对数函数及其性质(公开课).

合集下载

高中数学《对数函数及其性质》公开课优秀教学设计

高中数学《对数函数及其性质》公开课优秀教学设计

高中数学《对数函数及其性质》公开课优秀教学设计《2.2.2对数函数及其性质》教学设计一、内容与内容解析对数函数是学生在高中阶段接触到的第二个基本初等函数,在基本初等函数(Ⅰ)中起到了承上启下的作用。

本节课的主要任务是在学习对数的概念与运算性质之后,类比研究指数函数的过程认识对数函数。

这节课是第一课时内容,主要介绍对数函数的图象和性质以及性质的简单应用。

二、目标与目标解析本节课的教学目标是:1、理解对数函数的概念,体会对数函数是一类重要的函数模型;2、能画出具体的对数函数的图象,借助图形计算器探索对数函数的性质;3、能利用对数函数的性质解决相关问题;4、在学习过程中,渗透从特殊到一般、数形结合等数学思想,让学生体会类比推理在获得数学结论上的作用。

为了更好地完成以上教学目标,我认为本节课的教学重点应围绕“对数函数的图象及性质”进行,其中的教学难点是突破对“底数a 对函数图象的影响”的认识。

三、教学问题诊断分析通过前面的学习,学生已掌握了对数的概念及其运算性质,特别是对换底公式可以熟练的应用。

在指数函数的学习过程中,学生已初步掌握研究函数的思路和方法。

鉴于之前对于教学内容、教学目标、教学重、难点的分析,本节课的教学活动应以教师引导、学生主动探究为主,教学设计的主导思想应定位在“本节课为学生在研究函数上的一次实践”上。

因此在教学设计上教师应当对于学生的探究活动进行精心的组织,使得学生明确任务,有的放矢,既能完成预定的教学目标,又能让学生体会探究的乐趣。

让学生在掌握一些学习方法的同时培养和发展学生的数学素养。

四、教学支持条件本节课中,师生使用的图形计算器是CASIO fx-CG20。

本款图形计算器在完成教学目标上起到了很大的作用,可以称之为“教学利器”。

首先,学生利用它基本的计算功能,完成了较复杂的对数计算,让自己感受到数字的真实存在;其次,它强大的绘图功能,尤其是动态绘图的功能,为研究函数性质,突破教学难点铺平了道路,学生在计算器上所得到的直观感受比起教师的抽象讲解效果要好很多;最后,我们不但能利用计算器检验解题结果,还为学生留下无限的遐想空间,有助于激发学生的学习兴趣。

对数函数及其性质课件ppt

对数函数及其性质课件ppt

统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。

对数函数的图像与性质(公开课》省公开课获奖课件说课比赛一等奖课件

对数函数的图像与性质(公开课》省公开课获奖课件说课比赛一等奖课件

比较两个同底对数值旳大小时:
1.观察底数是不小于1还是不不小于1( a>1时为增函
小数
2.比较真数值旳大小;

0<a<1时为减函数)
3.根据单调性得出成果。
练习3
变一变还能口答吗?
lg 6 < lg 8 log10 m< log10 n 则 m < n
log0.5 6 < log0.5 4 log0.5 m> log0.5 n 则 m < n
提醒:分别将 y=2x 和y=log2x
y=0.5x 和y= log0.5x 旳图象画在一种坐标内 ,观察图象旳特点!
(书面作业)
•P82--- 5
例3 比较下列各组中两个值旳大小: ⑴.log 67 , log 7 6 ; ⑵.log 3π , log 2 0.8 .
解: ⑴ ∵ log67>log66=1
(一)对数函数旳定义
★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量,定义域是(0,+∞)
对数函数解析式有哪些构造特征? ①底数:不小于0且不等于1旳常数 ②真数: 单个自变量x
③系数: log a x 旳系数为1
想一想?
练习1
下列函数中,哪些是对数函数?
① y loga x2; ② y log2 x 1; ③ y 2 log8 x;
解2:考察函数y=log 0.3 x , ∵a=0.3< 1, ∴函数在区间(0,+∞)上是减函数; ∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7
• 例2:比较下列各组中,两个值旳大小: • (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7

对数函数及其性质 精品公开课教案

对数函数及其性质 精品公开课教案

2
3
4
5
6
7
8
定义域:(0,+∞)
值域:R
性 过点(1,0),即当 x 1时, y 0
质 x (0,1) 时 y 0 x (1,) 时 y 0
x (0,1) 时 y 0 x (1,) 时 y 0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
二、新授内容:
例 1 比较下列各组数中两个值的大小:
(1) log2 3.4,log2 8.5 ;
(2) log0.3 1.8, log0.3 2.7 ;
(3) loga 5.1,loga 5.9(a 0, a 1)
解:(1)考查对数函数 y log2 x ,因为它的底数 2>1,所以它在(0,+∞)上是增函
例 3 仍是利用对数函数的增减性比较两个对数的大小,当不能直接比较时,经常在两个
对数中间插入 1 或 0 等,间接比较两个对数的大小
例 4 求下列函数的定义域、值域:
y 2x2 1 1
(1)
4
(2) y log2 (x 2 2x 5)
y log 1 (x2 4x 5)
一、复习引入: 1.指对数互化关系:
↓a↓b =↓N
log a ↓
N=b
↓↓
底数 指数 幂
底数 真数 对数
2.对数函数的性质:
a>1
图 象
3
2.5 2
1.5
11
0.5
-1
0
-0.5
-1
-1.5
-2
-2.5
11
2
3
4
5

对数函数及其性质 精品公开课教案

对数函数及其性质 精品公开课教案

对数函数及其性质教学目标1.在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.2.通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.3.通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.教学重点,难点重点是理解对数函数的定义,掌握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程一.引入新课今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的.并由一个学生口答)1,0(≠>=a a a y x 求反函数的过程:由得.又的值域为,x a y =y x y a a x log ,=∴=xa y =()+∞,0所求反函数为.∴∈=x x y a ,log ()+∞,0那么我们今天就是研究指数函数的反函数-----对数函数.对数函数 (板书)一.对数函数的概念1.定义:函数的反函数叫做对数函)1,0()(≠>=a a a x f x )1,0(log )(1≠>=-a a x x f a 数.由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为()+∞,0,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件R a a草图.教师画完图后再利用投影仪将和的图像画在同一坐标系内,如x y 2log =x y 21log =然后提出让学生根据图像说出对数函数的性质性质定义域: ()+∞,0R。

《 对数函数及其性质》示范公开课教学PPT课件【高中数学人教版】

《 对数函数及其性质》示范公开课教学PPT课件【高中数学人教版】

新课讲授
指数函数的图像和性质
思考1:在同一坐标系中画出下列函数的图象:
(1) y log 2 x
(2) y log 1 x
2
思考2:从画出的图象中你能发现
函数 y log 2 x 的图象和函数 y log 1 x
2
的图象有什么关系?
描点作图
新课讲授
指数函数的图像和性质
思考3:从画出的图象中,你能发现函数的图象与
例2比较下列各组数中两个值的大小:
(1) . , . ;
(2). . ,. . ;
(3) . , . > ,且 ≠ ;
新课讲授
探究:在指数函数 = 中,为自变量,为因变
量,如果把当成自变量, 当成因变量,那么是
(1) = ;(2) = . .
课堂小结
本节主要学习了对数函数及其性质:
图象特征
(1)图象都在y轴右边
(2)函数图象都经过点(1,0)
函数性质
(2)1的对数是0
敬请各位老师提出宝贵意见!
所以 = 关于的函数。
新课讲授
对数函数
一般地,我们把函数 = ( >0且≠1)叫做对数
函数,其中是自变量,函数的定义域是(0,+∞)。
思考:
(1)在函数的定义中,为什么要限定 >0且 ≠1?
(2)为什么函数 = ( >0且 ≠1)的定义域是(0,+∞)。
对数函数及其性 估算出土文物或古

遗址的年代,对于每一个 含量P,通过关系式 = ,

都有唯一确定的年代 与之对应。同理,对于每一个对数式 =
中的,任取一个正的实数值,均有唯一的值与之对应,

高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)

高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)

对数函数及其性质(2)一、教学内容分析函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

四、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。

对数函数及其性质教案市公开课一等奖教案省赛课金奖教案

对数函数及其性质教案市公开课一等奖教案省赛课金奖教案

对数函数及其性质教案一、教学目标1. 了解对数函数的定义及其性质;2. 掌握对数函数的常用计算方法;3. 能够应用对数函数解决实际问题。

二、教学重点1. 获取对数函数的定义;2. 掌握对数函数的性质;3. 能够应用对数函数解决实际问题。

三、教学准备教师:讲台、黑板、粉笔学生:课本、笔记本四、教学过程步骤一:对数函数的引入1. 引导学生回顾指数函数的概念和性质;2. 提问:你们对对数函数有什么了解吗?3. 引导学生思考对数函数和指数函数之间的关系。

步骤二:对数函数的定义1. 引导学生观察对数函数的定义,并与指数函数进行对比;2. 输入函数y=loga(x),解释其中a、x、y的含义;3. 让学生通过例题理解对数函数的定义。

步骤三:对数函数的性质1. 引导学生观察对数函数的图像,并总结对数函数的性质;2. 引导学生推导出对数函数的两个重要性质:底数为1时的结果和底数为0时的结果。

步骤四:对数函数的计算1. 让学生独立完成一些简单的对数函数计算;2. 引导学生注意对数函数计算的基本规则,例如:对数函数的乘法法则、对数函数的除法法则等;3. 提供一些练习题,让学生进行巩固。

步骤五:对数函数的应用1. 引导学生认识到对数函数在实际问题中的应用;2. 通过一些实际问题,让学生应用对数函数解决问题。

五、课堂小结1. 回顾课堂内容,确保学生对对数函数的定义和性质有一定的认识;2. 强调对数函数的计算方法和应用。

六、作业布置1. 求解对数函数的一些练习题;2. 思考并列举出自己身边能够应用对数函数解决问题的例子。

七、教学反思通过这节课的教学活动,学生对对数函数的定义和性质有了一定的认识,并能够应用对数函数解决实际问题。

但是,对于一些特殊情况的处理还需要进行更加细致的讲解和巩固练习。

下一节课应该重点讲解对数函数的图像和性质,以及在实际问题中的应用。

对数函数及其性质 精品公开课教案

对数函数及其性质 精品公开课教案

对数函数及其性质学习重点对数函数的图象和性质学习难点掌握对数函数的性质,能初步运用性质解决问题.学习目标①熟悉对数函数的图象与性质规律.②掌握对数函数的性质.③通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,培养学生的观察,分析,归纳等逻辑思维能力.教学过程一、自主学习1对数函数图象和性质.log (0,1)a y x a a =>≠且a>10<a<1图象(1)定义域:(2)值域:(3)过定点:性质(4)单调性:2. 并根据此表用描点法画出函数 再画出在2log x y =的图象,0.5log .x y =的图象相同的坐标系下。

二、师 生 互动三、巩 固 练 习1. 当a >1时,在同一坐标系中,函数与的图象是( ).x y a -=log a y x =2. 函数的值域为( ).22log (1)y x x =+≥A. B. (2,)+∞(,2)-∞ C. D. [)2,+∞[)3,+∞3.不等式的解集是( ).41log 2x >A. B. (2,)+∞(0,2)C. D. 1(,)2+∞1(0,)24. 比大小:(1)log 67log 76 ; (2)log 31.5log 2 0.8.5. 右图是函数,, 的图象,则底数之1log a y x =2log a y x =3log a y x =4log a y x =间的关系为.课 后 反 思课 后 巩 固 练 习1.判断函数f(x)=lg()的奇、偶性。

x x -+122.已知函数)ax 2(log y a -=在[0,1]上是减函数,求实数a 的取值范围.。

对数函数及其性质 课件

对数函数及其性质   课件
2.填空:
一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自
变量,函数的定义域是(0,+∞).
3.判断一个函数是不是对数函数的依据是什么?
提示:对数函数的定义与指数函数类似,只有满足①函数解析式
右边的系数为1;②底数为大于0且不等于1的常数;③真数仅有自变
量x这三个条件,才是对数函数.如:y=2logax;y=loga(4-x);y=logax2都
的图象如图所示.
(3)从(2)的图中可以发现:y=lg x 与 y=log 1 x,y=log5x 与
10
y=log 1 x,y=log2x 与 y=log 1 x 的图象分别关于 x 轴对称.
5
2
5
10
探究三利用对数函数的性质比较大小
例3 比较下列各组中两个值的大小:
(1)log31.9,log32;
点(3,-6).
答案:(1)A (2)D (3)(3,-6)
三、反函数
1.函数y=log2x与y=2x的定义域和值域之间有什么关系?其图象之
间是什么关系?
提示:函数y=log2x与y=2x的定义域和值域之间是互换的,两者的
图象关于直线y=x对称.
2.填空:
对数函数y=logax(a>0且a≠1)和指数函数y=ax(a>0且a≠1)互为反
同理可得函数y=log0.2(x2-2x+2)在(-∞,1]上是增函数.
故函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1],单调减区间为
[1,+∞).
以f(1.9)<f(2),即log31.9<log32.
(2)(中间量法)因为log23>log21=0,log0.32<log0.31=0,所以

高一对数函数及其性质(优质课)课件

高一对数函数及其性质(优质课)课件

指数函数和对数函数的性质互补 ,即当一个函数的某个性质成立 时,另一个函数的相应性质必然
不成立。
02
对数函数的图像与性质
对数函数的图像
总结词
对数函数的图像是学习对数函数的基础,通过图像可以直观地理解对数函数的 性质和特点。
详细描述
对数函数的图像通常在平面直角坐标系中绘制,以实数轴为底边,以真数为横 坐标,以对数为纵坐标。常见的对数函数包括自然对数函数和以10为底的对数 函数等。
高一对数函数及其性质(优质课)课 件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他函数的关系 • 习题与解析
01
对数函数的定义与性质
对数函数的定义
常用对数
以10为底的对数, 记作lgx。
对数定义域
真数必须大于0,即 x>0。
自然对数
以e为底的对数,记 作lnx。
知的。
地震的里氏震级
地震的震级也是使用对数函数来测 量的,因为地震的能量是以指数方 式增长的。
测量声谱和色谱
在声音和颜色的分析中,对数函数 被用来测量频谱和色谱,以帮助我 们更好地理解和分析声音和颜色的 组成。
对数在科学计算中的应用
放射性衰变
放射性衰变是一个指数过程,而对数 函数在处理指数函数时非常有用,因 此它在计算放射性衰变时被广泛应用 。
对数函数的单调性
总结词
对数函数的单调性是指函数值随自变量变化的趋势,通过研究单调性可以更好地 理解对数函数的性质。
详细描述
对数函数在其定义域内通常是单调的,即随着自变量的增加,函数值也相应增加 。对于以10为底的对数函数,当底数大于1时,函数是增函数;当底数小于1时, 函数是减函数。

对数函数及其性质公开课

对数函数及其性质公开课

.. 对数函数及其性质公然课————————————————————————————————作者:————————————————————————————————日期:漳州正兴学校2011-2012 学年上学期高一数学备课组教学设计教林晓玲讲课师时间课对数函数及其性质第一课时题课时数课型1新讲课备注教 1、理解对数函数的观点;学 2、依据图象剖析对数函数的性质。

目的教掌握对数函数的图象和性质.学重点教对数函数的定义及性质学难点某种细胞 1 个分裂成 2 个, 2 个分裂成 4 个,则 1 个这样新的细胞分裂 x 次后获得细胞个数 y 是分裂次数 x 的函数,关系式课为: y 2x导入这类细胞经过多少次分裂,大概能够获得 1 万个,10 万个(细胞 ?3 分裂次数 x 就是要获得的细胞个数 y 的函数.这个函数写成分对数的形式是 x log 2 y .教钟学)假如用 x 表示自变量, y 表示函数,这个函数就是y log2x 环节1.对数函数观点一般地,函数y=log a x(a>0,且 a≠1)叫做对数函数,由对数观点可知,对数函数y=log a x 的定义域是( 0,+∞),值域是R.注意:自变量x 在真数的地点,x 的次数和系数都是1;像y 2logax, y log a 2x 只好说与对数函数相关的对数型函数教新研究:(1)在函数的定义中,为何要限制a> 0 且a≠1.学课环讲(2)为何对数函数y log a x( a >0且 a ≠1)的定义域节授是( 0,+∞).(10 2. 对数函数的图象 .分在同一坐标系中画出以下函数的图象,并察看函数的图象,钟研究它们之间的关系 .)( 1) y=log 2x;(2)y=log 1 x.2察看发现: y=log 2 x 与 y=log 1 x 两个图像对于 x 轴对称 ;2用几何画板演示总结图像的特点对数函数有以下性质<a<1 a>1课0堂讨图论与象分析(定7义(0,+∞)分钟域)值R域性过定点( 1,0),即 x=1 时, y=0质在( 0,+∞)上是减函数在( 0,+∞)上是增函数例题解说例1. 已知对数函数的图像过点( 27,3 ),求 f(x) 的分析式例2. 剖析:设对数函数的分析式为y log a x,( a>0,a≠1)例3.代入得,3=log a27解得a=3 演示几何画板与学生一起观察分析提高学生归纳能力教例4. f (x) log3 x学环例 2 求以下函数的定义域:节(1) y=log a x2;(a>0,a≠1)(2) y log( x 1) x 2 .剖析:求函数定义域时应从哪些方面来考虑?例题讲解(22 分钟)①分母不可以为0;②偶次根号下非负;③0 的 0 次幂没存心义. ④若函数分析式中含有对数式,要注意对数的真数大于0.解:( 1)由 x2> 0,得 x≠0.∴函数 y=log a x2的定义域是 { x| x≠0}.x 1 0 x 1( 2)知足 x 1 1 x 2x 2 0 x 2获得定义域为 (1,2) (2, )小结:求函数的定义域的实质是解不等式或不等式组.例 3:比较以下两个值的大小:(1)log 2 3.4 ,log 28.5 ;(2) log 3.4 ,log 8.5 ;(3) log a3.4 ,log a8.5 ;请同学们回首一下我们利用指数函数的相关性质比较大小的方法和步骤,并达成以下练习.解:( 1)对数函数 y=log 2 x 在(0,+∞)上是增函数,且<8.5. 于是 log 23.4 < log 28.5.(2)对数函数 y=log x 在( 0,+∞)上是减函数,且<8.5. 于是 log 3.4 > log 8.5.(3)当 a>1 时,对数函数 y=log a x 在( 0,+∞)上是增函数,于是 log a3.4 <log a8.5 ;当 0<a<1 时,对数函数 y=log a x 在(0,+∞)上是减函数,于是 log a3.4 >log a 8.5.小结:本例是利用对数函数的单一性来比较两个对数式的大例 2 要与学生一起观察,分析提高学生归纳能力教学环节课堂小结:(3分钟)教学反思小的问题,一般是依据所给对数式的特点,确立一个目标函数,把需要比较大小的对数式看作是对应函数中两个能比较大小的自变量的值对应的函数值,再依据所确立的目标函数的单一性比较两个对数式的大小. 当底数为变量时,要分状况对底数进行讨论来比较两个对数的大小.练习:已知以下不等式 , 比较正数 m,n 的大小关系(1)log a m,log a(n0<a<1) ,(2) log a m,log a(na>1),讲堂拓展(1)log 3.4,log(2)log2 3.4,log 2(3)log 2,log 2小结:表现数形联合思想的应用“介值法”表现了问题的转变思想1.对数函数的定义 .2.对数函数的图象和性质 .3.求函数定义域的门路4.比较两个对数值大小的方法与学生互动,培养学生探索和发现问题能力主备课:林晓玲备课组:。

对数函数及其性质 精品公开课教案

对数函数及其性质 精品公开课教案

2.2.2对数函数及其性质(1)教材分析本节内容是必修1第二章基本初等函数(Ⅰ) 2.2.2节对数函数及其性质第一课时。

主要内容是学习对数函数的定义、图象、性质.对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

当然与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高。

对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

课时分配2.2.2对数函数及其性质,按课标要求教学时间为3课时,本节课为第1课时,主要讲了对数函数的定义、图象与性质。

教学目标重点:对数函数的概念和性质。

难点:用数形结合的方法从具体到一般地探索、概括对数函数的性质。

知识点:对数函数定义、图象和性质。

能力点:通过对对数函数内容的学习,培养学生数形结合、分类讨论的数学思想。

教育点:通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力。

自主探究点:对数函数的图象与性质与指数函数的图象与性质的对比。

考试点:对数函数性质的应用。

易错易混点:对数函数概念理解不准,忽视定义域。

拓展点:底数对函数图象的影响。

a教具准备:多媒体课件和三角板课堂模式:学案导学一、引入新课:马王堆女尸千年不腐之迷1972年,马王堆考古发现震惊世界.专家在发掘辛追遗尸时,发现其形体完整,全身润泽,皮肤仍然有弹性,关节还可以活动,骨质比现在60岁的正常人还好,是世界上发现的首例历史悠久的湿尸。

大家知道,世界发现的不腐之尸,一般在干燥的环境风干而成,而辛追夫人却是在湿润的环境中保存了2200多年,人们最关注的有2个问题:第一:怎样鉴定尸体的年份?第二:是什么环境使得尸体千年未腐?其中,第一个问题与数学知识有关,是我们比较关心的问题。

对数函数及其性质公开课

对数函数及其性质公开课

课题:2.2.2 对数函数及其性质(一)开课人:冯晓梅开课时间:2011年10月20日开课地点:高一(1)一.【三维目标】1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质,能初步运用性质解决问题.2.过程与方法:让学生通过观察对数函数的图象,发现并归纳对数函数的性质.3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度.二.【学法与教学用具】1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学.三.【教学重点、难点】1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a 对图象的影响及对数函数性质的作用.四.【教学过程】1.设置情境材料1:(幻灯片)1972年,马王堆汉墓的发现震动了世界考古学界。

墓中出土三千多件珍贵文物和一具保存完好的女尸。

遗尸形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,是世界上首例历史悠久的湿尸。

其中有两个问题最受观众关注:(1)怎么鉴定尸体的年份?(2)是什么环境使尸体未腐?其中第一个问题与数学有关。

那么考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?前面我们已经学习了利用t=logP 估算出土文物或古遗址的年代,对于每一个C 14含量P ,通过关系式,都有唯一确定的年代t 与之对应.同理,对于每一个对数式log x a y =中的x ,任取一个正的实数值,y 均有唯一的值与之对应,所以log x a y x =关于的函数.材料2:(幻灯片)某种细胞分裂时,由一个分裂成2个,由2个分成4个……。

一个这样的细胞分裂x 次以后,得到的细胞个数y 与分裂次数x 的函数关系式可表示2xy = ,如果把这个函数表示成对数的形式应为 y x 2l o g =,如果用x 表示自变量,y 表示函数,那么这个函数应为x y 2log =2.探索新知引导学生观察这些函数的特征:含有对数符号,底数为常数,真数是变量,从而得出对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).提问:(1).在函数的定义中,为什么要限定a >0且a ≠1.(2).为什么对数函数log a y x =(a >0且a ≠1)的定义域是(0,+∞).例题1:下面是对数函数的是:()(A ))(log 3x y -= (B )x y 3log 2=(C) )1(log 3+=x y (D) t y 3log =例题2:(1)函数2log a y x =的定义域(2))函数log (4)a y x =-的定义域 (a >0且a ≠1)3.尝试画图,形成新知下面我们来研究函数的图象,并通过图象来研究函数的性质:根据描点法或用电脑画出函数2log x y =的图象,与0.5log .x y =的图象x2log y x =先由学生自己画出12log y x =的图象,再由电脑软件画出2log y x =与12log y x =的图象.探究:选取底数(a a >0,且a ≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些特征吗?.作法:用多媒体再画出4log y x =,3log y x =,13log y x =和14log y x =(请学生上来演示用计:4. 新知应用:例题3:1. 比较下列各组数中的两个值大小(1)22log 3.4,log 8.5 (2)0.30.3log 1.8,log 2.7(3)log 5.1,log 5.9a a 7log ,7log )4(52(5)2log 3, 8.0log 2 (a >0,且a ≠1)分析:由数形结合的方法或利用函数的单调性来完成::说明:先画图象,由数形结合方法解答5.小结:引入新知一定义:底数真数有范围探究性质两图象:共性异性源于a比较大小三类型:分型别类原理一(同底不同真、同真不同底、底真都不同)渗透数学四思想:成就高考无问(构造函数、数形结合、分类讨论、等价转换)课堂练习:P85 练习 第2,3题6.布置作业:1. 课本P74习题2.2A 组第7、8、10题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2对数函数及其性质
教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,激发学生的学习兴趣,体会对数函数是一类重要的函数模型。

2.通过对对数函数有关性质的研究,渗透数形结合、分类讨论的数学思想。

培养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。

掌握对数函数的图象与性质,并会初步应用。

3.培养学生自主学习、数学交流能力和数学应用意识。

教学重难点
重点是掌握对数函数的图像和性质,难点是探究底数对对数函数图像的影响。

教学内容
一、新课导学
探究一:什么是对数函数?
问题引入:前面我们学习了细胞分裂次数x与所得细胞个数y之间的函数关系为
y=2x,若已知细胞个数y,如何确定分裂次数呢?
问题一:你能类比指数函数的定义给对数函数下个定义吗?
问题二:定义中需要注意什么问题?
(一)函数函数的定义
一般地,函数叫做对数函数,x是自变量,函数的定义域为。

做一做下列函数是对数函数吗?
y=log(3x-2)
2
y=log x
(x-1)y=log x
-5
y=3l o g x+5
2
探究二:对数函数的图像和性质
1.用列表、描点、连线的作图步骤,画出对数数函数、的图像。

x……
观察图像,分析以下问题:
问题1:从图像看,两种函数的有哪些图像特征?
问题2:根据图像特征,你能分别说出函数的性质吗?
问题3:底数大小与图像有什么关系?
2.对数函数y=a x(a>0,且a≠1)的图像和性质如下:
定义
底数
图象
定义域
值域
单调性
奇偶性
定点
底数大小与图像关

对称性
三、课堂小结
四、课后反思
y=log
a
x(a>0,且a≠1)
a>10<a<1
图象过点______,即_____
函数y=log
a
x与y=log
1
x的图象关于______对称
a
你能用今天学到的知识探究函数
y=x a
比较、对照指数函数与对数函数的图像与性质,函数y=a x与函数有什么关系?
a
y=log x。

相关文档
最新文档