(1)关于 轴对称的两个图象的顶点关于 轴对称,两个图象的开口方向相反,即 互为相反数.
二次函数y=a +bx+c中a,b,c的符号判断方法
例1已知抛物线 的图象如图所示,则a、b、c的符号为( )
A. B.
C. D.
例2抛物线 中,b=4a,它的图象如图,有以下结论:① ;② ③ ④ ⑤ ;⑥ ;其中正确的为()
A.①②B.①④C.①②⑥D.①③⑤
例3下列图象中,当 时,函数 与 的图象是()
例3.(江西省)一条抛物线 经过点 与 。求这条抛物线的解析式。

中考数学常考易错点:331《二次函数的图象与性质》

中考数学常考易错点:331《二次函数的图象与性质》

二次函数的图象与性质易错清单1.二次函数的图象与系数a,b,c的符号的确定.【例1】(2014·山东烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:① 4a+b=0;② 9a+c>3b;③ 8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有().A. 1个B. 2个C. 3个D. 4个【解析】根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a.再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【答案】∵抛物线的对称轴为直线x=2,∴b=-4a,即4a+b=0,所以①正确.∵当x=-3时,y<0,∴9a-3b+c<0,即9a+c<3b.所以②错误.∵抛物线与x轴的一个交点为(-1,0),∴a-b+c=0.而b=-4a,∴a+4a+c=0,即c=-5a.∴8a+7b+2c=8a-28a-10a=-30a.∵抛物线开口向下,∴a<0.∴8a+7b+2c>0.所以③正确.∵对称轴为直线x=2,∴当-1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小.所以④错误.故选B.【误区纠错】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由Δ决定,Δ=b2-4ac>0时,抛物线与x轴有2个交点;Δ=b2-4ac=0时,抛物线与x轴有1个交点;Δ=b2-4ac<0时,抛物线与x轴没有交点.2.二次函数和最值问题【例2】(2014·浙江舟山)当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为().【解析】二次函数的最值得分类讨论问题,根据对称轴的位置,分三种情况讨论求解即可.【答案】二次函数的对称轴为直线x=m,①m<-2时,x=-2时二次函数有最大值,此时-(-2-m)2+m2+1=4,解得m=-,与m<-2矛盾,故m值不存在.②当-2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,【误区纠错】本题易错点在于不知分类讨论导致漏解.名师点拨1.掌握二次函数的定义,能利用定义判断二次函数.2.能利用顶点式、交点式、三点式确定二次函数的解析式.3.会利用描点法画二次函数的图象并能说明其性质.4.能利用二次函数解析式中系数确定函数的对称轴、顶点坐标、开口方向与坐标轴的交点坐标等.提分策略1.二次函数的图象与性质的应用.(1)求二次函数的图象的顶点坐标有两种方法:①配方法;②顶点公式法,顶点坐标为.(2)画抛物线y=ax2+bx+c的草图,要确定五个方面,即①开口方向;②对称轴;③顶点;④与y轴交点;⑤与x轴交点.【例1】(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形式;(2)在直角坐标系中画出y=x2-4x+3的图象;(3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1、y2的大小关系(直接写结果);(4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.【解析】(1)根据配方法的步骤进行计算.(2)由(1)得出抛物线的对称轴,顶点坐标列表,注意抛物线与x轴、y轴的交点及对称点等特殊点的坐标,不要弄错.(3)开口向上,在抛物线的左边,y随x的增大而减小.(4)抛物线y=x2-4x+3与直线y=2的交点的横坐标即为方程x2-4x+3=2的两根.【答案】(1)y=x2-4x+3=(x2-4x+4)+3-4=(x-2)2-1.(2)由(1)知图象的对称轴为直线x=2,顶点坐标为(2,-1),列表如下:x…0 1 2 3 4 …y… 3 0 -1 0 3 …描点作图如图.(3)y1>y2.(4)如图,点C,D的横坐标x3,x4即为方程x2-4x+3=2的根.2.二次函数的解析式的求法.二次函数的关系式有三种:(1)一般式y=ax2+bx+c;(2)顶点式y=a(x-m)2+n,其中(m,n)为顶点坐标;(3)交点式y=a(x-x1)(x-x2),其中(x1,0),(x2,0)为抛物线与x轴的交点.一般已知三点坐标用一般式求关系式;已知顶点及另一个点坐标用顶点式;已知抛物线与x轴的两个交点坐标及另一个点的坐标用交点式.【例2】已知抛物线经过点A(-5,0),B(1,0),且顶点的纵坐标为,求二次函数的解析式.【解析】根据题目要求,本题可选用多种方法求关系式.3.二次函数的图象特征与系数的关系的应用.二次函数y=ax2+bx+c=0(a≠0)系数的符号与抛物线二次函数y=ax2+bx+c=0(a≠0)的图象有着密切的关系,我们可以根据a,b,c的符号判断抛物线的位置,也可以根据抛物线的位置确定a,b,c的符号.抛物线的位置由顶点坐标、开口方向、对称轴的位置确定,顶点所在象限由的符号确定.【例3】(2014·天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是().A. 0B. 1C. 2D. 3【解析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c-m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【答案】①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故①正确.②∵抛物线的开口向下,∴a<0.∵抛物线与y轴交于正半轴,∴c>0.∵对称轴,∴ab<0.∵a<0,∴b>0.∴abc<0,故②正确.③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点.由图可得,m>2,故③正确.故选D.4.二次函数的图象的平移规律的应用.(1)采用由“点”带“形”的方法.图形在平移时,图形上的每一个点都按照相同的方向移动相同的距离,抛物线的平移问题往往可转化为顶点的平移问题来解决.(2)平移的变化规律可为:①上、下平移:当抛物线y=a(x-h)2+k向上平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k-m.②左、右平移:当抛物线y=a(x-h)2+k向左平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h-n)2+k.【例4】(2014·甘肃兰州)把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为().A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x-1)2+2D. y=-2(x-1)2-2【解析】根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”【答案】把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=-2(x-1)2+2,故选C.专项训练一、选择题1. (2014·江苏句容一模)若抛物线y=mx2+(m-3)x-m+2经过原点,则m的值为().A. 0B. 1C. 2D. 32.(2014·辽宁营口模拟)在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是().3.(2014·安徽安庆正月21校联考)抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为().A. 3B. 9C. 15D. -154.(2013·山东德州一模)已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③④b>1.其中正确的结论是().A. ①②B. ②③C. ③④D. ②④(第4题)(第5题)5.(2013·山西中考模拟六)若二次函数y=ax2+bx+a2-2(a,b为常数)的图象如图,则a的值为().6. (2013·浙江湖州中考模拟试卷)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是().二、填空题7.(2014·安徽安庆正月21校联考)如图,大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.(第7题)8. (2014·甘肃天水模拟)如图是二次函数y=ax2+bx+c图象的一部分.其对称轴为x=-1,且过点(-3,0).下列说法:(1)abc<0;(2)2a-b=0;(3)4a+2b+c=0;(4)若(-5,y1), 是抛物线上两点,则y1>y2.其中说法正确的是.(填序号)(第8题)9.(2014·辽宁大连二模)如图是函数y=x2+bx-1的图象,根据图象提供的信息,确定使-1≤y≤2的自变量x的取值范围是.(第9题)10. (2014·山东德城模拟)如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.(第10题)11.(2013·江苏东台实中)已知抛物线与x轴两交点分别是(-1,0),(3,0),另有一点(0,-3)也在图象上,则该抛物线的关系式是.12. (2013·北京龙文教育一模)点A(x1,y1)、B(x2,y2)在二次函数y=x2-2x-1的图象上,若x2>x1>1,则y1与y2的大小关系是y1y2.(用“>”“<”或“=”填空)13. (2013·河北一模)如图,抛物线y=ax2+bx与直线y=kx相交于点O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.(第13题)三、解答题14. (2014·北京平谷区模拟)已知关于x的一元二次方程x2-mx+m-1=0.(1)求证:无论m取任何实数时,方程总有实数根;(2)关于x的二次函数y1=x2-mx+m-1的图象C1经过(k-1,k2-6k+8)和(-k+5,k2-6k+8)两点.①求这个二次函数的解析式;②把①中的抛物线E沿x轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线.设抛物线C2交x轴于M,N两点(点M在点N的左侧),点P(a,b)为抛物线C2在x轴上方部分图象上的一个动点.当∠MPN≤45°时,直接写出a的取值范围.(第14题)15. (2014·安徽安庆二模)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为边AB 上一动点,F为边BC上一点,且满足条件∠EPF=45°, 记四边形PEBF的面积为S1.(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x.①求y关于x的函数解析式和自变量的取值范围,并求出y的最大值;②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.(第15题)16.(2013·山东德州一模)如图,Rt△ABO的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,O 为坐标原点,A,B两点的坐标分别为(-3,0),(0,4),抛物线y=+bx+c经过点B,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若点M是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M 的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.(第16题)参考答案与解析1. C[解析]将(0,0)代入函数关系式即可.2. D[解析]假设函数在D选项中正确,则m<0,∴-m>0,抛物线的开口向上,顶点的横坐标.所以D正确,别的选项这种假设均不成立.3. C[解析]将点(2,4)代入抛物线方程,得4a+2b-3=4,∴4a+2b=7.∴8a+4b+1=2×7+1=15.4. D[解析]①∵抛物线的开口向上,∴a>0.∵与y轴的交点为在y轴的负半轴上,∴c<0.∵对称轴为,∴a,b同号,即b>0.∴abc<0.故本结论错误.②当x=1时,函数值为2,∴a+b+c=2.故本结论正确.③∵对称轴,解得.又b>1,∴.故本结论错误.④当x=-1时,函数值<0,即a-b+c<0(1),又a+b+c=2,将a+c=2-b代入(1)式,得2-2b<0,∴b>1.故本结论正确.综上所述,其中正确的结论是②④.5. D[解析]由题意,知a2-2=0,且a>0.6. C[解析]当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A,D不正确;由B,C中二次函数的图象可知,对称轴,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.7. 36[解析]10秒时和26秒时拱梁的高度相同,则到达顶点时是18秒,所以通过拱梁部分的桥面OC共需18×2=36秒.8. (1)(2)(4)[解析]其对称轴为x=-1,且过点(-3,0),则另一个交点是(1,0).当x=2时,函数值大于零,即4a+2b+c>0,∴(3)错误,其余的均正确.9.2≤x≤3或-1≤x≤0[解析]把(3,2)代入y=x2+bx-1,得b=-2,当y=-1时,x=-1或x=2,观察可知:使-1 ≤y≤2的自变量x的取值范围是2≤x≤3或-1≤x≤0.10.x<-1或x>3[解析]观察可知抛物线与x轴另一交点为(-1,0),所以不等式ax2+bx+c>0的解集是x<-1或x>3.11.y=x2-2x-3[解析]用待定系数法求二次函数解析式.12.< [解析]先根据函数解析式确定出对称轴为直线x=1,再根据二次函数图象上的点,x>1时,y随x的增大而增大.13. 0<x<3[解析]利用了图象上的点的坐标特征来解一次函数与二次函数的解析式.14. (1)在x2-mx+m-1=0中,Δ=m2-4(m-1)=m2-4m+4=(m-2)2.∵当m取任何值时,(m-2)2≥0,∴无论m取任何实数时,方程总有实数根.(2)①∵抛物线y1=x2-mx+m-1过点(k-1,k2-6k+8)和点(-k+5,k2-6k+8),15. (1)∵∠EPF=45°,∴∠APE+∠FPC=180°-45°=135°.在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°-45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,在等腰直角△ABC中,AC=AB=4,又P为AC的中点,则AP=CP=2,如图(1),过点P作PH⊥AB于点H,PG⊥BC于点G,(第15题(1))∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.②如图(2)所示:(第15题(2))图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD对称, 此时EB=BF,即AE=FC,(2)在Rt△ABO中,OA=3,OB=4,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5.∴C,D两点的坐标分别是(5,4),(2,0).∴点C和点D在所求抛物线上.。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学计划教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. (6)由对称轴公式x=,可确定2a+b 的符号.二、基础练习1、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( D ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,则正确的结论是( D ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( C )1\2\3A 、1B 、2C 、3D 、4任课教师学科 版本 年段 辅导类型 上课时间 学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号的确定方法课次教学目标 掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

4、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是(B )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是(A4 ) A 、1 B 、2 C 、3 D 、46、(如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有(D2) A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说法正确的是(C ) A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是(B )1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是(D ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(B ) A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足(A )A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0C 、a <0,b >0,c >0,2b -4ac <0D 、a >0,b <0,c >0,2b -4ac >013、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是(B ) A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,则下列结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有(C ) A 、②③ B 、②④ C 、①③ D 、①④15、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是(C ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如图所示,下列结论错误的是(B ) A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a >0B 、c <0C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( C )个.1/2/3A 、1B 、2C 、3D 、4三、能力练习1.已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0 2.已知二次函数c bx ax y ++=2(a ≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤03.二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,ca)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.若二次函数c bx ax y ++=2的图象如图,则ac_____0(“<”“>”或“=”)第4题图 5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断正确的是( ) A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=ab2-时,y 有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab2-时,y 有最大值,例题.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ). (1)求抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?五、中考真题回顾: (09佛山)19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分, 满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).(11·佛山)21.如图,已知二次函数y =ax 2+bx +c 的图像经过A (-1,-1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图像;【答案】解:(1)根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3 ………………2分解得a =-1,b =2,c =2………………4分ab ac y 442-=最小值ab ac y 442-=最大值xy O第19题图xyoABC1所以二次函数的解析式为y =-x 2+2x +2………………5分(2)二次函数的图象如图………………8分 给分要点:顶点、对称、光滑(各1分)(12佛山)22.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的部分数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:(1)方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a , 解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y (三种选其一即可)(2)1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点x -1 0 1 2 3 y343xyoABC14、交y轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像(2013•佛山)24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).分析:(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=1+b+c=1 ∴点(1,1)在抛物线上
33
训练8:二次函数y=ax2+bx+c的图象如图
b 所示,则点M( ,a)在( D ) c
A、第一象限 B、第二象限 C、第三象限 D、第四象限 y
o
x
34
这节课你有哪些体会?
1.a,b,c等符号与二次函数y=ax2+bx+c有密切的 联系; 2.解决这类问题的关键是运用数形结合思想, 即会观察图象;如遇到2a+b,2a-b要与对称轴联 系等; 3.要注意灵活运用数学知识,具体问题具体分 析……
y M 1 B A x O 1
26
训练1:抛物线y=ax2+bx+c如图所示,
则正确的是:
A. a<0, b<0, c>0, b2 <4ac B. a<0, b > 0, c<0, b2 <4ac C. a<0, b>0, c>0, b2 > 4ac D. a>0, b<0, c<0, b2 > 4ac
这一结论及推导过程。
返回 36
37
C、2个
D、1个
o x=1
x
24
练一练:
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0; ④a+b-c>0; ⑤a-b+c>0正确的个数是 ( C ) A、2个 B、3个
y
C、4个
D、5个
-1 o
1
x
25
想一想:
4.二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶 点M在第二象限,且经过A(1,0),B(0,1),请判断实数a的范 围,并说明理由.
17
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
18
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
19
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
归纳知识点:
抛物线y=ax2+bx+c的符号问题: (5)a+b+c的符号: 由x=1时抛物线上的点的位置确定 a+b+c>0 点在x轴上方 a+b+c<0 点在x轴下方 点在x轴上 a+b+c=0 (6)a-b+c的符号: 由x=-1时抛物线上的点的位置确定 a-b+c>0 点在x轴上方 a-b+c<0 点在x轴下方 点在x轴上 a-b+c=0
b2-4ac <0时,抛物线于x轴没有交点
b2-4ac ≥0时,抛物线于x轴总有交点
6
回味知识点:
1、抛物线y=ax2+bx+c的开口方向与 什么有关? a
2、抛物线y=ax2+bx+c与y轴的交点 是 (0,C) .
3、抛物线y=ax2+bx+c的对称轴是
直线x=-
b 2a
7
归纳知识点:
抛物线y=ax2+bx+c的符号问题: (1)a的符号: 由抛物线的开口方向确定 a>0 开口向上 a<0 开口向下 (2)C的符号: 由抛物线与y轴的交点位置确定. c>0 交点在x轴上方 交点在x轴下方 经过坐标原点 c<0 c=0
(a、b、c、△等符号)
1
二次函数的几种表达式:
①、 y ax (a 0)
2
y
ax c(a 0) 2 ③、 y a( x h) (a 0) 2 ④、 y a( x h) k (a 0) 2 ⑤、 y ax bx c(a 0)
②、 y
2
∴abc>0
又:y=a+b+c时,X=1
如图,x=1时,y>0
即a+b+c>0
29
训练4:如图, x=1 是抛物线 y=ax2+bx+c
的对称轴,则 3b-2c 0
分析: ∵x=1 是对称轴 b 1 ∴- =1,a=- b* 2a 2 又∵ x=-1时, y<0 ∴a-b+c <0 1 将*代入:- 2 b-b+c <0 变形可得:3b-2c > 0
35
归纳小结:
(1)二次函数y=ax2+bx+c及抛物线的性质和应用 注意:图象的递增性,以及利用图象求自变量x或函 数值y的取值范围 (2)a,b,c,Δ的正负与图象的位置关系 注意:图象与轴有两个交点A(x1,0),B(x2,0)时 AB=|x2-x1|= √(x1+x2 )2+4x √Δ 1 x2= —— |a|
< a+b+c_____0, > a-b+c____0 > 4a-2b+c_____0
abc___0 > 2a+b_____0 <
-2 -1
0
1
15
y
2、二次函数y=ax2+bx+c(a≠0)的图象 如图所示,下列判断不正确的是( ④) ①、abc>0, ②、b2-4ac<0, ③、a-b+c<0, ④、4a+2b+c>0.
y
o
x
y
x
o
y
o
x
12
二次函数:y=ax2+bx+c (a≠0) 信息: 1.四个字母
2.三对特殊值
a>0
b<0
x=0时 x=1时
c>0 △>0
y=c y=a+b+c
x=-1时
y=a-b+c
3.二个特殊位置
y轴是对称轴 b=0
抛物线过原点
c=0
13
二次函数y=ax2+bx+c(a≠0)的几个特例:
o
x
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
22
练一练:
1.已知:二次函数y=ax2+bx+c的图象如图所示,则点 b M( ,a)在( D ) c A、第一象限 y B、第二象限 C、第三象限 D、第四象限
o x
23
练一练:
2、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①b>0;②c<0;③4a+2b+c > 0; ④(a+c)2<b2,其中正确的个数是 ( B ) A、4个 B、3个 y
y
1、当x=1 时,
y=a+b+c
2、当x=-1时2 -1 o 1 2
3、当x=2时,
4、当x=-2时,
……………
y=4a+2b+c y=4a-2b+c
……………
14
用心试一试!
1.已知y=ax2+bx+c的图象如图所示,
a___0, b_< _0, c___0, < >
= b = 2a, 2a-b___0, b2-4ac_____0 >
3
a,b的作用:
a、b同时决定对称轴位置: a、b同号时对称轴在y轴左侧 a、b异号时对称轴在y轴右侧 b=0时对称轴是y轴
4
c的作用:
决定抛物线与y轴的交点: c>0时,抛物线交于y轴的正半轴 c=0时,抛物线过原点 c<0时,抛物线交于y轴的负半轴
5
b2-4ac的作用:
决定抛物线与x轴的交点: b2-4ac >0时,抛物线与x轴有两个交点 b2-4ac =0时,抛物线与x轴有一个交点
27
训练2:如图所示抛物线y=ax2+bx+c,
则有:
A. a+b+c<0 B. a+b+c=0 C. a+b+c>0 D. a+b+c符号不定
28
训练3:二次函数y=ax2+bx+c如图所示,
则点P(a+b+c,abc) 在
A. 第一象限 C. 第三象限 分析: a>0,b>0,c>0 B. 第二象限 D. 第四象限
10
a b c 2a+b 2a-b
开口方向大小 向上a>0 向下a<o 对称轴与y轴比较 左侧ab同号 右侧ab异号
与y轴交点 交于上半轴c>o 下半轴c<0 -
b 与1比较 2a b 与-1比较 2a
与x轴交点个数 令x=1,看纵坐标 令x=-1,看纵坐标 令x=2,看纵坐标
b2-4ac a+b+c a-b+c 4a+2b+c 4a-2b+c
2
o
x
(顶点式) (一般式)
b 2 4ac b ⑥、 y a( x ) (a 0) 2a 4a
2
a的作用:
(1)决定开口方向:a>0时开口向上, a<0时开口向下. (2)决定形状: ︱a︱相同,则形状相同. ︱a︱不同,则形状不同. (3)决定开口大小: ︱a︱越大,则开口越小. ︱a︱越小,则开口越大. (4)决定最值:a>0时,有最低点,有最小值. a<0时,有最高点,有最大值. (5)决定增减性:a>0时,在对称轴左侧,y随x的增大而减小 在对称轴右侧,y随x的增大而增大. a<0时,在对称轴左侧,y随x的增大而增大 在对称轴右侧,y随x的增大而减小.
相关文档
最新文档