解析法证明平面几何问题共36页
数学奥赛平面几何
《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。
5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。
(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。
解析法在平面解析几何中的应用
解析法在平面解析几何中的应用解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
解析几何的基本内容在解析几何中,首先是建立坐标系。
如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。
利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。
除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。
在空间坐标系中还有球坐标和柱面坐标。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。
用这种方法研究几何学,通常就叫做解析法。
这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。
解析几何在数学发展中起了推动作用。
恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”解析几何的应用解析几何又分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。
比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。
专题八 解析几何
专题八 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】例1 解下列方程或不等式:(1)|x -3|=1; (2)|x -3|≤4; (3)1<|x -3|≤4.例2 已知矩形ABCD 及同一平面上一点P ,求证:P A 2+PC 2=PB 2+PD 2.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( ) A .-4 B .4 C .-12 D .12 2.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量AB 的数量的最小值为( ) A .21B .0C .41 D .413.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( ) A .(1,-2,-3) B .(1,2,3) C .(-1,-2,3) D .(-1,2,3) 4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( ) A .x +3y -2=0 B .x -3y +2=0 C .x +3y +2=0 D .x -3y -2=0 二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______. 6.点A (2,3)关于点B (-4,1)的对称点为______. 7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______.图8-1-4三、解答题9.求证:平行四边形ABCD 满足AB 2+BC 2+CD 2+DA 2=AC 2+BD 2.10.求证:以A (4,3,1),B (7,1,2),C (5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A (1,3),B (4,5),点P 在x 轴上,求|P A |+|PB |的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程.....,这条直线叫做这个方程的直线...... 2.直线的倾斜角和斜率x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x 轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°. 我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率⋅--=1212x x yy k 倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1); 斜截式:y =kx +b ;两点式:);,(2121121121y y x x x x xx y y y y =/=/--=--一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则 (1)l 1与l 2相交⇔A 1B 2-A 2B 1≠0或)0(222121=/=/B A B B A A (2)l 1与l 2平行⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C CB B A AC A C A B C C B B A B A 或或而(3)l 1与l 2重合⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212121222111C B A C C B B A A C C B B A A 或λλλλ 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交⇔k 1≠k 2; l 1∥l 2⇔k 1=k 2,b 1≠b 2;l 1与l 2重合⇔k 1=k 2,b 1=b 2. 5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1.6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式⋅+++=2211||BA C By Ax d【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,【例题分析】例1(1)直线082=-+y x 的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值; (2)若l 1⊥l 2,求实数m 的值.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围.例6 如图,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) A . B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) A .充分必要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( ) A .B .C .D .二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______. 6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______. 7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______. 8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5). (1)求|P A |的最小值;(2)若|P A |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程.11.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为,点N 到直线PM 的距离为1.求直线PN 的方程. 5343-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+2§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x,y)叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x-2y+a=0的上方,则实数a的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是______.例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;(2)如果函数y=ax2+bx+a的图象与x轴有两个交点,试在aOb坐标平面内画出点(a,b)表示的平面区域图8-3-1例3 已知x ,y 满足求:(1)z 1=x +y 的最大值; (2)z 2=x -y 的最大值; (3)z 3=x 2+y 2的最小值; (4)的取值范围(x ≠1).例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80 (B)85 (C)90 (D)95例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4. (1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,求f (-2)的取值范围. ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x 14-=x yz ⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( ) A .a <0或a >2 B .a =0或a =2 C .0<a <2 D .0≤a ≤2 2.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( ) A .-1 B .1 C .2 D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7A .B .C .D .二、填空题5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______.7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤α⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x ⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 0059.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%(),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围. ⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=%100⨯§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径.(2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则 >0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切; <0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离. 4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则 d >R +r 两圆相离; d =R +r 两圆外切;R -r <d <R +r 两圆相交; d =R -r 两圆内切; d <R -r 两圆内含. 【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题. 【例题分析】例1根据下列条件,求圆的方程:(1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上;(3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2. )2,2(E D --21.422F E D -+⇔⇔⇔∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4. (1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程.例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点.(1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由;(2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.3).1,62(练习8-4 一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x -2)2+(y +1)2=9 D .(x +2)2+(y -1)2=9 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) A .a 2+b 2≤1B .a 2+b 2≥1C .D .4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( )A .(x +4)2+(y -2)2=5B .(x -4)2+(y -4)2=5C .(x +4)2+(y +4)2=5D .(x +4)2+(y +2)2=5 二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______.6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______. 7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个.8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______. 三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点. (1)当a =-2时,求弦AB 的垂直平分线方程; (2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.62251=+bya x 11122≤+ba 11122≥+ba )0(33≥=x x y 23255§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程. 2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系: (1)曲线C 上点的坐标都是方程F (x ,y )=0的解;(2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程. 3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想. 2.会求简单的轨迹方程;能根据方程研究曲线的简单性质. 【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.例2 已知P 为抛物线y =x 2+1上一动点,A (2,3),P 关于A 的对称点为点P ′,求动点P ′的轨迹方程.例3 已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数2.求动点M 的轨迹方程,并说明轨迹的形状.例4 已知曲线C :|xy |=1.(1)画出曲线C 的图象,并研究其对称性; (2)讨论圆x 2+y 2=r 2(r >0)与C 的交点情况.⎩⎨⎧==0),(0),(y x G y xF练习8-5 一、选择题1.到两坐标轴距离相等的点的轨迹方程是( ) A .x -y =0 B .x +y =0 C .|x |-y =0 D .|x |-|y |=0 2.下列方程的曲线关于x =0对称的是( ) A .x 2-x +y 2=1 B .x 2-y 2=1 C .x -y =1 D .x 2y +xy 2=13.已知等腰△ABC 的底边两端点的坐标分别为B (4,0),C (0,-4),则顶点A 的轨迹方程是( ) A .y =x B .y =x (x ≠2) C .y =-x D .y =-x (x ≠2) 4.直线y =2k 与曲线9k 2x 2+y 2=18k 2|x |(k ∈R ,k ≠0)的公共点的个数为( ) A .1个 B .2个 C .3个 D .4个 二、填空题5.曲线x +y -7=0与xy =10的交点坐标是______.6.曲线(x -2)2+x (y -2)=0关于点A (1,1)的对称曲线方程是______. 7.与直线和直线y =4距离相等的点的轨迹方程为______.8.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是______. 三、解答题9.已知两圆C 1:(x -2)2+(y -2)2=9,C 2:x 2+y 2=16.圆C 过圆C 1,C 2的两个交点,且过点(7,7),求圆C 的方程.10.已知曲线C :y 2=x +1,定点A (3,1),B 为曲线C 上任一点,点P 在线段AB 上且有|BP |∶|P A |=1∶2,当B 在曲线C 上运动时,求点P 的轨迹方程.11.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OPQ ,求动点Q的轨迹方程.013=+-y x§8-6 椭 圆【知识要点】1.椭圆定义:平面内与两定点F 1,F 2的距离之和等于定长(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点F 1,F 2叫做椭圆的焦点,两焦点的距离|F 1F 2|叫做椭圆的焦距.2.椭圆的标准方程和几何性质(如下表所示):3.对于椭圆的两种标准方程应注意如下几点:(1)在两种标准方程中,总有a >b >0; (2)椭圆的焦点总在长轴上;(3)在方程Ax 2+By 2=C 中,只要A 、B 、C 同号,且A ≠B 就是椭圆方程;(4)在求椭圆的标准方程时,如果明确了焦点所在的坐标轴,方程只有一种形式;如果不明确焦点所在的坐标轴,方程有两种形式. 【复习要求】掌握椭圆的定义,标准方程和椭圆的简单几何性质,了解椭圆性质的初步应用 【例题分析】例1 求适合下列条件的椭圆的标准方程:(1)过点(3,-2)且与椭圆4x 2+9y 2=36有相同焦点;(2)长轴与短轴长之和为20,焦距为;(3)以边长为4的正△ABC 的顶点B 、C 为焦点,经过顶点A .54例2 已知椭圆C 的方程为(1)求实数m 的取值范围; (2)若椭圆C 的离心率为,求实数m 的值.例3在平面直角坐标系xOy 中,A (-3,0),B (3,0),动点P 满足,设动点P 的轨迹为C . (1)求轨迹C 的方程;(2)若C 上有一点M 满足∠AMB =30°,求△MAB 的面积.例4 如图8-6-1,已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线为l ,垂足B ,l 交MA 于点P .则 (1)点B 曲轨迹方程是______; (2)点P 的轨迹方程是______.图8-6-1例5 已知直线l :y =x +1与椭圆相交于A 、B 两点. (1)求AB 的中点坐标; (2)求|AB |.例6 已知椭圆过点M (0,1)的直线l 与椭圆C 相交于两点A 、B . (1)若l 与x 轴相交于点P ,且P 为AM 的中点,求直线l 的方程;(2)设点,求的最大值. ,12822=-+m y x 21=e ,10||||=+12:22=+y x C 14:22=+y x C )21,0(N ||NB NA +练习8-6一、选择题1.已知F (c ,0)是椭圆的右焦点,设b =c ,则椭圆的离心率为( )A .B .C .D .22.如果方程x 2+my 2=2表示焦点在y 轴的椭圆,那么实数m 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)3.已知椭圆的焦点为F 1(-1,0),F 2(1,0),P 是椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆的方程为( )A .B .C .D . 4.设F 1,F 2为椭圆的两个焦点,P 为椭圆C 上任一点,记△PF 1F 2的内切圆为⊙M ,则点P 到⊙M 的切线长为( ) A .B .2C .4D .二、填空题5.长轴长为4,短轴长为2,且焦点在x 轴上的椭圆的标准方程为______. 6.在平面α 内,有一条线段|AB |=4,P 为α 内一个动点,满足|P A |+|PB |=6.设M 为AB 的中点,则|PM |的最大值为______,最小值为______.7.椭圆的焦点为F 1、F 2,点P 为椭圆上的动点,则当时,点P 的横坐标的取值范围是______.8.设F 为椭圆的右焦点,A (4,4),点P 为椭圆C 上任意一点,则|PF |-|P A |的最大值为______. 三、解答题9.已知△ABC 的两个顶点为B (-2,0),C (2,0),周长为12. (1)求顶点A 的轨迹方程; (2)若直线与点A 的轨迹交于M ,N 两点,求△BMN 的面积.10.设F 1、F 2为椭圆的两个焦点,P 为椭圆上的-点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求的值.11.已知点P 为椭圆x 2+2y 2=98上一点,A (0,5),求|P A |的最值.)0(1:2222>>=+b a by a x C 22221191622=+y x 1121622=+y x 13422=+y x 14322=+y x 11216:22=+y x C 32314922=+y x 021<⋅PF 1925:22=+y x C x y 21=14922=+y x ||||21PF PF§8-7 双曲线【知识要点】1.双曲线定义:平面内与两定点F 1,F 2的距离的差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点F 1,F 2叫做双曲线的焦点,两焦点的距离|F 1F 2|叫做双曲线的焦距.了解双曲线的定义,几何图形和标准方程,知道它的简单几何性质,并了解其性质的初步应用. 【例题分析】例1 求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为45.23x y ±=例2 设F 1,F 2是双曲线的两个焦点,点P 在双曲线上,且则的||值等于______.例3 如图8-7-1,从双曲线的左焦点F 1引圆x 2+y 2=9的切线,切点为T ,延长F 1T 交双曲线右支于P 点.设M 为线段F 1P 的中点,O 为坐标原点,则|TF 1|=_______;|MO |-|MT |_______.图8-7-1例4 已知点和,动点C 到A ,B 两点的距离之差的绝对值为2.记点C 的轨迹为W . (1)求轨迹W 的方程;(2)设W 与直线y =x -2交于两点D ,E ,求线段DE 的长度.例5 如图8-7-2,△AOB 的顶点A 在射线l :上,A ,B 两点关于x 轴对称,O 为坐标原点,且线段AB 上有一点M 满足|AM |·|MB |=3.当点A 在l 上移动时,记点M 的轨迹为W .图8-7-2(1)求轨迹W 的方程;(2)设P (m ,0)为x 轴正半轴上一点,求|PM |的最小值f (m ).1422=-y x ,021=⋅PF PF 21PF PF ⋅125922=-y x )0,3(-A )0,3(B )0(3>=x x y练习8-7一、选择题1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )A .B .C .D . 2.已知双曲线的两条渐近线的夹角为,则双曲线的离心率为( ) A .2B .C .D .3.已知双曲线,以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( )A .aB .bC .D .4.设F 1,F 2分别是双曲线的左、右焦点.若点P 在双曲线上,且,则等于( ) A . B .C .D .二、填空题5.设F 1、F 2为双曲线的两个焦点,若其实轴的两个顶点将线段F 1F 2三等分,则此双曲线的渐近线方程为______.6.与双曲线共渐近线,且过点的双曲线的方程______. 7.设双曲线x 2+my 2=1的离心率e >2,则实数m 的取值范围是______.8.设P 为双曲线上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3∶2,则△PF 1F 2的面积为______.三、解答题9.已知F 1、F 2为双曲线的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.112422=-y x 141222=-y x 161022=-y x 110622=-y x )2(12222>=-a y a x 3π3362332)0,0(1:2222>>=-b a by a x C ab 22b a +1922=-y x 021=⋅PF ||21PF +10510252)0,0(1:2222>>=-b a by a x C 191622=-y x )3,32(-A 11222=-y x )0,0(12222>>=-b a by a x10.如图8-7-3,已知双曲线C 的两条渐近线过坐标原点,且渐近线与以点为圆心,1为半径的圆相切,双曲线C 的一个顶点A ′与点A 关于直线y =x 对称.设直线l 过点A ,斜率为k .图8-7-3(1)求双曲线C 的方程;(2)当k =1时,在双曲线C 的上支上求点B ,使其与直线l的距离为11.设A 、B 是双曲线上的两点,点N (1,2)是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么? )0,2(A .21222=-y x§8-8 抛物线【知识要点】1.抛物线定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质(见下页表所示):3.几点注意(1)p的几何意义:焦参数p是焦点到准线的距离,所以p恒为正数.(2)标准方程的左边是二次项,右边是一次项,且二次项的系数为1.通过x,y的范围可以判定抛物线的开口方向.(3)抛物线的焦点弦具有很多重要性质,且应用广泛.【复习要求】了解双曲线的定义,几何图形和标准方程,知道它的简单几何性质,并了解其性质的初步应用.【例题分析】例1 (1)求以原点为顶点,坐标轴为对称轴,且过点A(2,-4)的抛物线的方程;(2)平面内一个动点P到点F(4,0)的距离比它到直线l:x=-6的距离小2个单位,求动点P的轨迹方程.例2已知抛物线C:y2=2px(p>0)的焦点为F,点P(m,n)在抛物线上.(1)求|PF|的值(用m,p表示);(2)设点P1(x1,y1),P2(x2,y2)在抛物线上,且2m=x1+x2,求证:2|PF|=|P1F|+|P2F|;(3)设过F的直线l与C相交于两点A,B,判断以AB为直径的圆与y轴的位置关系,并说明理由.例3 设F为抛物线C:y2=2px(p>0)的焦点,点P为抛物线C上一点,若点P到点F的距离等于点P到直线l:x=-1的距离.(1)求抛物线C的方程;(2)设过点P的直线l1与抛物线C的另一交点为Q点,且线段PQ的中点坐标为(3,2),求|PQ|.例4已知抛物线C:y2=4x,设B(3,0),对C上的动点M,求|BM|的最小值.练习8-8 一、选择题1.抛物线y 2=8x 的准线方程是( ) A .x =-2 B .x =-4 C .y =-2 D .y =-42.设a ≠0,a ∈R ,则抛物线y =4ax 2的焦点坐标为( ) A .(a ,0)B .(0,a )C .D .随a 的符号而定3.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是( ) A .B .C .D .34.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0 D .x -y +1=0 二、填空题5.抛物线x 2=-4y 的焦点坐标是______,准线方程是______. 6.直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是______.7.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则的最小值是______. 8.以抛物线y 2=8x 上一点A 为圆心,经过坐标原点O ,且与直线x +2=0相切的圆的方程是______. 三、解答题9.给定直线l :y =2x -16,抛物线C :y 2=ax (a >0).(1)当抛物线C 的焦点在直线l 上时,确定抛物线C 的方程; (2)若△ABC 的三个顶点都在(1)所确定的抛物线C 上,且点A 的纵坐标为8,直线BC 的方程为4x +y -40=0,求△ABC 的重心的坐标.10.给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 且斜率为1的直线l 与C 相交A 、B 两点,求以AB 为直径的圆的方程.11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直y 轴于点B ,设OB 的中点为M . (1)求抛物线方程;(2)过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. )161,0(a3457582221y y§8-9 圆锥曲线综合问题【知识要点】1.在圆锥曲线的综合问题中,要关注数学思想与方法的渗透.(1)数形结合思想不是简单的画图,而应该要分析图形中隐含的量及位置间的关系. (2)直线与圆锥曲线联立不是方程思想的全部,它只是方程思想的一个重要形式. 2.直线与圆锥曲线.设直线Ax +By +C =0与圆锥曲线f (x ,y )=0相交于点A (x A ,y A ),B (x B ,y B ).将直线Ax +By +C =0与圆锥曲线f (x ,y )=0联立,得方程组,消去y (或x ),得到关于x (或y )的一元二次方程,记为ax 2+bx +c =0(a ≠0),(1)应用判别式,则有①>0有两个实数解(有两个交点); ②=0有一个实数解(有一个交点); ③<0没有实数解(没有交点).对于双曲线和抛物线在考虑交点个数时,还应注意到形的问题. (2)应用韦达定理,可得 在研究中点、弦长等问题时,利用韦达定理常可以使问题得到解决.3.会求简单的轨迹方程问题.4.关注解析几何与数列、向量等知识的综合,注意把握它们的内在联系. 【例题分析】例1 (1)平面内的直线l 与双曲线最多有______个交点;(2)若平面内与y 不平行的直线l 与双曲线不相交,则直线l 的斜率k 的取值范围是 ⎩⎨⎧==++0),(0y x f C By Ax ∆⇔∆⇔∆⇔⋅=-=+⋅ac x x a b x x B A B A ,)0,0(12222>>=-b a by a x 191622=-y x例2 已知两定点M (-1,0)、N (1,0),直线l :y =-2x +3,在l 上满足|PM |+|PN |=4的点P 有( ) A .0个 B .1个 C .2个 D .3个例3 已知椭圆的左焦点为F ,过点F 的直线交椭圆于A 、B 两点,并且线段AB 的中点在直线x+y =0上,求直线AB 的方程.例4 已知双曲线C :3x 2-y 2=1,过点M (0,-1)的直线l 与双曲线C 交于A 、B 两点.(1)若,求直线l 的方程;(2)若点A 、B 在y 轴的同一侧,求直线l 的斜率的取值范围.例5 已知椭圆的中心在原点,一个焦点是F (2,0),且离心率(1)求椭圆的方程(用λ 表示);(2)若存在过点A (1,0)的直线l ,使点F 关于直线l 的对称点在椭圆上,求λ 的取值范围. 1222=+y x 10||=AB ).0(2>=λλe。
用解析法解数学题
系和 空 间 笛 氏直 角坐 标 系 , 用 解 析法 解 代 数 题 、 运
平几 题 . 立几题 及 三角题 ,
平 行六 面体 删
卜一
AI (1 Bl7DI的 底 面 AI D 是 菱 形 .且  ̄ C
C (
=
现 分 类举 侧说 明如 供 参 考 , F,
的 图象 . 再在 ) 、 )
即岛
b
‘ 一“ j
一 L ,
直角 坐标 系 . 作 出 函 先
数 一 图象 上取 三 个 点 : A( 一“.,
2 -
化 简得 3 ! b 2 ! “ 一a b =0. ( “+2 ) Ⅱ一 ) 3 b ( =0,
(1 7 t + 1
面 亍
= , ,
故 CAC= 出 f . j 4 ・ 2
_ (I 上 ^ I’ b ( M= 一 1 _ ’ _ M (, t
维普资讯
20 0 2年 第 2期
数 学学 习 与研 究
解
如 图建 立平 面
(9 9年 全国 高 中数 学联 赛 加 试翘 ) 19
() 2 因为 由① 已 证 得 (. C上 B D, 而 AB ∞ 是菱 形 , (
’ .
证明
如 图, 建立 平 面直 角 坐标 系
设 A( , ) C( . ) B( 一k 、 d,d) 0 0 、 f 0 、 b, b) D( k ,
的 值 为 多 少 时 , 使 AI 能 c上 平 面
B 与 E
相 交 于 F,
(I ?请 给 出证 明 . ’』 ( 0 0年 全 国高 考 数学 ( 史类 ) 20 文 试题 )
空间解析几何中的点与平面的位置关系
汇报人:XX
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 点与平面的位置关系
2 点与平面之间的距离公式
3 点与平面平行和垂直的条 件
4 点与平面之间的其他位置 关系
5 点与平面位置关系的实际 应用
点与平面的位置关系
点的定义
点是几何学的基 本元素之一,没 有大小和形状, 只有位置。
点在空间中占据 一个确定的位置, 通常用有序实数 对来表示。
点在平面几何中 表示二维空间中 的一个点,具有 横坐标和纵坐标 。
点也可以表示三 维空间中的一个 点,具有三个坐 标值:横坐标、 纵坐标和竖坐标 。
平面的定义
平面是一个无限 延展、没有厚度 的几何对象。
平面可以由点集 的极限性质来定 义。
YOUR LOGO
判定:可以通过向平面引垂线的方法来判断点与平面的相交关系
应用:在几何学、物理学等领域中,点与平面的相交关系有着广泛的应用
点与平面位置关系的实际应用
空间几何中的实际问题
飞机飞行:飞机飞行过程中需要计算点与平面的位置关系,以确保飞行安全。 建筑设计:建筑设计时需要考虑点与平面的位置关系,以确保建筑结构的稳定性和安全性。 地球物理学:地球物理学中需要利用点与平面的位置关系,来研究地球的物理性质和运动规律。 医学成像:医学成像中需要利用点与平面的位置关系,来获取人体内部结构和病变的信息。
理解距离公式的几何意义有助于深入探究空间中点与平面的位置关 系,为进一步学习空间解析几何奠定基础。
点与平面平行和垂直的条件
点与平面平行的条件
点在平面上且与平面平行
点在平面外且与平面平行
平面解析几何
怎样避免这种情况发生呢?解决办法是加上“重 合”两字。即,圆的切线是与圆有两个重合交点 的直线。这个定义可以推广到一般圆锥曲线。
6、如何看待解析几何成为教学难点?
在“平面解析几何初步”模块中,学生将在平面 直角坐标系中建立直线和圆的代数方程,运用代 数方法研究它们的几何性质及其相互位置关系, 并了解空间直角坐标系。体会数形结合的思想, 初步形成用代数方法解决几何问题的能力。
在“圆锥曲线与方程”模块中,学生将学习圆锥 曲线与方程,了解圆锥曲线与二次方程的关系, 掌握圆锥曲线的基本几何性质,感受圆锥曲线在 刻画现实世界和解决实际问题中的作用。结合已 学过的曲线及其方程的实例,了解曲线与方程的 对应关系,进一步体会数形结合的思想。
以二次曲线为例。二次曲线的方程之所以复杂, 是由于坐标系的任意选取所产生的。如果选取适 当的坐标系,那么曲线方程就可以大为简化,这 也就是通常所说的标准方程。我们就是通过标准 方程来研究相应曲线的性质的。
4、如何理解圆锥曲线的统一性
圆锥曲线是解析几何的核心内容,是解析几何基 本思想和基本方法的具体运用。高中学习三种圆 锥曲线是单独展开的,对它们统一性的揭示不够 充分。理解圆锥曲线的统一性至少有三个角度: 统一的来源、统一的定义、统一的方程。
◎统一的来源(圆锥截线的观点)
设圆锥面母线、截平面与轴线的夹角分别为α,θ
☆截面不过圆锥顶点(非退化圆锥曲线)
θ=π/2时,曲线是圆; α<θ<π/2时,曲线是椭圆; θ=α时,曲线是抛物线; 0≤θ<α时,曲线是双曲线. 上述曲线离心率均为cosθ/cosα
用解析法解平面几何问题
解 析 法1、 如图:四边形ABCD 的对角线AC ⊥BD ,交点为O ,自O 向各边作垂线,垂足为E 、F 、G 、H ;连EO 交CD 于E ′,连FO 交DA 于F ′,连GO 交AB 于G ′,连HO 交BC 于H ′。
求证:E 、F 、G 、H 、E ′、F ′、G ′、H ′八点共圆。
2、 如图:设H 是锐角三角形ABC 的垂心,由A 向以BC为直径的圆作切线AP ,AQ ,切点分别为P 、Q 。
求证:P 、H 、Q 三点共线。
3、 如图:过圆中弦AB 的中点M ,任引两弦CD 和EF ,连CF 、ED 分别交弦AB 于Q 、P 。
求证:PM=MQ 。
4、 如图:已知ABCD 是正方形,CE ∥BD ,BE=BD ,BE 交CD 于点H 。
求证:DE=DH 。
5、 用解析法证明圆的切割线定理。
6、 用解析法证明半角的正切公式:θθθθθsin cos 1cos 1sin 2tan-=+=。
7、 已知⎪⎭⎫⎝⎛∈≠-≠⎩⎨⎧=+=+Z k k abc c b a c b a ,2,0sin cos sin cos πθϕϕϕθθ 求证:2cos2sin2cosϕθϕθϕθ-=+=+cba8、设a>0,b>0,c>0,求证:bc c b ab b a -++-+2222≥ac c a ++22说明等号何时成立。
练习题:1、已知方程|x|=ax+1有一个负根但没有正根,则a 的取值范围是 。
2、已知()21x x f +=,若b a R b a ≠∈,,,则()()||||b a b f a f --与的大小关系为( ) (A )()()||||b a b f a f -<- (B )()()||||b a b f a f -=- (C )()()||||b a b f a f ->- (D )不能确定3、函数()1sin 3cos --=ααx f 的值域为 。
平面几何解题方法介绍湖南师范大学附属中学羊明亮
知识与方法
羊明亮 湖南师范大学附属中学
数学竞赛中常用的著名定理有:梅涅劳斯定理及其逆定理、塞瓦定理及其逆定理、托勒
密定理(不等式)、西姆松定理及其逆定理、欧拉定理,另外,还用到斯特瓦尔定理、蝴蝶
定理等. 除了上述定理外,我们还应掌握有关根轴、完全四边形、调和四边形、调和线束(点列)
⑥
SZ1Z2Z3
1 2
Im(
z1
z2
z2 z3
z3z1).
注:以上点 Z 对应的复数用 z 表示。
4、向量法
由于向量既反映数量关系,又体现位置关系,所以它能数形相辅地用代数方法研究几何
问题,即把几何代数化,时几何问题能用代数运算解决,由此可见,解析法、复数法实质上
是一种特殊的向量方法,向量法兼有几何的直观性、表述的简洁性和方法的一般性等待点.
⑤ 几何中旋转变换问题在向量法中对应的是向量的外积表示,由向量的外积可以
表示平面上一个向量旋转以后的向量。
5、面积法
用图形的面积知识来解决几何问题的方法称为面积法,一般有两类:①求多边行的面积;
②用面积有关知识作为计算或论证手段,通过适当的变换,从而得出所考虑的量与量之间关
系,最后得出结论,或者将边之间的比和面积结合起来得到一个等式(称面积方程),然后
AMB CMB . 证明: BE 平分 AC .
证明:不妨设五边形 ABCDE 内接于复平面上以原点 O 为圆心的单位圆, A, B,C, D, E
对应的复数分别为 a, b, c, d, e ,则 M 对应的复数 m 1 (b d ) . 2
由 AC DE ,有 ac de .
①
由
AMB
( z1
z2 ) 即
解析几何问题-解题之后再思索
解析几何问题——解题之后再思索江苏省姜堰中学 张圣官 (225500)在高三数学各类模拟练习中,解析几何题往往处于关键位置,成为区分中等水平上下的分水岭。
同学们也普遍对于解析几何题有种畏惧情绪,在解题过程中经常出现半途而废的现象,或者运算过程繁琐耗时太多,或者思路受阻无法突破。
确实的,解析几何的本质就是“解析法”,也就是在建立坐标系的基础上,用坐标表示点,用方程表示曲线,通过代数运算处理几何问题的一门数学分支。
解题时必要的运算是少不了的,但不能一味强攻,而是要采取合理的策略。
那么在高三考试后于试卷讲评课之时我们该怎样引导学生进行解析几何题解题之后的反思呢? 反思之一:曲线的几何性质充分挖掘了吗? 我们先来赏析一道高考题。
(2013江苏17题)如图1,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l 。
设圆C 的半径为1,圆心在l 上。
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围。
命题组提供的解法如下:(1)切线为3y =或334y x =-+(略);(2)因为圆心在y=2x-4上,所以圆C 方程为22()[(24)]1x a y a -+--=。
设(,)M x y ,因为MO MA 2=,所以=22230x y y ++-=,即22(1)4x y ++=。
所以M在以(0,1)D -为圆心、2为半径的圆上。
由题意,M 在圆C 上,所以圆C 与圆D 有公共点,则13CD ≤=≤,解得1205a ≤≤。
这道题因为朴实平和、轻盈飘逸,获得了一片叫好声,有老师为此欢呼“春风又绿江南岸”。
但据阅卷老师反映,该题得分并不高。
据说凡能转化到“圆C 与圆D 有公共点”的,后续过程大都一蹴而就,否则受困于此,或者解题走进死胡同。
例如,当得到圆D 的方程后,有些同学并未有意识地去认识轨迹是何图形,只是专注于M 点同时在两条曲线上,故由两条曲线方程联立,得2222230()[(24)]1x y y x a y a ⎧++-=⎨-+--=⎩有解,消去x 或y 转化为一元二次方程。
解析法证明平面几何题—高二中数学竞赛讲座
【高中数学竞赛讲座2】解析法证明平面几何解析法,就是用解析几何的方法来解题,将几何问题代数化后求解,但代数问题未必容易,采用解析法就必须有面对代数困难的准备,书写必须非常规范.解析法的主要技巧:1.尽量化为简单的代数问题,尽量利用对称性建系,选择恰当的坐标系与便于使用的方程形式;2.运用各种代数技巧(巧妙消元,利用行列式等)不能一味死算.例1、证明:任意四边形四条边的平方和,等于两条对角线的平方和,在加上对角线中点连线的平方的4倍.例2、给定任一锐角三角形ABC 及高AH ,在AH 上任取一点D ,连结BD 并延长交AC 与E ,又连CD 且延长交AB 于F .证明:∠AHE =∠AHF .例3、在ABC ∆的边AB 上取点1B ,AC 取点1C ,使1AB AB λ=,1AC u AC=.再在11B C 上取点1D ,使1111B D m D C n =(λ,u ,m ,n 都是实数).延长1A D 交BC 于D ,求BD DC .例4、如图,菱形ABCD 的内切圆O 与各边分别切于E ,F ,G ,H ,在弧EF 与GH 上分别作圆O 的切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证: MQ ∥NP .例5、[29届IMO ]在Rt ABC ∆中,AD 是斜边上的高,M 、N 分别是ABD ∆与ACD ∆与的内心,连接MN 并延长分别交AB 与AC 于K 及L .求证明、:2ABC AKL S S ∆∆≥.课后拓展训练与指导钻研《教程》293~302 例1、例2、例3、例7、例8思考并完成《高二教程》303练习题补充几道题目,请尝试用解析法研究1、(2005全国联赛二试)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.2、(全国高中联赛二试)如图,圆O 1和圆O 2与△ABC 的三边所在的三条直线都相切,E 、F 、G 、H 为切点,并且EG 、FH 的延长线交于P 点。
几何证明的几种方法
⼏何证明的⼏种⽅法平⾯⼏何难学,是很多初中⽣在学习中的共识,这⾥⾯包含了很多主观和客观因素,⽽学习不得法,没有适当的解题思路则是其中的⼀个重要原因。
波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的⽅向去攻击堡垒。
为了辨别哪⼀条思路正确,哪⼀个⽅⼀、直接式思路证题时,⾸先应仔细审查题意,细⼼观察题⽬,分清条件和结论,并尽量挖掘题⽬中隐含的⼀些解题信息,以在缜密审题的基础上,根据定义、公式、定理进⾏⼀系列正⾯的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。
由于思维⽅式的逆顺,在证题时 1.分析法。
分析法是从命题的结论⼊⼿,先承认它是正确的,执果索因,寻求结论正确的条件,这样⼀步⼀步逆⽽推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。
在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含(1)选择型分析法。
选择型分析法解题,⾸先要从题⽬要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。
假设有条件B,就有结论A,那么B就成为选择找到的使A成⽴的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某(2)可逆型分析法。
如果再从结论向已知条件追溯的过程中,每⼀步都是推求的充分必要条件,那么这种分析法⼜叫可逆型分析法,因⽽,可逆型分析法是选择型分析法的特殊情形。
⽤可逆型分析法证明的命题⽤选择型分析法⼀定能证明,反之⽤选择型分析法证明的命题,(3)构造型分析法。
如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔⼝”处,需采取相应的构造型措施:如构造⼀些条件,作某些辅助图等,进⾏探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。
(4)设想型分析法。
在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“⾔之成理”的新构思,再进⾏“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。
解析法求解平面汇交力系
解析法求解平面汇交力系1. 引言1.1 导言在工程结构设计中,平面汇交力系是一种常见的受力形式。
当结构系统受到多个力的作用时,这些力可能会在同一平面内交汇,形成所谓的平面汇交力系。
解析法是解决平面汇交力系的一种重要方法,通过将受力结构拆分成若干简单的部件,逐一求解每个部件的受力情况,最终得出整个结构的受力状态。
解析法求解平面汇交力系的过程相对繁琐,但却具有广泛的适用性和准确性。
通过该方法,工程师可以有效地分析和设计各种结构系统,确保其在受到外部力作用时能够正常工作并具有足够的安全性。
本文将通过介绍解析法的基本原理、平面汇交力系的概念、解析法求解平面汇交力系的步骤、以及通过案例分析和优缺点分析,总结出解析法在解决平面汇交力系问题中的优势和局限性。
结合工程实践,展望解析法在未来的发展方向和应用前景。
2. 正文2.1 解析法的基本原理解析法是工程力学中常用的一种方法,用于求解复杂的力系。
它基于平面静力学的基本原理,通过分解力的大小和方向,将复杂的力系简化为若干个简单的力系,从而方便进行计算和分析。
在解析法中,首先需要将给定的力系统进行分解,将力的大小和方向拆分为水平方向和垂直方向的分力。
然后利用平衡条件,即力矩平衡和力的平衡,来求解各个未知力的大小和方向。
通过逐步分解和平衡计算,可以得到整个力系的解析解。
解析法在解决平面汇交力系时尤为重要,因为平面汇交力系涉及多个力的作用,且力的方向和大小不确定。
通过解析法,可以清晰地分析每个力的作用,进而求解系统的平衡条件,从而得到准确的结果。
2.2 平面汇交力系的概念平面汇交力系是指多个力在同一个平面内作用于一个物体上的力系统。
在平面汇交力系中,可以通过解析法来求解各个力的大小、方向和作用点位置,以便准确分析物体的平衡状况和受力情况。
1. 力的合成:在平面汇交力系中,多个力可能同时作用在物体上,这些力的合成可以通过向量的方法来求解,即将各个力按照其大小和方向绘制成向量,在平面上进行几何构图可得到力的合成结果。
解析法证明平面几何经典问题--举例
五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试?例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)(例1图) (例2图)例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .【部分题目解答】例1、(难度相当于高考压轴题);,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+、;则,、,C B )()(4433y x E y xD ,1- ;12-2-)1,{)-(222212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mxy 由韦达定理知:得:(消去,1- ;1222243243+=+=+n r a x x n an x x 同理得:),-(---232322x x x x y y y y CD =方程为:直线 ,--Q 323223Q y y y x y x x =点横坐标:由此得,--P 141441P y y y x y x x =点横坐标:同理得,------141441323223P Q y y yx y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明NB即证明:)()()()(321441143223-----y y y x y x y y y x y x ⋅=⋅将上式整理得:31442331242143212143)()(y y x y y x y y x y y x x x y y x x y y +++=+++,代入整理得:注意到:44332211 , ;,nx y nx y mx y mx y ====)]()([),()(214343212143243212x x x x x x x x mn x x x x n x x x x m +++=+++=右边左边)1)(1(n))(m -(2)121-121-()1)(1(n))(m -(2121-121-22222222222222222222222222+++=+⋅+++⋅+=+++=+⋅+⋅++⋅+⋅=n m r a amn m am n r a n an m r a mn n m r a amn m am n r a n n an m r a m 右边左边代入得:把上述韦达定理的结论 可见:左边=右边,故P Q -x x =,即AQ AP =. 证毕!例2、 .标系分析:如右图,建立坐、坐标后,求出直线、、、总体思路:设点AD D C B A 切值,证明这两个角度从而求出两个角度的正问题的关键是:如何设点C 、D 而C 、D 两点是相互独立运动的,故把点C 、D 设AD=BC= r ,则C 点可以看作是以B 为圆心,r 上的动点,类似看待D 点,故,设),sin cos D()sin cos C(ϕϕ,r r -a θθ,r r a ++、)2sin sin ,2cos cos N(ϕϕ++θθ从而得;2tan cos cos sin sin ,tan ,tan MN AD BC ϕθϕϕϕθ+=++===θθk k k 参数方程的美妙之处】【此处充分展现了圆的易得:。
平面几何知识在解析几何中的运用
・19・
高中数学教与学 2007 年
评注 该题的解答既可采用常规的坐标 法 , 又可如上采用圆锥曲线的几何性质 , 借助 平面几何的方法进行推理 , 但几何方法较之 解析法比较快捷 . 2001 年广东高考第 21 题对 椭圆性质的考查 , 用上面的方法也可以容易 证明 . 我们在复习解析几何时要对圆锥曲线 的几何性质引起重视 , 注意数形结合 , 尤其是 有关抛物线的一些性质用平几知识证明更为 方便 . 如 圆 锥曲 线 中的 一般 结 论 :
x y = 2 + 2 a b
2 2
足 AM = 2 A P, N P・ AM = 0的点 N 的轨迹为曲 线 E, 求曲线 E 的方程 . 解 ∵ AM = 2 A P, N P ・AM = 0, ∴N P 为 AM 的垂直平分线 ,
| NA | = | NM |.
例 4 已知椭圆 C 的方程为
・21・
x
2
5
+
y
2
4
= 1.
评注 过圆锥曲线焦点的直线与圆锥曲 线交于两点 , 若知道两焦半径之比 , 那么直线 的斜率与圆锥曲线的离心率两者知一可求其 另一 . 以上两例都把条件集中在焦点弦所在 的直角三角形中 , 再结合几何知识 , 给问题的 解决带来了一定的方便 , 特别是大大减少了 运算量 . 四、 综合应用
若在左准线 l上存在点 R, 使 & PQR 为正三角 形 , 则椭圆离心率 e的取值范围是
.
∴
m - 1 e m - n n = = 2 m +n m 2 - e +1 n
=1 1 ≤ 3
2
m +1 n e
∈
1 ,1 . 3
平面几何中几个重要定理的证明
证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
第56讲 解析法证几何题
第56讲 解析法证 几何题解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁.此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”.A 类例题例1.如图,以直角三角形ABC 的斜边AB 及直角边BC 为边向三角形两侧作正方形ABDE 、CBFG .求证:DC ⊥F A .分析 只要证k CD ·k AF =-1,故只要求点D 的坐标.证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a),B(b,0),D(x,y).则直线AB的方程为ax+by-ab=0.故直线BD的方程为bx-ay-(b·b-a·0)=0,即bx-ay-b2=0.ED方程设为ax+by+C=0.由AB、ED距离等于|AB|,得|C+ab|a2+b2=a2+b2,解得C=±(a2+b2)-ab.如图,应舍去负号.所以直线ED方程为ax+by+a2+b2-ab=0.解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果).即D(b-a,-b).因为k AF=b-ab,k CD=-bb-a,而k AF·k CD=-1.所以DC⊥F A.例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角.证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是BH:xb+yh=1AC:xc+ya=1过BH、AC的交点E的直线系为:λ(xb+yh-1)+μ(xc+ya-1)=0.以(0,0)代入,得λ+μ=0.分别取λ=1,μ=-1,有x(1b-1c)+y(1h-1a)=0.所以,上述直线过原点,这是直线DE.同理,直线DF为x(1c-1b)+y(1h-1a)=0.显然直线DE与直线DF的斜率互为相反数,故AD平分ED与DF所成的角.说明写出直线系方程要求其中满足某性质的直线,就利用此性质确定待定系数,这实际上并不失为一种通法.例3.证明:任意四边形四条边的平方和等于两条对角线的平方和再加上对角线中点连线的平方的4倍.证明在直角坐标系中,设四边形四个顶点的坐标为A1(x1,y1),A2(x2,y2),A3(x3,y3),A4(x4,y4).由中点公式知对角中点的坐标为B(x1+x32,y1+y32),C(x2+x42,y2+y42).则4(x1+x32-x2+x42)2+(x1-x3)2+(x2-x4)2x=(x1+x3-x2-x4)2+(x1-x3)2+(x2-x4)2=2(x21+x22+x23+x24-x1x2-x2x3-x3x4-x4x1) =(x1-x2)2+(x2-x3)2+(x3-x4)2+(x4-x1)2,同理有4(y1+y32-y2+y42)2+(y1-y3)2+(y2-y4)2=(y1-y2)2+(y2-y3)2+(y3-y4)2+(y4-y1)2,两式相加得:|A1A2|2+|A2A3|2+|A3A4|2+|A4A1|2=4|BC|2+|A1A3|2+|A2A4|2.说明本题纯几何证法并不容易,而采用解析法,只需要简单的计算便达到目的.另外本例中巧妙地抓住了各点的“对称性”,设了最为一般的形式,简化了计算.情景再现1.如图,⊙O的弦CD平行于直径AB,过C、D的圆的切线交于点P,直线AC、BC分别交直线OP于Q、R.求证:|PQ|=|PR|.2.自圆M外一点E作圆的切线,切点为F,又作一条割线EAB,交圆M于A、B,连结EF的中点O与B,交圆M于D,ED交圆M于C.x求证:AC ∥EF .3.CH 是ΔABC 中边AB 上的高,H 为垂足,点K 、P 分别是H 关于边AC 和BC 的对称点.证明:线段KP 与AC ,BC (或它们的延长线)的交点是ΔABC 高线的垂足.B 类例题例4.P 、Q 在ΔABC 的AB 边上,R 在AC 边上,并且P ,Q ,R 将ΔABC 的周长分为三等分.求证:S ΔPQR S ΔABC >29.证明 如图,以A 为原点,直线AB 为x 轴,建立直角坐标系. 设AB =c ,BC =a ,CA =b ,Q (q ,0),P (p ,0). 则q -p =13(a +b +c ),AR =PQ -AP =q -2p , 从而y R y C =ARAC =q -2p b.由于2S ΔPQR =y R (q -p ),2S ΔABC =x B y C , 所以S ΔPQRS ΔABC =y R (q -p )y C x B =(q -p )(q -2p )bC .注意到p =q -13(a +b +c )<c -13(a +b +c ), 所以q -2p >23(a +b +c )-c >23(a +b +c )-12(a +b +c )=16(a +b +c ),S ΔPQR S ΔABC >29·(a +b +c )24bc >29·(b +c )24bc >29.说明 本题中29是不可改进的,取b =c ,Q 与B 重合,则当a 趋向于0时,p 趋向于13q ,面积比趋向于29. 例5.设H 是锐角三角形ABC 的垂心,由A 向以BC 为直径的圆作切线AP 、AQ ,切点分别为P 、Q .证明:P 、H 、Q 三点共线.(1996年中国数学奥林匹克) 证明 如图以BC 为x 轴BC 中点O 为原点建立直角坐标系. 设B (-1,0),C (1,0),A (x 0,y 0), 则PQ 方程为x 0x +y 0y =1.点H 的坐标为H (x 0,y ),满足yx 0+1·y 0x 0-1=-1, 即 y =1-x 20y 0,显然H 满足PQ 方程,即H 在PQ 上. 从而P 、H 、Q 三点共线.例6.设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的两圆相交于X 和Y ,直线XY 交BC于xyZ .若P 为直线XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N .试证:AM 、DN 、XY 三线共点.分析 只要证明AM 与XY 的交点也是DN 与XY 的交点即可,为此只要建立坐标系,计算AM 与XY 的交点坐标.证明 如图,以XY 为弦的任意圆O ,只需证明当P 确定时,S 也确定.以Z 为原点,XY 为y 轴建立平面直角坐标系,设X (0,m ),P (0,y 0),∠PCA =α,其中m 、y 0为定值.于是有x C =y 0cotα. 但是-x A ·x C =y X2,则x A =-m 2y 0tanα.因此,直线AM 的方程为:y =cotα(x +m 2y 0tanα).令x =0,得y S =m 2y 0,即点S 的坐标为(0,m 2y 0).同理,可得DN 与XY 的交点坐标为(0,m 2y 0).所以AM 、DN 、XY 三线共点.x情景再现4.在RtΔABC中,AD是斜边上的高,M,N分别是ΔABD与ΔACD的内心,连接MN并延长分别交AB、AC于K、L两点.求证:SΔABC≥2SΔAKL.5.已知△ABC中,∠A=α,且1|AB|+1|AC|=m.求证:BC边过定点.6.设△ABC的重心为G,AG、BG、CG的延长线交△ABC的外接圆于P、Q、R.求证:AGGP+BGGQ+CGGR=3.C类例题例7.以ΔABC的边BC为直径作半圆,与AB、AC分别交于D 和E.过D、E作BC的垂线,垂足分别为F、G.线段DG、EF交于点M.求证:AM⊥BC.(1996年国家队选拔题)分析建立以BC为x轴的坐标系,则只要证明点A、M的横坐标相等即可.证明以BC所在的直线为x轴,半圆圆心O为原点建立直角坐标系.设圆的半径为1,则B(-1,0),C(1,0).令∠EBC=α,∠DCB=β,则直线BD的方程为y=cotβ·(x+1).同样,直线CE的方程为y=-cotα·(x-1),联立这两个方程,解得A点的横坐标x A=cotα-cotβcotα+cotβ=sin(α-β)sin(α+β).因为∠EOC=2∠EBC=2α,∠DOB=2β,故E(cos2α,sin2α),D(-cos2β,sin2β),G(cos2α,0),F(-cos2β,0).于是直线DG的方程为y=sin2β-(cos2α+cos2β)·(x-cos2α),直线EF的方程为y=sin2α-(cos2α+cos2β)·(x+cos2β).联立这两个方程,解得M点的横坐标x M=sin2α·cos2β-cos2α·sin2βsin2α+sin2β=sin2(α-β)sin(α+β)cos(α-β)=sin(α-β)sin(α+β)=x A.故AM⊥BC.例8.如图,一条直线l与圆心为O的圆不相交,E是l上一点,OE⊥l,M是l上任意异于E的点,从M作圆O的两条切线分别切圆于A和B,C是MA上的点,使得EC⊥MA,D是MB上的点,使得ED ⊥MB ,直线CD 交OE 于F .求证:点F 的位置不依赖于M 的位置(1994年IMO 预选题) 分析 若以l 为x 轴,OE 为y 轴建立坐标系,则只要证明F 点的纵坐标与点M 的坐标无关即可.证明 建立如图所示的平面直角坐标系,设圆O 的半径为r ,OE =a ,∠OME =α,∠OMA =θ,显然有sinθsinα=ra. y C =MC ·sin(α-θ)=ME ·sin(α-θ)cos(α-θ) =a cotα·sin(α-θ)cos(α-θ),x C =-y C ·tan(α-θ)=-a cotαsin 2(α-θ). 同理,y D =a cotα·sin(α+θ)cos(α+θ),x D =-a cotαsin 2(α+θ).所以,k CD =sin2(α+θ)-sin2(α-θ)2[sin 2(α-θ)-sin 2(α+θ)]=-cot2α.则直线CD 的方程为y -a cotα·sin(α+θ)cos(α+θ)=-cot2α[x +a cotαsin 2(α+θ)]. 令x =0,得y F =a cotα·sin(α+θ)[cos(α+θ)-cot2αsin(α+θ)] =a cotα·sin (α+θ)sin(α-θ)sin2αxl=a ·-cos2α+cos2θ4sin 2θ=a 2(1-sin 2θsin 2α) =a 2-r 22a.由于a 2-r 22a是定值,这就表明F 的位置不依赖于点M 的位置.情景再现7.在筝形ABCD 中,AB =AD ,BC =CD ,经AC 、BD 交点O 作二直线分别交AD 、BC 、AB 、CD 于点E 、F 、G 、H ,GF 、EH 分别交BD 于点I 、J .求证:IO =OJ .(1990年冬令营选拔赛题)8.水平直线m 通过圆O 的中心,直线l ⊥m ,l 与m 相交于M ,点M 在圆心的右侧,直线l 上不同的三点A 、B 、C 在圆外,且位于直线m 上方,A 点离M 点最远,C 点离M 点最近,AP 、BQ 、,CR 为圆O 的三条切线,P 、Q,、R 为切点.试证:(1)l 与圆O 相切时,AB ⨯CR +BC ⨯AP =AC ⨯BQ ;(2)l 与圆O 相交时,AB ⨯CR +BC ⨯AP <AC ⨯BQ ; (3)l 与圆O 相离时,AB ⨯CR +BC ⨯AP >AC ⨯BQ .(1993年全国高中数学联合竞赛)习题561.已知AM 是 ABC 的一条中线,任一条直线交AB 于P ,交AC 于Q ,交AM 于N .求证:AB AP ,AM AN ,ACAQ成等差数列.2.在四边形ABCD 中,AB 与CD 的垂直平分线相交于P ,BC 和AD 的垂直平分线相交于Q ,M 、N 分别为对角线AC 、BD 中点.求证:PQ ⊥MN .3.证明,如一个凸八边形的各个角都相等,而所有各邻边边长之比都是有理数,则这个八边形的每组对边一定相等.(1973年奥地利数学竞赛题)4.设△ABC 是锐角三角形,在△ABC 外分别作等腰直角三角形BCD 、ABE 、CAF ,在此三个三角形中,∠BDC 、∠BAE 、∠CF A 是直角.又在四边形BCFE 外作等腰直角三角形EFG ,∠EFG 是直角.求证:⑴GA =2AD ;⑵∠GAD =135°;(上海市1994年高中数学竞赛) 5.如图△ABC 和△ADE 是两个不全等的等腰直角三角形,现固定△ABC ,而将△ADE 绕A 点在平面上旋转.试证:不论△ADE 旋转到什么位置,线段EC 上必存在点M ,使△BMD 为等腰直角三角形.(1987年全国高中数学联赛)D ECBA6.设A1A2A3A4为⊙O的内接四边形,H1、H2、H3、H4依次为ΔA2A3A4、ΔA3A4A1、ΔA4A1A2、ΔA1A2A3的垂心.求证:H1、H2、H3、H4四点在同一个圆上,并定出该圆的圆心位置.(1992年全国高中数学联赛)7.证明:ΔABC的重心G,外心O,垂心H三点共线,且OG:GH=1:2.8.已知MN是圆O的一条弦,R是MN的中点,过R作两弦AB 和CD,过A、B、C、D四点的二次曲线交MN于P、Q.求证:R是PQ的中点.本节“情景再现”解答:1.以圆心O为原点,BA为y轴建立坐标系,设点C的坐标为(x0,y0),且⊙O的半径等于1.可得R点横坐标x R=x01-y0,Q点横坐标x Q=x01+y0,P点横坐标x P=1x0.所以x R+x q=x01-y0+x01+y0=x01-y20=2x0=2x P.即点P为QR的中点,所以|PQ|=|PR|.2.以O 为原点,EF 为x 轴,建立直角坐标系.设E (-x 0,0),F (x 0,0).圆M 的半径设为r ,则圆M 的方程为x 2+y 2-2xx 0-2yr +x 02=0 (1).过E 的两直线AB 、CD 的方程可设为h 1y =x +x 0,h 2y =x +x 0,合为(x -h 1y +x 0)(x -h 2y +x 0)=0 (2).直线BD 、AC 的方程又可设为y =kx ,ax +by +c =0.合为(y -kx )(ax +by +c )=0 (3).(1)与(2)所成的曲线系过交点A 、B 、C 、D ,又曲线(3)过点A 、B 、C 、D ,故为该曲线系中的一条.比较(1)与(2)所成的曲线系与(3)中常数项即可知(3)能由(1)、(2)相减得到,此时项中无x 2项.所以(3)中a =0,即AC ∥EF .3.建立如图所示的平面直角坐标系,设A 、B 、C 三点的坐标依次为A (a ,0),B (b ,0),C (0,c ).则P 点和K 点的坐标分别为:P (2bc 2b 2+c 2,2b 2c b 2+c 2),K (2ac 2a 2+c 2,2a 2ca 2+c 2).于是KP 所在的直线方程是c (a +b )x +(ab -c 2)y-2abc =0 ①,另一方面,BC 所在直线的方程是cx +by -bc =0 ②,BC 边上的高所在的直线方程是bx -cy -ab =0 ③,由于②×a +③×c =①,于是KP 经过BC 边上高线的垂足,同理,KP 与经过AC 边上高线的垂足.4.分别以AC 、AB 所在直线为x 轴和y 轴建立直角坐标系,并设|AC |=a ,|AB |=b ,|OD |=xc ,则c =aba 2+b2.设ΔACD 、ΔABD 的内切圆半径分别为r 1,r 2,则N ,M 的坐标分别为N (c -r 1,r 1),M (r 2,c -r 2).于是直线MN 的斜率为k MN =c -r 2-r 1r 2-c +r 1=-1.这说明ΔAKL 为等腰直角三角形,直线MN 的方程为y -r 1=-(x -c +r 1),其横、纵截距均为c ,所以2S ΔAKL=c 2=a 2b 2a 2+b 2≤a 2b 22ab=ab2=S ΔABC .5.以A 为原点,AB 为x 轴正方向建立直角坐标系.设|AB |=p ,|AC |=q .则1p +1q =m ,q =pmp -1,点B (p ,0),C (q cos α,q sin α).直线BC 的方程为yq sin α=x -p q cos α-p.整理得p (my -sin α)+[x sin α-(1+cos α)y ]=0,即无论p 为何值时,直线BC 经过两条定直线my -sin =0与x sin α-(1+cos α)y =0的交点.(两条直线斜率不等,故必有交点),即直线BC 过定点.6.以外接⊙O 的圆心O 为原点,平行于BC 的直线为x 轴建立坐标系.设A (x 1,y 1),B (x 2,y 2),则C (-x G (x 13,y 1+2y 23).设外接圆半径为r .则=x 22+y 22=r 2.由相交弦定理,知AG GP =|AG |2r 2-|OG |2,同理BG GQ =|BG |2r 2-|OG |2,CG GR =|CG |r 2-|OG |2;|AG |2+|BG |2+|CG |2=(x 1-x 13)2+(x 2-x 13)2+(x 2+x 13)2+(y 1-y 1+2y 23)2+2(y 2-y 1+2y 23)2=23[x 12+(y 1-y 2)2]+2x 22=43(r 2+x 22-y 1y 2),r 2-|OG |2=r 2-[x 209+(y 1+2y 2)29]=49(2r 2-y 22-y 1y 2).注意到x 22+y 22=r 2,就得AG GP +BG GQ +CGGR=|AG |2+|BG |2+|CG |2r 2-|OG |2=3.7.如图,以O 为原点,OD 为x 轴正方向建立直角坐标系,设A (0,a ),D (d ,0),C (0,c ),则B (-d ,0).直线AB 方程为:x -d+ya -1=0;设GH 方程:ky -x =0. (因为求I 点坐标时要取y =0,故把系数k 置 于y 前).于是GF 方程为x -d +ya -1+λ(ky-x )=0 ①,BC 方程为x -d +yc -1=0,设EF 方程为hy -x =0.于是GF 方程又可表 示为x -d+yc -1+μ(hy -x )=0 ②. ①与②是同一个方程,比较系数得λ=μ,1a +λk =1c+μh .则λ=1h -k (1a -1c ).在①中,令y =0得I 点的横坐标x I =d1+d λ;同理,点J 的横坐标为x J =-d 1-d λ',其中λ'=1k -h (1a-1c ),于是x I=-x j .即IO =OJ .从而得证.8.证略.本节“习题56”解答:1.以BC所在直线为x轴,高AD所在直线为y轴建立直角坐标系.设A(0,a),B(m-b,0),C(m+b,0),直线PQ方程:y=kx+q.设ABAP=λ,则AP+PBAP=λ,BPP A=λ-1.所以P点坐标为x=m-bλ,y=(λ-1)aλ,故(λ-1)a=k(m-b)+qλ,则λ=k(m-b)+aa-q ,即ABAP=k(m-b)+aa-q,同理,AMAN=km+aa-q,ACAQ=k(m+b)+a a-q .则ABAP+ACAQ=2AMAN.这说明ABAP,AMAN,ACAQ成等差数列.2.提示:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),利用式子的对称性即可证得结论.3.此八边形的每个内角都等于135︒.不妨设每边的长都是有理数.依次设其八边长为有理数a,b,c,d,e,f,g,h.把这个八边形放入坐标系中,使长为a的边的一个顶点为原点,这边在x轴上,于是a+b cos45︒+d cos135︒-e+f cos225︒+h cos315︒=0,整理得a+e+22(b-d-f+h)=0;b cos45︒+c+d cos(-45︒)+f cos135︒-g+h cos225︒=0,整理得c+g+E22(b+d-f-h)=0.所以a=e,b-d-f+h=0;c=g,b+d-f-h=0.则b-f=0,g-h=0.从而凸八边形的每组对边相等.4.以A为原点建立直角坐标系,设B、C对应的复数为z B,z C.则点E对应复数z E=-iz B,点D对应复数z D=12(1+i)(z B-z C)+z C=12[(1+i)z B+(1-i)z C],点F对应复数z F=12(1+i)z C.向量→FE=z E-z F=-iz B-12(1+i)z C.z G=z F-i→FE=12(1+i)z C-i[-iz B-12(1+i)z C]=-z B+12(1+i)2z C=-z B+iz C.则z G=(-1+i)z D=2(cos135︒+i sin135︒)z D.则GA=2AD;∠GAD=135°.5.以A为原点,AC为x轴正方向建立复平面.设C表示复数c,点E表示复数e(c、e∈R).则点B表示复数b=12c+12ci,点D表示复数d=12e-12ei.把△ADE绕点A旋转角θ得到△AD'E',则点E'表示复数e'=e(cosθ+i sinθ).点D'表示复数d'=d(cosθ+i sinθ)表示E'C中点M的复数m=12(c+e').则表示向量→MB的复数:z1=b-12(c+e')=12c+12ci-12c-12e(cosθ+i sinθ)=-12e cosθ+12(c-e sinθ)i.表示向量→MD '的复数:z 2=d '-m =(12e -12ei )(cos θ+i sin θ)-12c -12e (cos θ+i sin θ)=12(e sin θ-c )-12ie cos θ.显然:z 2=z 1i .于是|MB |=|MD '|,且∠BMD '=90°.即△BMD '为等腰直角三角形.故证.6.以O 为坐标原点,⊙O 的半径为长度单位建立直角坐标系,设OA 1、OA 2、OA 3、OA 4与OX 正方向所成的角分别为α、β、γ、δ,则点A 1、A 2、A 3、A 4的坐标依次是(cos α,sin α)、(cos β,sin β)、(cos γ,sin γ)、(cos δ,sin δ).显然,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的外心都是点O ,而它们的重心依次是(13(cos β+cos γ+cos δ),13(sin β+sin γ+sin δ))、(13(cos γ+cos δ+cos α),13(sin α+sin δ+sin γ))、(13(cos δ+cos α+cos β),13(sin δ+sin α+sin β))、(13(cos α+cos β+cos γ),13(sin α+sin β+sin γ)).从而,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心依次是H 1(cos β+cos γ+cos δ,sin β+sin γ+sin δ)、H 2(cos γ+cos δ+cos α,sin α+sin δ+sin γ)、H 3(cos δ+cos α+cos β,sin δ+sin α+sin β)、H 4(cos α+cos β+cos γ,sin α+sin β+sin γ).而H 1、H 2、H 3、H 4点与点O 1(cos α+cos β+cos γ+cos δ,sin α+sin β+sin γ+sin δ)的距离都等于1,即H 1、H 2、H 3、H 4四点在以O 1为圆心,1为半径的圆上.证毕.7.以ΔABC 的外心O 为坐标原点,不妨设ΔABC 的外接圆半径为1,设A (cosα,sinα),B (cosβ,sinβ),C (cosγ,sinγ),则重心G 的坐标为G (cosα+cosβ+cosγ3,sinα+sinβ+sinγ3).设H '(cosα+cosβ+cosγ,sinα+sinβ+sinγ).则k AH '=sinβ+sinγcosβ+cosγ=tan β-γ2,k BC =sinβ-sinγcosβ-cosγ=-cot β-γ2.则可得k AH '·k BC =-1,则AH '⊥BC .同理,BH '⊥CA ,CH '⊥AB .因此,H '(cosα+cosβ+cosγ,sinα+sinβ+sinγ)为ΔABC 的垂心H .观察O 、G 、H 的坐标可知,G 、O 、H 三点共线,且OG :GH =1:2.8.以R 为原点,MN 为x 轴,建立如图所示的平面直角坐标系.设圆心O 的坐标为(0,a ),圆半径为r ,则圆的方程为x 2+(y -a )2=r 2 ①,设AB 、CD 的方程分别为y =k 1x 和y =k 2x .将它们合成为(y -k 1x )(y-k 2x )=0 ②,于是过①与②的四个交点A 、B 、C 、D 的曲线系方程为(y -k 1x )(y -k 2x )+λ[x 2+(y -a )2-r 2]=0 ③,令③中y =0,得(λ+k 1k 2)x 2+λ(a 2-r 2)=0 ④.④的两个根是二次曲线与MN 交点P 、Q 的横坐标,因为x P +x Q =0,即R 是PQ 的中点.从而得证.说明:本例实质上是平面几何中蝴蝶定理得推广.平面几何中许多x命题都可以通过解析法获证.第21 页共21 页。
平面几何解题方法介绍 湖南师范大学附属中学 羊明亮
知识与方法
羊明亮 湖南师范大学附属中学
数学竞赛中常用的著名定理有:梅涅劳斯定理及其逆定理、塞瓦定理及其逆定理、托勒
密定理(不等式)、西姆松定理及其逆定理、欧拉定理,另外,还用到斯特瓦尔定理、蝴蝶
定理等. 除了上述定理外,我们还应掌握有关根轴、完全四边形、调和四边形、调和线束(点列)
( 2 (1 1 ))( 2 (1 1 ))
a
bd c b (1 1 )2
d
.
bd
化简,得 2(a2c2 b2d 2 ) (ac bd )(a c)(b d ) . ②
现需证 b, e, a c 所对应的复平面上的点共线,即只需证 2
ac b
a
2
②用面积有关知识作为计算或论证手段,通过适当的变换,从而得出所考虑的量与量之间关
系,最后得出结论,或者将边之间的比和面积结合起来得到一个等式(称面积方程),然后
通过面积方法去解决有关问题。
ABC 的面积公式(其中 P 1 (a b c), R 为∆ABC 外接圆半径, r 为内切圆半径): 2
2 所以 A 1800 2( ) 60 .
例 5 设凸四边形 ABCD 的外接圆的圆心为 O .已知 AC BD ,且 AC 与 BD 交于点 E ,
若 P 为四边形 ABCD 内部一点,且 PAB PCB PBC PDC 900 .
求证: O 、 P 、 E 三点共线.
证明: 上.
SPAF
SPBD
SABC
1 2
SABC
成立当且仅当
P
至少位于 ABC
的一条中线
证明:设 SAPB a, SBPC b, SCPA c,
弹性力学的平面问题解法
弹性力学的平面问题解法摘要:本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下基础。
着眼于弹性力学求解方法中一些方法,通过其在平面问题中的应用来介绍几种方法的研究思路,研究方法以及优缺点。
弹性力学作为固体力学的一个重要分支,它的研究对象是板、壳、实体以及单根杆件,它是研究弹性固体由于受外力作用,边界约束或者温度改变及其他一种或多种外界条件作用下产生的应力、应变和位移。
它的研究对象是板、壳、实体以及单根杆件。
关键词:弹性力学;平面问题;解法前言:弹性力学是材料力学问题的精确解,是结构力学,塑性力学等力学学科的基础,其广泛应用于土木工程、航空航天工程及机械工程等多个学科领域。
并且随着科学技术手段的进步,电子计算机得以应用到弹性力学的计算分析中,这极大地促进了弹性力学问题的分析计算更加深入,促使了有限单元法得以实现。
本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下坚实的基础。
1 问题解法1.1解析法解析法是根据研究对象在结构中的静力平衡条件,几何关系和物理关系建立边界条件,平衡微分方程,几何方程和物理方程,并以此求解应力分量,应变分量和位移分量的一种平面问题的精确解法。
按求解时的基本未知量选取不同可分为按位移求解的位移法和按应力求解的应力法。
第一个位移法:以位移为基本未知量时的基本方程如下:位移边界条件如下从上面的公式可以看出位移法求解平面问题时的基本未知量只有两个,与应力法的三个基本未知量相比求解简单很多,并且不但能求解位移边界条件,还能求解应力边界条件与混合边界条件。
第二个应力法:应力法以应力分量作为基本未知量,由此平面问题的平衡微分方程,几何方程,物理方程以及边界条件经过推导可变为如下形式:基本方程:应力边界条件:值得注意的是按应力求解时边界条件应全部为应力边界条件。