2.2整式的加减

合集下载

2.2 整式的加减

2.2 整式的加减
它的指数不变.
相加
3 ab²+ 5 ab²= 8 ab²
不变
探究新知
2.2 整式的加减
试一试
下列合并同类项合并对了吗?不对的,说明理由.
(1)a+a=2a √
(4)4x2y-5xy2=-x2y ×
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5
×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a
当x=2019时,原式=2×2019-1=4037.
探究新知
素养考点 4
2.2 整式的加减
利用合并同类项解答实际问题
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方
商定的结果是:1千克土豆换0.5千克苹果. 当称完带篮子的土豆重
量后,摊主对小明奶奶说:“别称篮子的重量了,称苹果时也带
篮子称,这样既省事又互不吃亏.”你认为摊主的话有道理吗?请
你用所学的有关数学知识加以判定.
解:设土豆重a千克,篮子重b千克,则应换苹果0.5a千克.
若不称篮子,则实换苹果为0.5a+0.5b-b=(0.5a-0.5b)千克,
很明显小明奶奶少得苹果0.5b千克.
所以摊主说得没有道理,这样做小明奶奶吃亏了.
巩固练习
2.2 整式的加减
6.为建立“图书角”,七年级一班的各组同学踊跃捐书,其
=____.
4.合并同类项:
-4a
(1)-a-a-2a=________;
0
(2)-xy-5xy+6yx=______;
ab2-a2b
(3)0.8ab2-a2b+0.2ab2=_______;
8a2b-2ab2+3

2.2-整式的加减教学设计

2.2-整式的加减教学设计

《2.2整式的加减》教学案例漯河市体育运动学校张亚丽2016年10月课题:2.2整式的加减教材:义务教育人教版七年级上册 教学目标:1、理解同类项的概念.2、会利用运算律合并同类项,掌握合并同类项的法则.3、在归纳合并同类项法则的过程中,提高观察能力、运用数学语言进行表达和交流的能力.4、在合并同类项的过程中,体会转化、分类讨论的数学思想.教学重点和难点:重点:理解同类项的概念;根据合并同类项的法则正确地合并同类项. 难点:根据同类项的概念在多项式中找同类项;正确地合并同类项.教学方法:分层次教学,讲授、练习相结合。

教学过程第一环节 直入课题,解读目标 要求:红笔勾画重点词句。

【设计意图】通过解读目标,让学生明确本节课的任务及重难点,有目的性的进行学习。

第二环节 自主学习1、将下面的代数式进行分类。

n 8、 xy -、 n 5、 b a 27-、 xy 3、 b a 22、与 ; 与 ; 与 是同类的, 因为它们所含字母 ; 也相同,这样的项,叫做同类项。

2、在多项式4353822+-+-x x x 中,28x 和______是同类项,5和_______是同类项.设计 “找朋友”的游戏,通过游戏让学生体会:① 同类项与系数无关; ②同类项与字母先后顺序无关。

【预习检测】(每空2分,共6分,4分合格,6分优秀) 3、下列各题中的两项是同类项的是( )A .9abc 与11acB .20.2ab 与20.2a bC .2b 与2xD .23x y 与23yx - 4、若215y x m +与3131x y n +-是同类项,则m= ,n= 。

【设计意图】通过完成预习案的相关内容,帮助学生理解同类项的概念,并能应用同类项的概念解决相关的一些问题。

第三环节 合作学习 一、合并同类项及其法则如图的长方形由两个小长方形组成,求这个长方形的面积。

(用两种方法列出式子,不计算)。

方法一: 方法二:则: = =13n ;定义:把同类项 叫做合并同类项。

2.2 整式的加减 (第3课时) 说课稿 2022—2023学年人教版数学七年级上册

2.2 整式的加减 (第3课时) 说课稿 2022—2023学年人教版数学七年级上册

2.2 整式的加减 (第3课时) 说课稿一、教材分析本节课是人教版数学七年级上册的第2.2单元——整式的加减的第3课时。

本节课的教学内容是学习整式的加减运算,重点是复习整数的加法和减法运算,并将其应用到整式的加减中。

通过学习,学生将掌握整式的加减运算规则,培养其逻辑思维和数学计算能力。

本节课的教学目标如下: - 掌握整数的加法和减法运算; - 理解整式的加法和减法运算的规则; - 运用整式的加减运算解决实际问题。

二、教学重难点1.整式的加法和减法运算规则;2.运用整式的加减运算解决实际问题。

三、教学过程Step 1导入新课首先,我会通过提问和回顾来导入新课。

我会让学生回顾整数的加法和减法运算规则,帮助他们温习相关知识,并引出整式的加法和减法运算。

Step 2整式的加法首先,我会给出两个整式的加法例子,通过展示计算的步骤和方法,向学生介绍整式的加法运算规则。

并通过一些简单的练习让学生掌握整式的加法运算。

例如:(3a + 4b) + (2a + 5b)= 3a + 4b + 2a + 5b (合并同类项)= (3a + 2a) + (4b + 5b) (交换律)= 5a + 9bStep 3整式的减法接下来,我会给出两个整式的减法例子,通过展示计算的步骤和方法,向学生介绍整式的减法运算规则。

并通过一些简单的练习让学生掌握整式的减法运算。

例如:(5a + 3b) - (2a + b)= 5a + 3b - 2a - b (分配律)= 5a - 2a + 3b - b (合并同类项)= 3a + 2bStep 4整式的加减混合运算在本节课的最后,我会给出一些整式的加减混合运算的例子,让学生通过练习来巩固整式的加减运算规则,并提高他们的运算能力。

例如:(4x + 2y) - (3x - y) + (2x + 5y)= 4x + 2y - 3x + y + 2x + 5y (分配律)= (4x - 3x + 2x) + (2y + y + 5y) (合并同类项)= 3x + 8y相同的,我会给出多个练习题让学生进行练习,以加深他们对整式的加减运算规则的理解和掌握。

2.2 整式的加减

2.2 整式的加减
(x-y2)=x2+y-2x+2y2,错误;③-(a+b)-(-x+y)=-a-b+x-y, 正确;④应为3(x-y)+(a-b)=3x-3y&#(1)括号内各项都要与括号前的数相乘,不要漏
乘任何一项;(2)同号得正,异号得负,不要出 现符号错误;(3)去完括号,可运用去括号法则 进行验证.
意若所给的值是负数,代入时要添上括号;若所给的值是
(3)整式加减的结果一定要化为最简,即最后结果中:①不能
含有同类项;②不能出现带分数,带分数要化成假分数;③一 般按某一字母的降幂或升幂排列
巧记乐背
整式进行加和减,
实质就是在化简; 先去括号再合并, 化到最简才算完.
整式加减与求值:整式的加减常与整式的求值相结合,解 决这类问题的大致步骤为:先利用整式的加减化简整式, 再把有关的数值代入并计算,简记为“一化、二代、三计 算”.在化简时要注意去括号时是否变号,在代入时要注
第二章 整式的加减
2.2 整式的加减
同类项
概念 同类 项 所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个 常数项也是同类项
(1)同类项不一定是两项,也可以是三项、四项或更多项,但至
少为两项.(2)同类项的特征:“两相同,两无关”.“两相同”是 知识 指:①所含字母相同;②相同字母的指数相同.“两无关”是指:①
整式的加减
概念
整式加 减的运 算法则 一般地,几个整式相加减,如果有括号就先去括号,再合并同
类项
(1)整式加减的一般步骤:①如果有括号,先去括号;②如果
有同类项,要合并同类项;③如果运算结果是多项式,把这个
知识解 读 多项式按某一字母的降(升)幂排列.(2)整式加减的一般步 骤并不绝对,在具体运算中,也可以先合并同类项,再去括号.

《 2.2 整式的加减》作业设计方案-初中数学人教版2012七年级上册

《 2.2 整式的加减》作业设计方案-初中数学人教版2012七年级上册

《2.2 整式的加减》作业设计方案(第一课时)一、作业目标:1. 学生对整式加减的基本概念有深入理解;2. 学生能独立完成简单的整式加减计算;3. 学生能够正确判断同类项并能进行合并。

二、作业内容:1. 完成课后练习册中关于《2.2 整式的加减》的习题;2. 自拟题目,对简单整式进行加减运算,如:-3x²y+5x²y= ;2a²-4a²+4a= ; -3m²+7m²-6m= ;3. 观察下列式子:3ab-2ab+ab=,4xy-3xy+2xy=,尝试总结出同类项的概念和合并同类项的方法。

三、作业要求:1. 独立完成作业,禁止抄袭;2. 解题过程要规范,使用正确的数学符号和格式;3. 对自拟题目的答案要有充分的分析和说明。

四、作业评价:1. 作业完成情况将作为平时成绩的参考依据之一;2. 鼓励学生对题目进行分析和思考,提出自己的见解;3. 对于在作业中遇到的问题,鼓励学生积极提问和讨论,提高学习效果。

五、作业反馈:1. 学生应在完成作业后,对作业进行自评和反思,总结自己的收获和不足;2. 学生可以将作业中的问题或疑惑,通过课堂或私下方式向老师请教,寻求解答;3. 老师应及时对学生的作业反馈进行回应,提供针对性的指导,促进学生的学习进步。

在《2.2 整式的加减》这一课时的作业设计中,我们注重了理论与实践的结合,通过课后练习、自拟题目和总结概念等方法,帮助学生加深对整式加减的理解和掌握。

同时,我们也强调了作业的独立完成和规范解题,以及问题反馈和讨论的重要性,以促进学生的学习效果和兴趣。

希望通过这样的作业设计方案,能够帮助学生更好地掌握整式加减的知识,为后续的数学学习打下坚实的基础。

作业设计方案(第二课时)一、作业目标:1. 巩固学生对整式加减的概念、法则和运算律的理解和运用;2. 提高学生运用整式加减的方法解决实际问题的能力;3. 培养学生的逻辑思维和独立思考的能力。

2.2 整式的加减(3个课时)

2.2 整式的加减(3个课时)

2.2整式的加减第1课时 同类项及合并同类项学习目标:1.理解同类项的概念.2.掌握合并同类项法则,会进行简单的同类项合并.3.运用类比数学思想方法,发展学生探究能力、问题的抽象概括能力.学习重点:合并同类项法则学习难点:对同类项概念的理解,合并同类项法则的探究过程. 学习过程: 一、自主学习1、自学课本62—63页,完成62页及63页探究2、观察:3x 2 和 2 x 2 ; 3ab 2 与 -4 ab 2 在结构上有哪些相同点和不同点? 归纳: 叫做同类项________ 也是同类项。

如3和-5是同类项自学检测: 下列各组式子中是同类项的是( ).A .-2a 与a 2B .2a 2b 与3ab 2C .5ab 2c 与-b 2ac D .-17ab 2和4ab 2c二、合作探究: 1.填空:(1)=-t t 252100( )t ;(2)=+2223x x ( )2x ;(3)=-2243ab ab ( )2ab . 2.上述运算式有什么特点,你能多中得出什么规律? 把多项式中的__________合并成一项,叫做合并同类项.3.议一议:合并同类项前后的项的系数,字母以及字母的指数,有何变化?与同伴交流后,归纳出合并同类项法则: 三、精讲释疑1.教科书64页例1(学生独立完成)2.教科书64、65页例2、3(小组合作交流)四、课堂检测 A 组1.判断下列说法是否正确,正确的在括号内打“√”,错误的打“×” (1)x 3与xm 3是同类项( ) (2)ab 2 与ba -是同类项( ) (3)23与32是同类项( )2.若m y x 35和219y x n +-是同类项,则m=_________,n=___________。

B 组 化简:① 2a 2b -3a 2b +0.5a 2b ; (2)3x 2y -2xy 2+31xy 2-23yx 2C 组1.若y x y mx y x 22252-=+,则m = .2、若单项式y x a 112-与b xy --5是同类项,求22222613121b a ab ab b a -++的值五、课堂小结:本节课学了哪些主要内容?六、布置作业:教科书第65页练习题第1、2、3、4题2.2 整式的加减 第2课时 去括号学习目标:1.理解去括号法则.2.会利用去号法则将整式化简.3.经历类比带有括号的有理浸透的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.学习重点:去括号法则,准确应用法则进行化简.学习难点:去括号法则的理解;括号前面是负号时,去括号后各项符号的变化. 学习过程:一、自主学习(阅读教科书66、67页,学会例4) 去括号法则:如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 二、合作探究例5 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h ,水流速度是a km/h .(1)2 h 后两船相距多远?(2)2 h 后甲船比乙船多航行多少km ? 三、当堂检测 A 组1.下列各式化简正确的是( )。

2.2.整式的加减——合并同类项

2.2.整式的加减——合并同类项

因为多项式中的字母 表示的都是数,所以我们 可以运用交换律、结合律、 分配律把多项式中的同类 项进行合并。
例如:4x2+2x+7+3x-8x2-2
例3 (1) 求多项式
2x2 5x x2 4x 3x2 2 的值,其中x 1 ;
2
把多项式中的同类项 合并成一项,叫做合并同 类项。
(5) 4x2 y 3xy 5x y2 3yx
注意:合并同类项的结果 如果是一个多项式,通常 把这个结果按某一个字母 的升幂或降幂的顺序排列。2x y 5(x y)2
(x y) 3(x y)2 9
(2) (7 a+b)3 (3 a+b)2+(a+b)2 (2 a+b)2 (5 a+b)3
把它们的系数与系数相加 作为和的系数,而字母 和 字母的指数不变 。
例1 合并下列各式的同类项: (1) xy2 1 xy2
5
(2) 3x2 y 2x2 y 3xy2 2xy2
(3) 4a2 4b2 2ab 4a2 3b2
(4) 3x2 y 4xy2 3 5x2 y 2xy2 5
(4) 若多项式 a2 +2kab+b2 -6ab+9 不含ab项,求k的值。
(2) 求多项式
3a abc 1 c2 3a 1 c2的值,
3
3
其中a 1 ,b 2,c 3。 6
例4 (1) 水库中水位第一天 连续下降了a 小时,每小 时平均下降 2 cm;第二天 连续上升了a 小时,每小 时平均上 0.5 cm,这两天 水位总的变化情况如何?
整式的加减(1) ——合并同类项

人教版七年级上册数学:2.2 整式的加减练习题及答案

人教版七年级上册数学:2.2 整式的加减练习题及答案

3)5a 2b 与5a 2bc (6)53与一33.4)23a 2与32a 2; (5)3p 2q 与一qp 2;2.2整式的加减(1)♦课前预习1.含有的字母,并字母的也相同的项,•叫做同类项.2.在合并同类项时,我们把同类项的相加,字母和字母的不变♦互动课堂(一) 基础热点例1】下列各题中的两项哪些是同类项?21(1)—2m 2n 与m 2n ;(2)X 2y 3与X 3y 2;32分析:判断同类项要抓住“两同”:即字母相同,相同字母的指数相同,与系数和字母的排列顺序无关,常数项都是同类项.解:(1),(4),(5),(6).点拨:先判断字母是否相同,再判断相同字母的指数是否相同【例2】合并同类项:4x 2y —8xy 2+7—4x 2y+10xy 2—4.分析:初学时可用不同记号标出各同类项,以防止错漏.解:4x 2y —8xy 2+7—4x 2y+10xy 2—4=(4一4)X 2y+(―8+10)xy 2+(+7—4)=2xy 2+3点拨:合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.(二) 易错疑难【例3】已知(a+1)2+|b —2|=0,求多项式a 2b 2+3ab —7a 2b 2—2ab+1+5a 2b 2的值. 分析:先合并同类项,再求a 、b 值代入.解:由非负数性质,得a=—1,b=2.原式=(a2b2—7a2b2+5a2b2)+(3ab—2ab)+1=—a2b2+ab+l把a=—1,b=2代入得:原式=—5.点拨:对于多项式求值,有同类项应先合并同类项,再代值计算,可使计算便捷.(三)中考链接【例4】(1)化简:5a—2a=;(2)若一4x a y+x2y b=—3x2y,则a+b=.答案:(1)3a;(2)3点拨:考查合并同类项及同类项的概念.名师点津1.判断同类项有两个标准,一是字母相同,二是相同字母的指数也相同,•几个常数项也是同类项.2.合并同类项的方法可简记为“一加减两不变”,即合并同类项时,•把系数相加减,其值作为结果的系数,字母和字母的指数不变,同时要特别注意各项系数的符号.♦跟进课堂1.下列各组中的两项,不是同类项的是().A.a2b与一6ab2B.—x3y与2yx3C.2兀R与兀2RD.35与532.下列计算正确的是().A.3a2—2a2=1B.5—2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去一4x等于3x2—2x—1的多项式为().A.3x2—6x—1B.5x2—1C.3x2+2x—1D.3x2+6x—14.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式一3x2y—10x3+3x3+6x3y+3x2y—6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关7.A.±2 B.—2 C.2 D.0 若2x2y m与一3x n y3是同类项,则m+n.8.9. 计算:(1)3x—5x=;(2)(2008,河北)计算a2+3a2的结果是121合并同类项:—r ab2+二ab2ab2=.23410.五个连续偶数中,中间一个是n,这五个数的和是.11.1若m为常数,多项式mxy+2x—3y—1—4xy为二项式,则—m2—m+2的值是.12.11若单项式一—a2x b m与a n b y—可合并为—a2b4,则xy—mn=♦漫步课外13.合并下列各式的同类项:1)—0.8a2b—6ab—3.2a2b+5ab+a2b;2)5(a—b)2—3(a—b)2—7(a—b)—(a—b)2+7(a—b).14.先化简,1)5a2—4a2+a—9a—3a2—4+4a,其中a=—2;6.如果多项式3x3—2x2+x+|k|x—5中不含X2项,则k的值为().9111其中a=1,b=-2;(2)5ab—a2b+a2b—ab—a2b—5,224(3)2a2—3ab+b2—a2+ab—2b2,其中a2—b2=2,ab=—3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.♦挑战极限16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x・只(x>4,付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?n=—•值为4答案:10.・5n ・11.612.-313.(1)—3a 2b —ab (2)(a —b )29114.(1)原式=—2a 2—5a ,值为2(2)・原式=^ab —5a 2b —5,值为=42(3)原式=a 2—b 2—2ab ,值为81 15.m=—, 6 16.y 1=20x4+5(x —4)=5x+60,y 2=(20x4+5x )x92%=4.6x+73.6,由y ]=y 2,即5x+60=4.6x+73.6,得x=34.故当4<x 〈34时,按优惠办法(1)更省钱; 当x=34时,・两种办法付款相同;当x>34时,按优惠办法(2)更省钱1.A2.D3.A4.C 5.A6.A7.58.(1)-2x 2)4a 29. 12 ab 2。

《2_2整式的加减》(第一课时)教学设计

《2_2整式的加减》(第一课时)教学设计

《2.2整式的加减》(第一课时)教学设计一、教学目标:1、知识与技能目标:(1)使学生理解多项式中同类项的概念,会识别同类项。

(2)使学生掌握合并同类项法则。

2.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

3.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的水平,让他们享受成功的喜悦。

三、教学重点、难点:重点:同类项的概念、合并同类项的法则及应用。

难点:准确判断同类项;准确合并同类项。

四、教学方法:采用引导发现法,引导学生从已有的知识和生活经验出发,提出问题与学生共同观察、类比、归纳探索,以调动学生求知的积极性.五、教具准备:多媒体课件卡片六、教学过程设计:(一)、明确本节课的学习目标。

1、什么是同类项;2、怎样合并同类项。

(二)、探究新知:1、同类项的概念:(1)下各组式子的共同特点和不同点:2x 和 -3 x , 5st 和 7ts , 3x2y 和 5x2y , 2 ab2c 和 -ab2c 师:操作多媒体,展示幻灯片,提出问题生:动脑思考回答以下问题(2)什么是同类项:由3x2y 和 5x2y 引出同类项的概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:(1)同类项与系数无关,与字母的排列顺序也无关;(2)几个常数项也是同类项。

师:提出问题生:总结回答(3)巩固练习:①、说出以下各题的两项是不是同类项?为什么?a3与b3 -4x2y与4xy23.5abc与0.5abc -2与4师:课件展示问题生:回答师:总结并展示答案②、玩一玩:找同类项朋友游戏规则:现在,老师有16张写有单项式的卡片,发给一些同学;老师随意报一个号,请报到号的同学带好卡片站到前面,并面对全班同学高举自己的卡片;其他15位同学观察自己手中的卡片和前面同学卡片上的单项式,假设认为它们是同类项的,也请站到前面,并面向全班同学高举自己的卡片;请其他同学做裁判,看看他们有没有找错朋友。

2.2_整式的加减(教案)

2.2_整式的加减(教案)
2.2_整式的加减(教案)
一、教学内容
2.2_整式的加减:本节教学内容来自七年级数学上册,主要包括以下内容点:(1)理解整式的概念,掌握整式的加减法则;(2)能够正确列出整式,进行整式的加减运算;(3)掌握合并同类项的方法,并运用到实际问题中。具体内容包括:单项式与多项式的定义、同类项的辨识、合并同类项、整式的加减运算。通过本节内容的学习,使学生能够熟练掌握整式的加减运算,为后续学习打下基础。
三、教学难点与重点
1.教学重点
(1)整式的概念:使学生理解并掌握单项式、多项式的定义,能够辨识各种整式。
举例:如2x、-3xy、4x^2y等是单项式;3x+2y、4x^2-5xy+6等是多项式。
(2)整式的加减法则:使学生熟练掌握整式加减运算的步骤和方法,特别是合并同类项。
举例:如2x+3x=5x,-4xy-2xy=-6xy。
3.重点难点解析:在讲授过程中,我会特别强调整式的加减法则和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算不同物品的价格总和,演示整式的加减原理。
(3)应用整式加减解决实际问题:培养学生将现实问题抽象为整式加减运算,并能正确求解。
举例:某商品的单价为x元,购买a个该商生需掌握辨识同类项的规则,包括字母相同、指数相同。
举例:2x与3x是同类项,但2x与2x^2不是同类项。
(2)合并同类项:学生需学会将同类项的系数相加减,字母及指数保持不变。
举例:2x+3x=5x,而不是6x;4x^2-3x^2=x^2,而不是7x^2。

2.2整式的加减数学教案

2.2整式的加减数学教案

2.2整式的加减数学教案
标题: 2.2 整式的加减数学教案
一、教学目标
1. 理解并掌握整式加减运算的基本概念和方法。

2. 能够运用整式加减运算法则解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点
1. 重点:理解整式加减运算法则,能够熟练进行整式的加减运算。

2. 难点:理解和运用整式加减运算法则解决实际问题。

三、教学过程
1. 引入新课
通过一些生活中的实例,引入整式加减的概念,激发学生的学习兴趣。

2. 新课讲解
(1)定义与性质:讲解整式的定义,整式的加法和减法运算法则,以及整式加减运算的一些基本性质。

(2)例题解析:通过具体的例题,让学生理解和掌握整式加减运算的方法。

3. 练习与讨论
设计一些练习题,让学生自己尝试解答,然后集体讨论,强化对整式加减运算法则的理解和应用。

4. 小结与作业
对本节课的内容进行小结,布置课后作业,让学生进一步巩固所学知识。

四、教学反思
在教学过程中,教师应注意观察学生的学习情况,及时调整教学策略,确保每一个学生都能理解和掌握整式加减运算法则。

人教版七年级数学上册2.2《整式的加减》教学设计

人教版七年级数学上册2.2《整式的加减》教学设计

人教版七年级数学上册2.2《整式的加减》教学设计一. 教材分析人教版七年级数学上册2.2《整式的加减》是学生在掌握了整式的概念和运算法则的基础上进行学习的内容。

本节内容主要介绍了整式的加减法运算,包括同类项的定义、合并同类项的法则等。

通过本节内容的学习,学生能够熟练掌握整式的加减法运算,并能够解决实际问题。

二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,具备了一定的数学基础。

但是,对于整式的加减法运算,学生可能还存在着一些困惑,例如对同类项的理解和合并同类项的方法等。

因此,在教学过程中,需要注重对学生基础知识的巩固和拓展,通过实例讲解和练习,帮助学生理解和掌握整式的加减法运算。

三. 教学目标1.知识与技能:学生能够理解同类项的定义,掌握合并同类项的法则,能够进行整式的加减法运算。

2.过程与方法:通过实例讲解和练习,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和热情,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.教学重点:同类项的定义,合并同类项的法则,整式的加减法运算。

2.教学难点:同类项的判断,合并同类项的技巧,解决实际问题。

五. 教学方法1.情境教学法:通过实例讲解和生活实际问题,引发学生的兴趣和思考,引导学生主动参与学习。

2.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识和沟通能力。

3.实践操作法:通过练习和操作,让学生动手动脑,巩固所学知识,提高解决问题的能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示教学内容和实例。

2.练习题:准备适量的练习题,用于学生的操练和巩固。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零、制作蛋糕等,引导学生思考如何运用整式的加减法来解决问题。

激发学生的兴趣和思考,为后续学习做好铺垫。

2.呈现(10分钟)通过PPT呈现同类项的定义和合并同类项的法则,结合实例进行讲解。

2.2.2_整式的加减

2.2.2_整式的加减

(1)
1 1 5(3a 2b − ab 2 ) − (ab 2 + 3a 2b), 其中a = , b = . 2 3
已知 A = 2a 2 − a , B = − 5a + 1, 求当 a = 1 时, 3A − 2B + 1的值。 2
ห้องสมุดไป่ตู้
(2)
随堂练习: 3.合并同类项 ①X3-2X2+3X-1-5X+2+2X ④-mn+2mn-3mn2+4mn2 练一练 计算下列各题:
2
3
2
2
(1) 5a2+4-2a
(2) x2-x4+2-5x
2.把多项式降幂排列 瞧一 瞧 : 下列各题计算的结果对不对?如果不对,指出错在哪里?
2x4y + x3y
2
− 3x2y
3
+
2 x + 2 3
(1 ) (3)
例1
3 a + 2 b = 5 ab ( 2 ) 2 ab − 2 ba = 0 ( 4 )
比较③、④两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师 板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相 同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 特别地,+(x-3)与-(x-3)可以分别看作 1 与-1 分别乘(x-3). 利用分配律,可以将式子中的括号去掉,得: +(x-3)=x-3 (括号没了,括号内的每一项都没有变号) -(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解, 去括号应对括号的每一项的符号都予考虑,做到要 变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习 例 1.化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要 变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号. 为了防止错误,题(2)中-3(a2-2b),先把 3 乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书. 例 2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水, 两船在 静水中的速度都是 50 千米/时,水流速度是 a 千米/时. (1)2 小时后两船相距多远? (2)2 小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例 2,学生思考、小组交流,寻求解答思路. 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度, 船逆水 航行速度 =船在静水中行驶速度-水流速度.因此,甲船速度为( 50+a)千米 / 时,乙船速度为(50-a)千米/时,2 小时后,甲船行程为 2(50+a)千米,乙 船行程为(50-a)千米. 两船从同一洪口同时出发反向而行,所以两船相距等 于甲、乙两船行程之和. 解答过程按课本. 去括号时强调: 括号内每一项都要乘以 2, 括号前是负因数时, 去掉括号后, 括号内每一项都要变号.为了防止出错,可以先用分配律将数字 2 与括号内的 各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号. 三、巩固练习 1.课本第 68 页练习 1、2 题. 2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-” 号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律 可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数 字要乘以括号内的每一项,切勿漏乘某些项. 学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。 法 则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。

2.2.2 整式的加减——去括号 说课稿 2022—2023学年人教版数学七年级上册

2.2.2 整式的加减——去括号 说课稿  2022—2023学年人教版数学七年级上册

2.2.2 整式的加减——去括号说课稿一、教材分析1. 教材内容本课时是数学七年级上册的第2单元第2节课,主要内容是整式的加减——去括号。

本节课的教学目标是让学生能够理解整式的加减法则,掌握去括号的方法,培养学生运算能力和思维能力。

2. 教学重点和难点本节课的教学重点是引导学生掌握整式的加减法则和去括号的方法。

教学难点在于让学生理解去括号的原理和运用去括号方法解决问题。

3. 教学准备为了能够有效地教授本节课,我准备了以下教学准备:•教案和课件•学生的课本和作业本•黑板和粉笔•各种整式的例题和练习题二、教学过程1. 导入新课通过提问学生已学过的内容,引导学生回忆整式的定义和加减法则,为本节课的学习做铺垫。

2. 介绍整式的去括号方法通过一个简单的例子,向学生展示括号中的项如何进入的去括号过程,引导学生理解去括号的原理和规则。

3. 整式的加减法则结合具体例子,向学生展示整式的加减法则,包括同类项相加减和不同类项相加减的步骤和规则。

4. 练习与巩固让学生在黑板上完成一些练习题,巩固整式的加减法则和去括号的方法。

5. 拓展思考提出一些拓展问题,让学生思考整式的运算性质和应用。

三、教学方法1. 案例教学法通过具体的案例和例题,引导学生理解整式的加减法则和去括号的方法。

2. 合作学习法在练习与巩固环节,鼓励学生进行小组合作,互相讨论和解决问题,提高学生的思维能力和合作能力。

3. 智慧板教学法结合智慧教育技术,使用智慧板进行教学,可以更加直观地展示各种整式的加减过程和去括号的方法。

四、教学评估1. 自我评估通过观察学生的表现和听取学生的回答、解题过程,评估学生是否掌握了整式的加减法则和去括号的方法。

2. 学生评估通过给学生一些作业题目,让他们在课后完成,再进行评估。

可以通过作业的完成情况和成绩来评估学生的学习效果。

五、板书设计去括号公式:(a + b) + c = a + b + c(a + b) - c = a + b - ca - (b + c) = a - b - c六、教学反思本节课的教学目标是引导学生理解整式的加减法则和去括号的方法。

2.2 整式的加减

2.2 整式的加减

2.2 整式的加减1. 引言整式是由字母、数字与运算符号组合而成的代数表达式。

整式的加减是数学中的基础运算之一,掌握整式的加减运算对于学习代数学和解决实际问题都具有重要意义。

本文将介绍整式的加减的定义和运算规则,以及一些例子来帮助读者更好地理解。

2. 整式的定义整式是指只包含有理数、字母和运算符(加号或减号)的表达式。

整式是代数学中的基础概念,用于表示数与字母的运算关系。

整式的形式可以是单个项或多个项的和或差。

每个项由系数和字母的乘积组成,这个乘积可以有指数。

例如: - 2x^2y + 3xy^2 - 4xy - 5a^3 - 2b^2 + 73. 整式的加减运算规则3.1 加法的运算规则整式的加法是指将两个或多个整式相加的运算。

加法的运算规则如下: 1. 将同类项相加,即将具有相同字母和指数的项相加。

2. 系数相加。

例如:2x^2y + 3xy^2 - 4xy + 5x^2y - 2xy^2 + 7xy= (2x^2y + 5x^2y) + (3xy^2 - 2xy^2) + (- 4xy + 7xy)= 7x^2y + xy^2 + 3xy3.2 减法的运算规则整式的减法是指将一个整式减去另一个整式的运算。

减法的运算规则如下: 1. 将减数的每一项的系数取相反数,然后按照加法的运算规则进行运算。

例如:(2x^2y + 3xy^2 - 4xy) - (5x^2y - 2xy^2 + 7xy)= 2x^2y + 3xy^2 - 4xy - 5x^2y + 2xy^2 - 7xy= (2x^2y - 5x^2y) + (3xy^2 + 2xy^2) + (-4xy - 7xy)= -3x^2y + 5xy^2 - 11xy4. 整式的加减练习题1.计算:(3x^2 - 2xy + y^2) + (4x^2 - 3xy + 2y^2)2.计算:(5a^3 - 2b^2 + 7) - (3a^3 + 4b^2 - 1)5. 结论在代数学中,整式的加减是基础的代数运算之一。

【人教版】七上数学:2.2《整式的加减》(3课时)教学设计

【人教版】七上数学:2.2《整式的加减》(3课时)教学设计

2.2整式的加减(第1课时)教学目标:1.理解同类项的概念.2.掌握合并同类项法则,会进行简单的同类项合并.3.运用类比数学思想方法,发展学生探究能力、问题的抽象概括能力.教学重点:合并同类项法则难点:对同类项概念的理解,合并同类项法则的探究过程.教法:互动探究法学法:小组研讨法教学过程:复习(1)举例说明什么是多项式,多项式的次数、多项式的项、常数项.学生活动:学生抢答一、情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h ,在非冻土地段的行驶速度是120 km/h ,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h ,你能用含t 的式子表示这段铁路的全长吗?学生合作探究:分析已知量和未知量之间的数量关系.教师总结:依题意可列出非冻土地段所需时表示为t 1.2,根据路程=时间⨯速度,铁路全长是t t 1.2120100⨯+,即t t 252100+.那么t t 252100+能够化简吗?下面我们就来学习今天的新知识——同类项问题2:(1)运用运算律计算:22522100⨯+⨯= ,()()22522100-⨯+-⨯= ;(2)根据(1)中的方法完成下面的运算,并说明其中的道理:t t 252100+= .学生活动:在独立完成的基础上,小组合作探究.师生合作探究:前面我们学习过特殊到一般的方法解决问题,本题22522100⨯+⨯可看作,t t 252100+中当t 取多少时的算式?()()22522100-⨯+-⨯呢?类比它们的关系,t t 252100+也能用运算律来化简吗?教师总结:运用分配律可得(1)题中()2352225210022522100⨯=⨯+=⨯+⨯,()()()()()2352225210022522100-⨯=-⨯+=-⨯+-⨯(2)题t t 252100+有与(1)题相同的结构,其中t 代表一个因数,因此也可以用分配律得()t t t 252100252100+=+.本题利用类比方法,推导出运算律同样适用于含字母因数的式子,为下面的同类项概念的引入做准备.问题3:填空:(1)=-t t 252100( )t ;(2)=+2223x x ( )2x ;(3)=-2243ab ab ( )2ab .上述运算式有什么特点,你能多中得出什么规律?学生活动:独立完成的基础上,小组合作交流.教师总结:利用分配律可得()t t t t 152252100252100-=-=-,()2222323x x x +=+,()2224343ab ab ab -=-.观察(1)中的多项式的项t 100和t 152-,它们含有相同的字母t ,并且字母的指数都是1;(2)中多项式的项23x 、22x 都含有相同的字母x ,并且x 的指数都是2;(3)中多项式的项23ab 、24ab -,它们都含有字母a 、b ,并且a 都是1次的,b 都是2次的.象t 100与t 152-,23x 与22x ,23ab 与24ab -这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变.问题 4.你能化简多项式28372422--+++x x x x 吗?若能,请你把最后结果中的各项按照某个字母的指数从大到小或者从小到大的顺序排列.学生活动:小组合同探究,结合前面的结论,来寻求解决问题的途径与方法.师生合作探究:多项式中有同类项吗?能利用交换律、结合律合并同类项吗?教师总结:因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.2732842837242222-+++-=--+++x x x x x x x x()()()55427328422++-=-+++-x x x x最后结果是按照x 的指数从大到小(降幂)的顺序排列,其中5是常数项,相对于x ,可以看作“没有指数”.最后结果也可以按照x 的指数从小到大(升幂)的顺序,写成2455x x -+.二、范例学习例1:合并下列各式的同类项:(1)2251xy xy -; (2)22222323xy xy y x y x -++-;(3)222244234b a ab b a --++学生活动:在独立完成的基础上,小组交流,讨论解题过程以及结果的合理性.师生合作探究:利用运算律,先合并同类项,结果按照某个字母的升幂或降幂排列.教师总结:(1)22225451151xy xy xy xy =⎪⎭⎫ ⎝⎛-=-; (2)()()22222223232323xy y x xy xy y x y x -++-=-++-22xy y x +-=(3)()()ab b b a a b a ab b a 243444423422222222+-+-=--++()()ab b ab b a 224344222+-=+-+-=例2:(1)求多项式23452222--++-x x x x x 的值,其中21=x . (2)求多项式22313313c a c abc a +--+的值,其中3,2,61-==-=c b a . 学生活动:小组合作探究,先完成(1)题,教师评讲完后,再做下一题.师生合作探究:一种方法是直接把x 的值代入多项计算,第二种是把多项式经过合并同类项,再带入x 的值计算,两种方法更简便?教师总结:先化简,再代入求值.(1)()()2245312234522222--=-+-+-+=--++-x x x x x x x x . 当21=x 时,原式25221-=--=. (2)()abc c abc a c a c abc a =⎪⎭⎫ ⎝⎛+-++-=+--+222313133313313. 当3,2,61-==-=c b a 时,原式()13261=-⨯⨯-. 上面的问题使学生进一步熟悉合并同类项法则,也使学生看到将多项式适当化简后可以简化计算.例3:(1)水库水位第一天连续下降了a h ,每小时平均下降到2cm ;第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?学生活动:小组合作探究.师生合作探究:(1)水位有升降区别,那么用什么数来表示这种变化?总的水位变化,显然是这两天水位变化的和.(2)大米量变化上午卖出理+下午购进量,这里的卖出与购进怎么表示?教师总结:(1)a a a 5.15.02-=-(cm )(2)x x x x 6435=+-(kg )三、巩固拓展练习1 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”(1)x 3与xm 3是同类项( )(2)ab 2 与ab -是同类项( )(3)22yx 与 y x 23是同类项( )(4)23ab 与c ab 23是同类项( )(5)23与32是同类项( )练习21.若m y x 3-与n x y 221是同类项,则m = ,n = .2.若22252xy y mx y x -=+,则m = .3.当21=x 进,多项式765155222--++-x x x x x 的值为 .参考答案:×,√,√,×,√,2,3,-12.四、课堂总结(1)本节课学了哪些主要内容?(2)你能举例说明同类项的概念吗?(3)举例说明合并同类项的方法.(4)本节课主要运用了什么思想方法研究问题?五、作业教科书第65页练习题第1、2、3、4题板书设计例1 例2 例32.2 整式的加减(第2课时)教学目标:1.理解去括号法则.2.会利用去号法则将整式化简.3.经历类比带有括号的有理浸透的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.教学重点:去括号法则,准确应用法则进行化简.教学难点:去括号法则的理解;括号前面是负号时,去括号后各项符号的变化.教法:互动探究法.学法:小组研讨法.教学过程:复习:1.什么是同类项?2.怎样进行合并同类项?一、情况引入问题:在格尔木到拉萨路段,如果列车通过冻土地段需要u h ,那么它通过非冻土地段的时间是(5.0-u )h.于是冻土地段的路程是u 100km ,非冻土地段的路程是()5.0120-u km.因此,这段铁路的全长(单位:km )是 ,冻土地段与非冻土地段相差(单位:km ) 学生合作探究:先自主完成,小组交流合作教师总结:()5.0120100-+u u ①,②()5.0120100--u u ②,式子①,②都带有括号,类比数的运算,它们应如何化简?这就是我们将要学习的内容——去括号利用分配律,可以去括号,再合并同类项,得()60220601201005.0120100-=-+=-+u u u u u()6020601201005.0120100+-=+-=--u u u u u上面两式中()601205.0120-+=-+u u ③()601205.0120+-=--u u ④比较③,④两式,你能发现骈括号时符号变化的规律吗?学生活动:小组合作探究师生合作探究:去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.特别地,()3-+x 与()3--x 可以看作1与此同时1分别乘()3-x .二、范例学习例4化简下列各式:(1)()b a b a -++528;(2)()()b a b a 23352---.学生活动:自方主完成教师总结:先去括号,再合并同类项解(1)()b a b a b a b a b a +=-++=-++13528528;(2)()()()b a b a b a b a 6335233522---=---b a a b a b a 353633522++-=+--=.例5两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h ,水流速度是a km/h .(1)2 h 后两船相距多远?(2)2 h 后甲船比乙船多航行多少km ?学生活动:小组合作交流师生合作探究:顺水速度=静水速度+水流速度=(50+ a )km/h逆水速度=静水速度-水流速度=(50- a )km/h教师总结:2 h 后两船相距2(50+ a )+2(50- a )=200.2 h 后甲船比乙船多航行2(50+ a )-2(50- a )=4 a.三、巩固拓展1.(1)()122-+-+y x = ;(2)()b a +--35= .(3)实数a 、b 、c 数轴上的对应点如下图,化简c c b b a a ----++= . 0c ba2.化简: (1)()5.012-x ; (2)⎪⎭⎫ ⎝⎛--x 5115 (3)()()73235---+-a a a ; (4)()()123931++-y y . 学生活动:先独立完成,后小组合作交流教师总结: 1. 224-+-y x 、b a -+-35、0;2. 612-x 、5-x 、55+-a 、14+y四、课堂总结1.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.五、作业教科书第70页习题2.2第3、4题板书设计2.2整式的加减第二课时去括号问题例4例52.2整式的加减(第3课时)教学目标:1.让学生从实际问题中去体会进进行整式加减的必要性,掌握并能灵活运用整式加减的运算法则.2.培养学生的观察、分析、归纳、总结以及概括能力.3.认识到数学是解决实际问题和进行交流的重要工具.教学重点:整式加减的运算法则教学难点:概括整式加减的运算法则并灵活、准确地运用法则.教法:互动探究法学法:小组研讨法教学过程:复习:去括号法则教师总结:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.一、情境引入如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?学生合作探究:小组合作探究师生合作探究:有几种求解方法教师总结:方法一:第一个正方形用4根火柴棍,每增加一个正方形增加3根火柴棍,搭n 个正方形就需要[4+3(n -1)]根火柴棍.方法二:把每一个正方形都看成用4根火柴棍搭成的,然后再减去多算的火柴棍,得到需要[4n -(n -1)]根火柴棍.方法三:第一个正方形可以看成是3根火柴棍加1根火柴棍搭成的,此后每增加一个正方形就增加3根,搭n 个正方形共需要(3n +1)根火柴棍.想一想:这三种方法的结果是否一样?上几节课学习了合并同类项、去括号等内容,它们是进行整式加减运算的基础.二、范例学习例6计算:(1)()()y x y x 4532++-;(2)()()b a b a 5478---学生活动:学生独立完成教师总结:先去括号,再合并同类项解:(1)()()y x y x 4532++- (2)()()b a b a 5478---y x y x 4532++-= b a b a 5478+--=y x +=7 b a 24-=完成课本69页练习第1题例7 笔记本的单价是x 元,圆珠笔的单价是y 元。

人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案

人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案
三、教学难点与重点
1.教学重点
(1)掌握同类项的定义:同类项是指字母相同且相应字母的指数也相同的项。例如,3x^2和5x^2是同类项,而3x^2和5x^3不是同类项。这是整式加减运算的基础,需要学生熟练掌握。
(2)熟练合并同类项:学生需掌握合并同类项的法则,即系数相加减,字母及其指数不变。例如,3x^2 + 5x^2 = 8x^2。
人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案
一、教学内容
人教版七年级上册数学2.2《整式的加减-同类项、合并同类项》主要包括以下内容:
1.理解同பைடு நூலகம்项的概念,能够识别同类项;
2.掌握合并同类项的法则,能够正确进行整式的加减运算;
3.能够运用同类项合并的方法解决实际问题。
具体教学内容如下:
在理论介绍部分,我尝试用简单明了的语言解释同类项的概念,同时配合具体的例子进行分析。但从学生的反应来看,可能还需要进一步简化语言,用更直观的方式展示同类项的特点。此外,对于合并同类项的方法,我觉得可以多举一些不同类型的例子,让学生在对比中掌握规律,提高他们的逻辑推理能力。
在实践活动环节,我发现分组讨论的方式有助于学生发挥团队协作精神,但有些小组在讨论过程中可能出现偏离主题的现象。针对这个问题,我计划在下次活动中加强对每个小组的引导,确保讨论的方向正确。同时,实验操作环节可以增加一些互动性,让学生亲自参与其中,加深对知识的理解。
3.关注学生的个体差异,鼓励内向的学生积极参与课堂讨论,提高他们的自信心。
4.不断反思和总结,根据学生的反馈调整教学方法和策略。
3.学生能够将实际问题(如购物时计算总价、行程问题等)转化为整式的加减运算,并求解。
教学难点:
1.识别同类项:教师出示多个含有同类项的例子,让学生判断哪些是同类项,哪些不是。如:3xy和4yx是否为同类项?4x^2和4x是否为同类项?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:2.2整式的加减
【学习目标】:1.从实际背景中去体会进行整式的加减的必要性;
2.能灵活运用整式的加减的步骤进行运算。

【重点难点】:1.正确进行整式的加减;
2.总结整式加减的一般步骤。

【导学指导】
一、知识链接
1.多项式中具有什么特点的项可以合并,怎样合并?
2.如何去括号,它的依据是什么?
去括号、合并同类项是进行整式加减的基础.
二、自主学习
1.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?
2.做大小两个长方体纸盒,尺寸如下(单位:厘米).
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比小纸盒多用料多少平方厘米?
【结论】整式加减的一般步骤为:(1)如果有括号,那么
先去括号(2)如果有同类项,再合并同类项。

3.求1
2
x-2(x-
1
3
y2)+(-
3
2
x+
1
3
y2)的值,其中x=-2,y=
2
3
.(思路点拨:先去括号,
合并同类项化简后,再代入数值进行计算比较简便,去括号时,特别注意符号问题。


【课堂练习】课本P70页练习1、2、3题。

【要点归纳】:
1.整式的加减实际上就是去括号、合并同类项这两个知识的综合。

2.整式的加减的一般步骤:
①如果有括号,那么先算括号②如果有同类项,则合并同类项。

3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便。

【作业】:1.如果a-b=
12
,那么-3(b-a )的值是( ). A .-35 B .23 C .32 D .16 2.一个多项式与x 2
-2x+1的和是3x-2,则这个多项式为( ).
A .x 2-5x+3
B .-x 2+x-1
C .-x 2+5x-3
D .x 2-5x-13
3.计算: (1))53()22(+--+-x x x (2))3()22(32222a a a a a a -+--+
(3))21(4)3212(22+--+-
x x x x (4)[]222)34(73x x x x ----
4.先化简再求值:
4x 2y-[6xy-3(4xy-2)-x 2y]+1,其中x=2,y=-
12
;。

相关文档
最新文档