相似三角形习题课之一线三等角
相似专题:一线三等角模型
由于角顶点位置的改变,或角绕顶点旋转会产生各 种各样的变式,但万变不离其宗: 都是构造相似三角形列比例式解决问题.
常见类型
考题赏析:
考题赏析
应用举例
应用举例.
2、当等角所对的边相等时的两个三角形全等. 如图,当CE=ED时,易得△AEC≌△BDE.
3、“中点型一线三等角”的特殊性质
如图,当∠1=∠2=∠3且D是BC中点时, △BDE∽△CFD∽△DFE.
四、一线三等角的常见构图(以等腰三角形为例)
A与E重合时如图所示
也可以在射线上
点D也可以在线段 BC外面
练习中的问题:
相似专题复习 :
合肥实验学校 孙红涛
引例
已知相邻两条平行线间距离相等,若等腰直角三角形顶 点分别在三条平行线上,则sinα =
C
a
B
起源
二、“一线三等角”的两种基本类型
1.三等角都在直线的同侧
2.三等角分居直线的两侧
三、“一线三等角”的性质
1.一般情况下,由∠1=∠2=∠3易得△AEC∽△BDE.
(挑战压轴)专项27.4 相似三角形-一线三等角综合应用(解析版)
(挑战压轴)专项27.4 相似三角形-一线三等角综合应用【方法技巧】1.如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2.一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【类型1:标准“K ”型图】1.(2021秋•长安区期末)如图,将矩形ABCD 沿AE 折叠,使点D 落在BC 边的点F 处(1)求证:△ABF ∽△FCE ;(2)已知AB =3,AD =5,求tan ∠DAE 的值.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,∴∠BAF +∠AFB =90°,由折叠可得:∠D =∠AFE =90°,CB BC A A∴∠AFB+∠EFC=180°﹣∠AFE=90°,∴∠BAF=∠EFC,∴△ABF∽△FCE;(2)解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=5,由折叠可得:AD=AF=5,∴BF===4,∴CF=BC﹣BF=1,∵△ABF∽△FCE,∴=,∴=,∴CE=,∴DE=CD﹣CE=3﹣=,∴tan∠DAE===,∴tan∠DAE的值为.2.如图,在正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于F,交AD的延长线于点E.(1)求证:△ABM∽△MCF;(2)若AB=4,BM=2,求△DEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠B=∠C=90°,BC∥AD,∴∠BAM+∠AMB=90°,∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠FMC=90°,∴∠BAM=∠FMC,∴△ABM∽△MCF;(2)解:∵AB=4,∴AB=BC=CD=4,∵BM=2,∴MC=BC﹣BM=4﹣2=2,由(1)得:△ABM∽△MCF,∴=,∴=,∴CF=1,∴DF=CD﹣CF=4﹣1=3,∵BC∥AD,∴∠EDF=∠MCF,∠E=∠EMC,∴△DEF∽△CMF,∴=,∴=,∴DE=6,∴△DEF的面积=DE•DF=×6×3=9,答:△DEF的面积为9.3.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与PA的比为1:2,求边AB的长.【解答】(1)证明:由折叠的性质可知,∠APO=∠B=90°,∴∠APD+∠OPC=90°,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.4.(2020•香洲区校级一模)如图,四边形ABDC为矩形,AB=4,AC=3,点M为边AB上一点(点M不与点A、B重合),连接CM,过点M作MN⊥MC,MN与边BD交于点N.(1)当点M为边AB的中点时,求线段BN的长;(2)直接写出:当DN最小时△MNB的面积为 .【解答】解:(1)∵AB=4,∴当点M为边AB的中点时,AM=BM=2,∵四边形ABDC为矩形,∴∠A=∠B=90°,∵MN⊥MC,∴∠CMN=90°,∵∠ACM+∠AMC=90°,∠BMN+∠AMC=180°﹣∠CMN=90°,∴∠ACM=∠BMN,又∵∠A=∠B,∴△ACM∽△BMN,∴,∵AC=3,AM=BM=2,∴=,∴BN=;(2)设BM=x,DN=y,∵四边形ABDC为矩形,AB=4,AC=3,∴AM=AB﹣BM=4﹣x,BN=BD﹣DN=3﹣y,由(1)知,,∴=,∴(4﹣x)x=3(3﹣y),∴﹣x2+4x=9﹣3y,∴y=x2﹣x+3=(x﹣2)2+,∴当x=2时,y取得最小值,即DN最小,此时DN=y=,∴BM=2,BN=3﹣=,∴△MNB的面积为:×2×=.故答案为:.5.(2019•玉州区二模)已知:如图,正方形ABCD中,E是边AB上一点,AM⊥DE于点M,CN⊥DE于点N.(1)求证:MN=DM﹣AM;(2)连接AN,如果=,求证:MN=ME.【解答】证明:(1)∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADM+∠CDN=90°,∵AM⊥DE,CN⊥DE,∴∠AMD=∠CND=90°,∴∠CDN+∠DCN=90°,∴∠ADM=∠DCN,∴△ADM≌△DCN(AAS),∴DN=AM,∵MN=DM﹣DN,∴MN=DM﹣AM;(2)如图:∵四边形ABCD是正方形,∴AD=DC,∠DAE=90°,∵∠DAE=∠DNC=90°,∠ADM=∠DCN,∴△CDN∽△DEA,∴=,∴=,∵=,∴=,∴AE=AN,∵AM⊥DE,∴MN=ME.6.(2022•郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②方法一:如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x=1,即AF=1,由(1)得,设DE=y,则AE=6﹣y,∴,解得:y=3+或y=3﹣,∵0<6,0<3﹣<6,∴DE=3+或DE=3﹣.方法二:如图4,过点G作GH∥AB交BC于点H,∴△MHG∽△MBA,∴,由(2)可知AG+MG的最小值为5,即AM=5,又∵GM=3,∴,∴GH=,MH=,由GH∥AB得△CHG∽△CBF,∴,即,解得FB=3,∴AF=AB﹣FB=1.由(1)得,设DE=y,则AE=6﹣y,∴,解得:y=3+或y=3﹣,∵0<6,0<3﹣<6,∴DE=3+或DE=3﹣.、【类型2:做辅助线构造“K”型图】7.(2022春•定海区校级月考)【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.【解答】(1)证明:∵∠ACB=90°,∴∠BCD+∠ACE=90°,∵AE⊥CE,∴∠AEC=90°,∴ACE+∠CAE=90°.∴∠BCD=∠CAE.∵BD⊥DE,∴∠BDC=90°,∴∠BDC=∠AEC.∴△BDC∽△CEA.(2)解:过点E作EF⊥BC于点F.由(1)得△EDF∽△DAC.∴.∵AD⊥DE,,AC=20,∴,∴DF=16.∵BE=DE,∴BF=DF.∴BD=2DF=32.(3)解:过点A作AM⊥BC于点M,过点D作DN⊥BC的延长线于点N.∴∠AMB=∠DNC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠B=∠DCN.∴△ABM≌△DCN(AAS).∴BM=CN,AM=DN.∵AB=AE,AM⊥BC,∴BM=ME,∵,设AM=b,BE=4a,EC=3a.∴BM=ME=CN=2a,EN=5a.∵∠AED=90°,由(1)得△AEM∽△EDN.∴,∴,∴,∵,∴(2a)2+b2=14,∴a=1,.∴平行四边形ABCD的面积=【类型2:特殊“K”型图】8.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD的长为 .【解答】解:∵AB=AC,∴∠C=∠B,∴∠C+∠B+∠BAC=2∠C+∠BAC=180°,又∵2∠ADE+∠BAC=180°,∴∠C=∠ADE,又∵∠BDE+∠ADC=180°﹣∠ADE,∠CAD+∠ADC=180°﹣∠C,∴∠BDE=∠CAD,∴△BDE∽△CAD,∴=,即=,解得CD=6.故答案为:6.9.(2020秋•南京期末)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,2BP=3CD,BP=1.(1)求证△ABP∽△PCD;(2)求△ABC的边长.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵∠BPA+∠APD+∠DPC=180°,且∠APD=60°,∴∠BPA+∠DPC=120°,∵∠DPC+∠C+∠PDC=180°,∴∠DPC+∠PDC=120°,∴∠BPA=∠PDC,∴△ABP∽△PCD;(2)解:∵2BP=3CD,且BP=1,∴CD=,∵△ABP∽△PCD,∴=,设AB=x,则PC=x﹣1,∴,∴x=3.即AB=3.∴△ABC的边长为3.10.如图,AB=9,AC=8,P为AB上一点,∠A=∠CPD=∠B,连接CD.(1)若AP=3,求BD的长;(2)若CP平分∠ACD,求证:PD2=CD•BD.【解答】(1)解:∵AB=9,AC=3,∴BP=AB﹣AP=9﹣3=6,∵∠A=∠CPD,∠ACP+∠APC=180°﹣∠A,∠APC+∠BPD=180°﹣∠CPD,∴∠ACP=∠BPD,∵∠A=∠B,∴△ACP∽△BPD,∴=,∴=,∴BD=,∴BD的长为;(2)证明:∵CP平分∠ACD,∴∠PCD=∠ACP,∵∠ACP=∠DPB,∴∠PCD=∠DPB,∵∠CPD=∠B,∴△CPD∽△PBD,∴=,∴PD2=CD•BD.。
相似三角形专题——一线三等角
相似三角形专题——“一线三等角”图形中的相似相似三角形专题——“一线三等角”图形中的相似教学目标:巩固“一线三等角”图形中的相似判定及分类讨论巩固“一线三等角”图形中的相似判定及分类讨论结合“一线三等角”图形中相似三角形的特点,确定动点位置结合“一线三等角”图形中相似三角形的特点,确定动点位置 会根据一线两等角图形添加第三个等角构造相似三角形会根据一线两等角图形添加第三个等角构造相似三角形 教学重难点:重点是“一线三等角”图形中判定三角形相似及两类三个三角形两两相似的分类讨论,难点在根据“一线三等角”图形中相似三角形的特点,确定动点位置,构造相似三角形置,构造相似三角形 教学过程:一、巩固“一线三等角”图形中相似的判定及分类讨论一、巩固“一线三等角”图形中相似的判定及分类讨论 1. 如图,在△如图,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,点,点D 在BC 上,作∠上,作∠EDF = EDF = ∠B , 点 E 、F 分别落在边AD AD、、AC 上,求证:△上,求证:△BED BED BED∽△∽△∽△CDF CDF*(A A )突出“一线三等角,外角证相似”2. 思考1:练习中,联结EF若点D 是BC 边的中点,求证:△边的中点,求证:△EDF EDF EDF∽△∽△∽△EBD EBD*注重证明过程,注意BD 与CD 的等量代换及比例的内向交换 3. 思考2:练习中,联结EF 若 BE = CF ,求证:△,求证:△EDF EDF EDF∽△∽△∽△DBE DBE*通过通过比例的转化,更应注意可证明EF 与BC 平行4.4.提问:思考提问:思考3:联结EF若△若△BDE BDE 与△与△EDF EDF 相似,应该分析哪些请况?相似,应该分析哪些请况?*问题直接总结上述两种相似情况,同时为后面分类讨论问题铺垫 二、分类讨论,结合“一线三等角”图形中相似三角形的特点,确定动点位置二、分类讨论,结合“一线三等角”图形中相似三角形的特点,确定动点位置 1. 练习:练习:如图,在△如图,在△ABC ABC 中,中,AB = AC AB = AC ,点D 在BC 上,若上,若 BC = 5 BC = 5, 点E 、点D 是AB AB、、BC 上的点,且BE=BE=√√(6)(6),作∠,作∠,作∠EDF = EDF = ∠B , 当△当△DEF DEF 与△与△CDF CDF 相似时,求CF 与BD 的长的长F BCADEF CBADE2. 如图,在正方形格子中有一个矩形ABCD ABCD,, 在AB 上,找出点E ,联结DE DE、、CE CE,使得△,使得△,使得△DEC DEC 与△与△DAE DAE 及△及△EBC EBC 都相似都相似*注意AB 中点不正确的说明3. 思考:如图,在矩形ABCD 中,点M 在AD 上,上,将△将△DMC DMC 沿MC 翻折,点D 恰好落在AB 边的E 点位置,点位置, 若△若△MEC MEC 与△与△AME AME 相似,相似, 求:矩形相邻两边AD 与AB 的比的比*三个相似三角形带来的特点要注意三、会根据一线两等角图形添加第三个等角构造相似三角形三、会根据一线两等角图形添加第三个等角构造相似三角形 例题:例题:如图,在Rt Rt△△ABC 中,∠中,∠C=90C=90C=90°,点°,点D 在AC 上,联结BD BD,, 过D 作DE DE⊥⊥BD 交AB 边于点E ,若,若 BC = 4 BC = 4,AC = 8, △BDE BDE∽△∽△∽△BCD BCD BCD,求,求CD*也可以利用角平分线特点,做DG ⊥AB练习练习如图,在Rt Rt△△ABCD 中,∠中,∠C = 90C = 90°,°,AD = 5AD = 5,AB = 8, BC = 9,点E 是BC 边上一点,且∠边上一点,且∠DEF = 60DEF = 60°,°, 若△若△DEF DEF 与△与△BEF BEF 相似,求BE 长DA BCEEA CB DM84ECABD 589F CDABE。
相似专题之一线三等角
方法: 1、 2、
3、
三角齐见,模型自现 隐藏局部,小修小补 一角独处,两侧添补
线角齐藏,经验来帮
y
B
P
OC
x A
例 如图,在四边形 ABCD 中,∠ABC=90°,AB=3,BC=4, CD=10,DA= 5 5 ,则 BD 的长为_______.
例 如图,已知 A(2,3)和点 C(-1,-6)在反比例函数 y k 图像上,将射线 x
AC 绕点 A 逆时针旋转 45°,交反比例函数于点 B,则点 B 的坐标为__________.
PE 下方是否存在一点 F,使得△PEF 是以 F 为顶点的直角三角
形?若存在,求出 F 点坐标.
y
1
13, 2
,3
-
13 2
E
O
x
P
M
FN
总结:七种常出现的模型 1、等腰三角形中,在底边上作一角与底角 相等. 2、矩形; 3、正方形; 4、矩形与正方形的翻折(简称一线三直角) 5、等边三角形的翻折; 6、坐标系中的一线三直角,包括已知相似 比求点的坐标或直角三角形的讨论性问题.
并证明其中的一对.
△AEM~△BMG(一线三等角型)
C
E G
△FEM~△FMA(反A字母型)
A
M
B
例 如图,已知在 Rt△ABC 中,∠ACB=90°,AC=BC=4,M 是 AB
边的中点,E、G 分别是边 AC、BC 上的点,∠EMG=45°,AC 与
MG 的延长线相交于点 F,
(2)连接 EG,当 AE=3 时,求 EG 的长.
或是“一线三锐角”
直角型、锐角型、钝角型。
例 如图,已知在 Rt△ABC 中,∠ACB=90°,AC=BC=4,M 是 AB
初中数学相似三角形专项练习题:一线三等角相似2(附答案)
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求BG的长度.
15.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
A. B. C. D.
5.如图,将正方形 折叠,使顶点 与 边上的一点 重合( 不与端点 , 重合),折痕交 于点 ,交 于点 ,边 折叠后与边 交于点 ,设正方形 的周长为 , 的周长为 ,则 的值为()
A. B. C. D.2
6.如图,点 是双曲线 在第一象限分支上的一个动点,连接 并延长交另一分支于点 ,以 为边作等边 ,点 在第二象限,随着点 的运动,点 的位置也不断变化,但点 始终在双曲线 上运动,则 的值为( )
(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.
14.矩形AOBC中,OB=4,OA=3.分别以OB、OA所在直线为x轴、y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B、C重合).过点F的反比例函数y= (k>0)的图象与边AC交于点E.
初中数学相似三角形专项练习题:一线三等角相似2(附答案)
1.如图,点 分别在反比例函数 的图象上.若 , ,则的值为()
A. B. C.4D.2
2.如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y= (x>0)上运动,此时顶点B也在反比例函数y= 上运动,则m的值为( )
相似三角形的基本模型一线三等角
模型中的相似三角形(2)【基本模型】1. 如图1,BDE EDF CB ∆⇒∠=∠=∠∽CFD ∆(一线三等角) 如图2,ABD ADEC B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【巩固提高】1. 已知ABC ∆中,120,6︒=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点AC E ,延长线上有一点F ,使.C EDF ∠=∠ 已知4=BE ,则=CF 427 提示:,120,6︒=∠==B A C AC AB ,D 是BC 的中点 ∴33==CD BD由B D E ∆∽CFD ∆ ∴CF DB DC BE =, 427=CF 2. 如图,等边ABC ∆中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ∆折叠,使点A 落在BC 边上的点D 处.那么ANAM 的值为 75 . 提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,,设:,3,1==DC BD 则4,4=+=+DN CN DM BM∵BDM ∆∽CND ∆, ∴753414=++===∆∆CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 提示:作AD NF ⊥于F ,则6==AB FN∵MAE ∆∽EFN ∆,∴EFAM FN AE = ∵AM AE 2=∴53,321===EN FN EF 4. 在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如果3:1:=AD DG ,那么=DE提示:作过点F 作MN ∥BC ,分别交AB 、CD 于M 、N 。
一线三等角问题培训资料
ABCDE相似三角形模型之“一线三等角型”一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景引例:如图,等边△ABC 中,D是BC 上一点,F 为AC 边上一点,且∠A DF =60°,BD=3,CF=2.求△ABC 边长。
例1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式例2、如图,已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AP =1,AB =DC =2.P 为AD 上的一点,满足∠BPC =∠A .求AD 的长. C DB FACCBECDCADBEF例3、正方形ABCD 的边长为4(如下图),点P 、Q 分别在线段CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长。
相关练习:1、如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF=60° (1)求证:△BDE ∽△CFD (2)当BD=1,FC=3时,求BE2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长3、在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在线段CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长BCABCDABCQ4、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交CD 于点F ,那么当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式。
专题4.38+相似三角形几何模型-一线三等角(基础篇)(专项练习)
专题4.38 相似三角形几何模型-一线三等角(基础篇)(专项练习)一、单选题1. 如图,在正方形ABCD 中,P 是BC 上一点(点P 不与点B ,C 重合),连接AP .作PE ⊥AP ,PE 交CD 于点E .若AB =6,点P 为BC 的中点,则DE =( )A. 32 B. 92 C. 12 D. 532. 如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,ABE DEF △△∽,AB =6,DE =2,DF =3,则BE 的长是( )A. 12B. 15C.D. 3. 如图,在等边三角形ABC 中,AB =4,P 是边AB 上一点,BP =32,D 是边BC 上一点(点D 不与端点重合),作∠PDQ =60°,DQ 交边AC 于点Q .若CQ =a ,满足条件的点D 有且只有一个,则a 的值为( )A. 52 B. 83 C. 2 D. 34. 如图,在 ABC 中,AB =AC ,D 在AC 边上,E 是BC 边上一点,若AB =3,AE =2,∠AED =∠B ,则AD 的长为( )A. 35 B. 32 C. 43 D. 345. 如图,在ABC 中,AB AC =,点D 是边BC 上一点,且ADE B ∠=∠,下列说法错误的是( )A. AD CE BD DE⋅=⋅ B. ADE ACD C. ABD DCE △△ D. AD DE=6. 如图,在△ABC 中,AB =AC ,D 在AC 边上,E 是BC 边上一点,若AB =6,AE =,∠AED =∠B ,则AD 的长为( )A. 3B. 4C. 5D. 5.57. 如图,在等边三角形ABC 中,P 为边BC 上一点,D 为边AC 上一点,且∠APD =60°,BP =1,CD =23,则ΔABC 的边长为( )A. 3B. 4C. 5D. 68. 如图,D 是等边三角形ΔABC 边上的点,AD =3,BD =5,现将ΔABC 折叠,使点C 与点D 重合,折痕为EF ,且点E 点F 分别在边AC 和BC 上,则CE CF的值为( )A. 1113 B. 35 C. 45 D. 899. 如图,在矩形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,DE ⊥EF ,EF ⊥FG ,BE =3,BF =2,FC =6,则DG 的长是( )A. 4B. 133 C. 143 D. 510. 如图,在测量旗杆高度的数学活动中,小达同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面 1.5AB =米,同时量得2BC =米,10CD =米,则旗杆高度DE 为( )A. 7.5米B. 403米C. 7米D. 9.5米二、填空题11. 如图,在矩形ABCD 中,E 是BC 上的点,点F 在CD 上,要使ABE ∆与CEF ∆相似,需添加的一个条件是_______(填一个即可).12. 如图,在边长为a 的正方形中,E 、F 分别为边BC 和CD 上的动点,当点E 和点F 运动时, AE 和EF 保持垂直.则①△ABE ∽△FCE ;②当12BE a =时、梯形ABCF 的面积最大;③当点E 运动到BC 中点时Rt ABE ∽Rt △AEF ;④当Rt ABE ∽Rt △AEF 时cos ∠AFE =12其中正确结论的序号是 .13. 如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且:1:4CF CD =,给出下列结论:①ABE ECF ∽;②ABE AEF ∽;③AE EF ⊥;④ADF ECF ∽.其中正确结论的序号为________.14. 如图,四边形ABCD 是正方形,6AB =,E 是BC 中点,连接DE ,DE 的垂直平分线分别交AB DE CD 、、于M 、O 、N ,连接EN ,过E 作EF EN ⊥交AB 于F ,则AF =______.15. 如图,在矩形ABCD 中,E ,F 分别是边BC ,CD 上的点,4AB =,8AD =,3CF =,若ABE △与以E ,C ,F 为顶点的三角形相似,则BE 的长为______.16. 如图,在等边三角形ABC 中,点D 、点E 分别在BC ,AC 上,且∠ADE =60°,(1)写出和∠CDE 相等的角:______;(2)若AB =3,BD =1,则CE 长为______.17. 如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB =3,AE =4,DE =1.2,则EF =_____.18. 如图,D是等边三角形ABC的边AB上一点,且AD:1DB=:2,现将折叠,使点C与点D重合,折痕为EF,点E、F分别在AC和BC上,且ABCCE:CF的值为______.⊥交19. 如图,在矩形ABCD中,E是BC的中点,连接AE,过点E作EF AEDC于点F.若4BC=,则DF的长为______.AB=,620. 如图,将长方形纸片ABCD沿MN折叠,使点A落在BC边上点A′处,点D的对应点为D′,连接A'D′交边CD于点E,连接CD′,若AB=9,AD=6,A'点为BC 的中点,则线段ED'的长为_____.三、解答题21. 如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.22. 如图,等边三角形△ACB的边长为3,点P为BC上的一点,点D为AC上的一点,连接AP、PD,∠APD=60°.(1)求证:△ABP∽△PCD;(2)若PC=2,求CD的长.23. 如图,在△ABC中,AD是角平分线,点E是边AC上一点,且满足ADE B∠=∠.(1)证明:ADB AED ∆∆ ;(2)若3AE =,5AD =,求AB 的长.24. 如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.25. 在矩形ABCD 中,4AB =,6AD =,将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求AP DE的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.26. 通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.专题4.38相似三角形几何模型-一线三等角(基础篇)(专项练习)一、单选题【1题答案】【答案】B【解析】【分析】根据正方形的性质,余角,可证明出△ABP∽△PCE,再根据相似三角形的性质即可求出CE的值,最后根据线段的和差关系即可求解.【详解】解:在正方形ABCD中,AB=BC=CD=6,∠B=∠C=90°,∵P为BC中点,∴BP=PC=12AB=3,∵AP⊥PE,∴∠APE=90°=∠APB+∠EPC,∵∠B=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠EPC,∵∠B=∠C=90°,∴△ABP∽△PCE,∴AB PCBP CE=,即633CE=,∴32 CE=,∴DE=CD-CE=39622 -=,故选:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定与性质,证得△ABP∽△PCE是解答本题的关键.【2题答案】【答案】C【解析】【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∵ABE DEF ∽,∴AB AE DE DF=,∴623AE =,∴9AE =,∵矩形ABCD 中,∠A =90°,∴BE ===故选:C .【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE 的长后利用勾股定理求解.【3题答案】【答案】B【解析】【分析】先证明△BPD ∽△CDQ ,利用相似三角形的性质得出比例式,进而建立关于BD 的一元二次方程,再判别式为0,建立方程求解,即可得出结论.【详解】解:∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠BPD +∠BDP =180°-∠B =120°,∵∠PDQ =60°,∴∠BDP +∠CDQ =120°,∴∠BPD =∠CDQ ,∵∠B =∠C =60°,∴△BPD ∽△CDQ ,∴BP BD CD CQ=,∴324BD BD a=-,∴2BP 2-8BP +3a =0,∵满足条件的点P 有且只有一个,∴方程2BP 2-8BP +3a =0有两个相等的实数根,∴△=82-4×2×3a =0,∴a =83.故选:B .【点睛】此题是相似形综合题,主要考查了等式的性质,相似三角形的判定和性质,一元二次方程根的判别式,利用方程的思想解决问题是解本题的关键.【4题答案】【答案】C【解析】【分析】由等边对等角可得∠B =∠C ,即得出∠C =∠AED .再结合题意易证△EAD ∼△CAE ,即得出AD AE AE AC=,代入数据即可求出AD 的长.【详解】根据题意可知AB =AC =3,∴∠B =∠C ,∵∠B =∠AED ,∴∠C =∠AED ,又∵∠EAD =∠CAE ,∴△EAD ∼△CAE ,∴AD AE AE AC =,即223AD =,解得:43AD =,故选C .【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解题关键.【5题答案】【答案】D【解析】【分析】根据AB AC =和ADE B ∠=∠,可证得△ABD ∽△DCE ,△ADE ∽△ACD ,再逐项判断即可求解.【详解】解:∵AB AC =,∴∠B =∠C ,∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠CDE ,ADE B ∠=∠,∴∠BAD =∠CDE ,∴△ABD ∽△DCE ,故C 正确,不符合题意;∴AD BD DE CE=,∴AD CE BD DE ⋅=⋅,故A 正确,不符合题意;∵AB AC =,∴∠B =∠C ,∵ADE B ∠=∠,∴∠ADE =∠C ,∵∠DAE =∠CAD ,∴△ADE ∽△ACD ,故B 正确,不符合题意;∴AD DE AC CD=,∠AED =∠ADC ,∵点D 是边BC 上一点,∴AC 不一定等于CD ,∴∠ADC 不一定等于∠DAC ,∴∠AED 不一定等于∠DAC ,∴AD 不一定等于DE ,故D 错误,符合题意;故选:D .【点睛】本题主要考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质定理.【6题答案】【答案】A【解析】【分析】由等边对等角可得B C ∠=∠,即得出C AED ∠=∠.再结合题意易证EAD CAE ,即得出AD AE AE AC=,代入数据即可求出AD 的长.【详解】根据题意可知6AB AC ==,∴B C ∠=∠.∵B AED ∠=∠,∴C AED ∠=∠.又∵EAD CAE∠=∠,∴EAD CAE,∴AD AEAE AC==解得:3AD=.故选A【点睛】本题考查等腰三角形的性质,三角形相似的判定和性质.掌握三角形相似的判定方法是解题关键.【7题答案】【答案】A【解析】【分析】根据等边三角形性质求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出AB BPCP CD=,代入求出即可.【详解】解:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∴∠BAP+∠APB=180°-60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°-60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴AB BP CP CD=∵23CD=,CP=BC-BP=x-1,BP=1,∴1213 xx= -解得:AB=3.故选A.【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△BAP∽△CPD,主要考查了学生的推理能力和计算能力.【8题答案】【答案】A【解析】【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=3+5=8,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴1113 DE AE AD DEDF BD DF BF++==++,∴1113 CE DECF DF==,故选A.【点睛】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.【9题答案】【答案】B【解析】【分析】先运用勾股定理可求得EF, 过G作GH⊥DE垂足为H,则四边形EFGH 是矩形可得HG=EF,再说明△EBF∽△DAE、△DAE∽△GHD,进一步可得△EBF∽△GHD,最后运用相似三角形的性质解答即可.【详解】解:∵在Rt△BEF中,BF=2,BE=3∴EF==如图:过G作GH⊥DE垂足为H,∵DE⊥EF,EF⊥FG∴四边形EFGH是矩形∴HG=EF∵矩形ABCD∴∠A =∠B =90°∴∠AED +∠ADE =90°∵DE ⊥EF∴∠AED +∠BEF =90°∴∠BEF =∠ADE又∵∠A =∠B =90°∴△EBF ∽△DAE同理:△DAE ∽△GHD∴△EBF ∽△GHD∴DG HG EF BE =,=,解得DG =133. 故选B .【点睛】本题主要考查了矩形的判定与性质、运用勾股定理解直角三角形、相似三角形的判定与性质等知识点,灵活运用相似三角形的判定与性质是解答本题的关键.【10题答案】【答案】A【解析】【分析】由平面镜反射可得:,ACB DCE ∠=∠ 再证明,ABC EDC ∽再利用相似三角形的性质可得答案.【详解】解:由平面镜反射可得:,ACB DCE ∠=∠90,ABC EDC ∠=∠=︒,ABC EDC ∴ ∽,AB BC DE CD∴= 1.5AB =米,2BC =米,10CD =米,1.52,10DE ∴= 解得:7.5DE =,经检验:符合题意,∴ 旗杆高度DE 为7.5米.故选A【点睛】本题考查的是相似三角形的应用,掌握“利用相似三角形的性质列方程求解”是解本题的关键.二、填空题【11题答案】【答案】AE EF ⊥或∠BAE =∠CEF ,或∠AEB =∠EFC (任填一个即可)【解析】【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD ,∴∠ABE =∠ECF =90︒,∴添加∠BAE =∠CEF ,或∠AEB =∠EFC ,或AE ⊥EF ,∴△ABE ∽△ECF ,故答案为:∠BAE =∠CEF ,或∠AEB =∠EFC ,或AE ⊥EF .【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.【12题答案】【答案】①②③【解析】【分析】如图,证明∠B =∠C ,∠BAE =∠CEF ,得到①正确;证明S 梯形ABCF22111222,a a λλ=-++由12-<0,得到当λ=﹣1212()2a ⨯-=12a 时,梯形ABCF 的面积最大,得到②正确;证明AB AE BE EF=,由∠B =∠AEF =90°,得到Rt △ABE ∽Rt △AEF ,故③正确;证明cos ∠AFE =cos ∠AEB =12BE AE ≠,故④不正确.【详解】解:如图,∵四边形ABCD 为正方形,且AE ⊥EF ,∴∠B =∠AEF =∠C =90°,∴∠BAE +∠AEB =∠AEB +∠CEF ,∴∠BAE =∠CEF ,∴△ABE ∽△FCE ,故①正确;设BE =λ,则EC =a ﹣λ;∵△ABE ∽△ECF ,∴AB BE CE CF =,故2,CF aλλ=-+∴S 梯形ABCF =21()2a a aλλ-++22111222,a a λλ=-++∵12-<0,∴当λ=﹣1212()2a ⨯-=12a 时,梯形ABCF 的面积最大.故②正确.∵△ABE ∽△ECF ,∴AB AE CE EF=;若点E 为BC 的中点,则BE =CE ,∴AB AE BE EF =,而∠B =∠AEF =90°,∴Rt △ABE ∽Rt △AEF ,故③正确;∴∠AFE =∠AEB ,∴cos ∠AFE =cos ∠AEB =12BE AE ≠,故④不正确.故答案为①②③.【点睛】本题主要考查相似三角形的判定与性质,掌握相似三角形的判定定理,灵活运用勾股定理是解本题的关键【13题答案】【答案】①②③【解析】【分析】容易证明①△ABE ∽△ECF ;利用①可得90AEB FEC ∠+∠= ,,可得③AE ⊥EF ;且可得2AE AB EF EC ==,可证得②△ABE ∽△AEF ,而AD DF CE CF ≠,所以④不正确.【详解】∵E 为BC 中点,CF :CD =1:4,∴2AB BE CE CF==, 且∠B =∠C ,∴△ABE ∽△ECF ,∴①正确;∴∠BAE =∠FEC ,且90BAE AEB ∠+∠= ,∴90AEB FEC ∠+∠= ,∴90AEF ∠= ,∴AE ⊥EF ,∴③正确;由①可得2AE AB EF EC ==, ∴AB EC BE AE EF EF==,且90ABE AEF ∠=∠= , ∴△ABE ∽△AEF ,∴②正确;∵2,3DA DF CE CF==, ∴AD DF CE CF ≠, ∴△ADF 和△ECF 不相似,∴④不正确,综上可知正确的为:①②③,故答案为①②③.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.【14题答案】【答案】2【解析】【分析】MN 垂直平分DE ,得出NE ND =,利用6DN NC +=,在ΔRt NCE 中利用勾股定理求得CN 的长,再证明FBE ECN ∆∆ ,利用相似比求得BF 的长度,进而求得AF 的长度.【详解】设CN x =,则6DN x=- MN 垂直平分DE∴6NE ND x==-在ΔRt NCE 中,222CN CE NE +=又∵E 是BC 中点∴3CE =2223(6)x x ∴+=-解得94x =又∵EF EN⊥90NEC FNB ∴∠+∠=,NEC EFB CNE FEB∴∠=∠∠=∠Δ~ΔFBE ECN∴FB CE BE CN∴=3934FB ∴=4FB ∴=642AF AB FB ∴=-=-=故答案为:2.【点睛】本题考查线段垂直平分线的应用,勾股定理及相似三角形的应用,解决本题的关键是各知识点的综合应用.【15题答案】【答案】26,或327【解析】【分析】设BE =x ,当ABE △∽△ECF 时,AB BE EC CF =即483x x =-,当ABE △∽△FCE 时,AB BE FC EC =即438x x=-,解方程即可.【详解】解:设BE =x ,当ABE △∽△ECF 时,AB BE EC CF =即483x x =-整理得28120x x -+=,解得1226x x ==,,经检验都符合题意,当ABE △∽△FCE 时,AB BE FC EC =即438x x =-,解得327x =.经检验符合题意,故答案为26,或327.【点睛】本题考查三角形相似性质,列分式方程,正确三角形相似性质,列分式方程是解题关键.【16题答案】【答案】 ①. ∠BAD ②. 23【解析】【分析】(1) 根据△ABC 是等边三角形,得到∠B =∠C = 60°, AB = BC ;又因为∠ADC =∠B +∠BAD ,∠EDC +∠ADE = ∠B +∠BAD 就得到∠EDC =∠BAD(2) 因为∠EDC =∠BAD ,∠C =∠B 得到△ABD ~△DCE ,得到AB BD CD EC= ,即可求出EC ;【详解】(1) 证明: ∵△ABC 是等边三角形,∠B =∠C = 60°, AB = BC ;又∵∠ADC =∠B +∠BAD∠EDC +∠ADE = ∠B +∠BAD又∵∠ADE =∠B =60°∴∠EDC =∠BAD所以和∠CDE 相等的角为:∠BAD故答案为:∠BAD(2) ∵∠EDC =∠BAD∴∠C =∠B△ABD ~△DCE ,AB BD CD EC ∴= 3,1BC AB BD ===又312CD BC BD =-=-=312EC∴= 解得:EC =23故答案为:23;【点睛】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD ~△DCE 是解答此题的关键.【17题答案】【答案】2【解析】【分析】由勾股定理,求出BE=5,由△ABE∽△DEF,得ABDE=BEEF,进而求出EF的长.【详解】解:在矩形ABCD中∠A=90°∵AB=3,AE=4∴BE=5∵△ABE∽△DEF∴ABDE=BEEF∴31.2=5EF解得EF=2故答案为:2.【点睛】本题主要考查相似三角形的性质,借助于矩形的性质和勾股定理求边长,熟练掌握以上性质是解题的关键.【18题答案】【答案】4 5【解析】【分析】设AD=k,则DB=2k,得到AB=AC=BC=3k,∠A=∠B=∠C=∠EDF =60°,进而证明△AED∽△BDF,得到△AED与△BDF的相似比为4:5,即可求出CE:CF=DE:DF=4:5,问题得解.【详解】解:设AD=k,则DB=2k,∵△ABC为等边三角形,△CEF折叠得到△DEF,∴AB=AC=BC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由△CEF折叠得到△DEF,得CE=DE,CF=DF,∴△AED的周长为4k,△BDF的周长为5k,∴△AED 与△BDF 的相似比为4:5,∴CE :CF =DE :DF =4:5.故答案为:45.【点睛】本题主要考查了相似的性质与判定、等边三角形的性质、翻折变换的性质及其应用等知识,熟知等边三角形、翻折变换的性质,借助相似三角形的判定与性质(用含有k 的代数式表示)将两条线段的比转化为相似比是解题的关键.【19题答案】【答案】74【解析】【分析】结合矩形的性质证明BAE CEF ∆∆ 可求得CF 的长,再利用DF CD DF =-可求解.【详解】解: 四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE ⊥ ,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,BAE CEF ∴∆∆ ,::AB CE BE CF ∴=,E 是BC 的中点,6BC =,3BE CE ∴==,4AB = ,4:33:CF ∴=,解得94CF =,97444DF CD DF ∴=-=-=.故选:74.【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAE CEF ∆∆ 是解题的关键.【20题答案】【答案】94【解析】【分析】根据折叠的性质可得'AM A M =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,由线段中点可得''11322A B AC BC AD ====,在'Rt A BM 中,利用勾股定理可得'5A M =,4MB =,利用相似三角形的判定定理及性质可得''A BM ECA ,'''A E AC A M BM =,代入求解,同时根据线段间的数量关系即可得出结果.【详解】解:将长方形纸片ABCD 沿着MN 折叠,使点A 落在BC 边上点'A 处,∴'AM A M =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,∵'A 是BC 的中点,∴''11322A B AC BC AD ====,在'Rt A BM 中,'22'2A B BM A M +=,即()22239+-=x x ,解得:5x =,∴'5A M =,4MB =,∵''90MA B EAC ∠+∠=︒,''90A EC EAC ∠+∠=︒,∴''MA B A EC ∠=∠,∵'90B ACE ∠=∠=︒,∴''A BM ECA ,∴'''A E ACA M BM=,即'354A E=,∴'15 4A E=,∴'''''159 644ED A D A E AD A E=-=-=-=,故答案为:9 4【点睛】题目主要考查长方形中的折叠问题,包括勾股定理,相似三角形的判定及性质等,结合图形,熟练掌握运用折叠的性质及相似三角形的性质是解题关键.三、解答题【21题答案】【答案】见解析【解析】【分析】根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可得到△EBF∽△FCG.【详解】解:∵四边形ABCD为正方形,∴∠B=∠C=90°,∴∠BEF+∠BFE=90°,∵∠EFG=90°,∴∠BFE+∠CFG=90°,∴∠BEF=∠CFG,∴△EBF∽△FCG.【点睛】本题考查正方形的性质,相似三角形的判定,解的关键是掌握相似三角形的判定定理.【22题答案】【答案】(1)见解析(2)CD的长为2 3【解析】【分析】(1)由等边三角形和∠APD=60°得,∠B=∠C=∠APD=60°,∠APB+∠CPD=120°,在△APB中,∠APB+∠BAP=120°,由此可得∠BAP=∠CPD.因此△ABP∽△PCD;(2)由(1)的结论△ABP∽△PCD可得BP ABCD PC=,从而可以求出线段CD的长.【小问1详解】证明:∵等边三角形ABC,∴∠B=∠C=60°,∵∠APD=60°,∴∠APB+∠CPD=120°,在△APB中,∠APB+∠BAP=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;【小问2详解】解:等边三角形边长为3,PC=2,由(1)得△ABP∽△PCD,BP ABCD PC=,∴132 CD=,∴CD=23.答:CD的长为23.【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP∽△PCD.【23题答案】【答案】(1)见解析(2)25 3【解析】【分析】(1)证出∠BAD=∠EAD.根据相似三角形的判定可得出结论;(2)由相似三角形的性质可得出AD ABAE AD=,则可得出答案.【小问1详解】∵AD是∠BAC的角平分线,∴∠BAD=∠EAD.∵∠ADE=∠B,∴△ADB∽△AED.【小问2详解】∵△ADB∽△AED,∴AD AB AE AD=,∵AE=3,AD=5,∴535AB =,∴253 AB=.【点睛】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.【24题答案】【答案】见解析【解析】【分析】利用三角形的外角性质证明∠EDC=∠DAB,即可证明△ABD∽△DCE.【详解】证明:∵AB=AC,且∠BAC=120°,∴∠ABD=∠ACB=30°,∵∠ADE=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE.【点睛】本题考查了三角形相似的判定、等腰三角形的性质、三角形的外角性质,利用三角形的外角性质证明∠EDC=∠DAB是解题的关键.【25题答案】【答案】(1)2 3(2)3 2【解析】【分析】(1)根据矩形的性质可得∠BAD =∠ABC =90°,再由折叠的性质可得APB AED ∠=∠.可证得ABP △∽DAE △.即可求解;(2)过点E 作EH DP ∥交AD 于H ,由折叠的性质可得HED HDE ∠=∠,从而得到EH DH =.然后设EH DH x ==,则6AH x =-,由勾股定理可得103DH =,从而得到83AH =.再证得AEH △∽BFE △,即可求解.【小问1详解】解:在矩形ABCD 中,∠BAD =∠ABC =90°,∴90BAP APB ∠+∠=︒,由折叠性质得:AP DE ⊥,∴90BAP AED ∠+∠=︒,∴APB AED ∠=∠.∵90EAD ABP ∠=∠=︒,∴ABP △∽DAE △.∴4263AP AB DE AD ===.【小问2详解】解:过点E 作EH DP ∥交AD 于H ,∵EH DF ∥,∴HED EDP ∠=∠.∵由折叠性质得HDE EDP ∠=∠,∠DPE =∠A =90°,∴HED HDE ∠=∠,∴EH DH =.设EH DH x ==,则6AH x =-,∵E 是AB 的中点,∴2AE =,∵AE 2+AH 2=EH 2,∴()22226x x +-=,解得:103x =,即103DH =,∴83AH =.∵EH DF ∥,∴∠HEP =90°,∴∠AEH +∠BEF =90°,∵∠A =∠B =90°,∴∠AEH +∠AHE =90°,∴∠AHE =∠BEF ,∴AEH △∽BFE △,∴AE AH BF BE =,即8232BF =,解得32BF =,∴BF 的长为32.【点睛】本题主要考查了矩形与折叠问题,相似三角形的判定和性质,熟练掌握矩形与折叠的性质,相似三角形的判定和性质是解题的关键.【26题答案】【答案】(1)DE ,AE ;(2)AC .证明见详解.【解析】【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ⊥直线l 于E ,先证△MCA ≌△AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证△NGP ≌△DEP (AAS )即可.【小问1详解】解:∵(AAS)≌ABC DAE ,∴AC =DE ,BC =AE ,故答案为DE ,AE ;【小问2详解】证明:过D 作DE ⊥直线l 于E ,∵90MAN ∠=︒,∴∠CAM +∠NAG =90°,∵BM ⊥l ,∴∠MCA =90°,∴∠M +∠CAM =90°,∴∠M =∠NAG ,∵NG l ⊥,∴∠AGN =90°,在△MCA 和△AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MCA ≌△AGN (AAS ),∴AC =NG ,由(1)知(AAS)≌ABC DAE ,∴AC =DE ,∴NG =DE ,在△NGP 和△DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△NGP ≌△DEP (AAS )∴NP =DP ,故答案为AC .【点睛】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键.。
初三相似三角形之一线三等角专题
相似三角形——“一线三等角型”一、知识梳理:一线三等角:两个等角的一边在同一直线上,另一边在该直线的同侧。
若有第三个与之相等的角、其顶点在该直线上,角的两边(或两边所在直线)分别与两等角的非共线边(或该边所在直线)相交,此时通过证明,一般都可以得到一组相似三角形,该组相似三角形习惯上被称为“一线三等角型”相似三角形.(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有 .二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值;(2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
相似三角形专题——一线三等角
相似三角形专题——一线三等角(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--相似三角形专题——“一线三等角”图形中的相似教学目标:巩固“一线三等角”图形中的相似判定及分类讨论结合“一线三等角”图形中相似三角形的特点,确定动点位置 会根据一线两等角图形添加第三个等角构造相似三角形 教学重难点:重点是“一线三等角”图形中判定三角形相似及两类三个三角形两两相似的分类讨论,难点在根据“一线三等角”图形中相似三角形的特点,确定动点位置,构造相似三角形 教学过程:一、巩固“一线三等角”图形中相似的判定及分类讨论 1. 如图,在△ABC 中,AB=AC ,点D 在BC 上,作∠EDF = ∠B , 点 E 、F 分别落在边AD 、AC 上,求证:△BED ∽△CDF*(A A )突出“一线三等角,外角证相似” 2. 思考1:练习中,联结EF若点D 是BC 边的中点,求证:△EDF ∽△EBD*注重证明过程,注意BD 与CD 的等量代换及比例的内向交换 3. 思考2:练习中,联结EF若 BE = CF ,求证:△EDF ∽△DBE*通过比例的转化,更应注意可证明EF 与BC 平行 4.提问:思考3:联结EF若△BDE 与△EDF 相似,应该分析哪些请况*问题直接总结上述两种相似情况,同时为后面分类讨论问题铺垫二、分类讨论,结合“一线三等角”图形中相似三角形的特点,确定动点位置 1. 练习:如图,在△ABC 中,AB = AC ,点D 在BC 上,若点E 、点D 是AB 、BC 上的点,且BE=√(6),作∠当△DEF 与△CDF 相似时,求CF 与BD 的长2. 如图,在正方形格子中有一个矩形ABCD ,在AB 上,找出点E ,联结DE 、CE ,使得△DEC 与△DAE 及△EBC 都相似*注意AB 中点不正确的说明3. 思考:如图,在矩形ABCD 中,点M 在AD 上, 将△DMC 沿MC 翻折,点D 恰好落在AB 边的E 点位置, 若△MEC 与△AME 相似,求:矩形相邻两边AD 与AB 的比BE*三个相似三角形带来的特点要注意三、会根据一线两等角图形添加第三个等角构造相似三角形 例题:如图,在Rt △ABC 中,∠C=90°,点D 在AC 上,联结BD过D 作DE ⊥BD 交AB 边于点E ,若 BC = 4,AC = 8, △BDE ∽△BCD ,求CD*也可以利用角平分线特点,做DG ⊥AB练习如图,在Rt △ABCD 中,∠C = 90°,AD = 5,AB = 8, BC = 9,点E 是BC 边上一点,且∠DEF = 60°, 若△DEF 与△BEF 相似,求BE 长C5B。
专题 相似三角形中的一线三等角模型(学生版)
专题08相似三角形中的一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.(1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.(2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.(3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.A.1.8B.2.4例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x =与直线CD 交于点()2,1M ,且两直线夹角为α,且3tan 2α=,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,3AB =,5BC =,点E 为BC 边上—个动点,连接AE ,将线段AE 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若DPC △为直角三角形时,请你探究并直接写出BE 的长.的中点,校考三模)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探【观察与猜想】(1)如图1,在正方形ABCD中,E,F分别是AB,AD上的两点,连接则DECF的值为___________;A.2个B.3个2.(2023·浙江·九年级专题练习)如图,四边形3.(2022·安徽·九年级专题练习)如图,矩形△CEF面积的最小值是.是12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P ,Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____(2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.问题探究(2)如图2,在矩形ABCD 中,6cm,9cm AB BC ==,点P 是AD 边上一动点,点Q 是CD 的中点将.ABP 沿着BP 折叠,点A 的对应点是A ',将QDP △沿着PQ 折叠,点D 的对应点是D ¢.请问是否存在这样的点P ,使得中,,在平面直角坐标系中,点16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△;(2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.17.(2023·湖南株洲·九年级统考期末)如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向点D 运动,以BE 为边,在BE 的上方作正方形BEFG ,连接CG .(1)求证:AEB CGB △≌△;(2)若设AE=x ,DH=y ,当x 取何值时,y 有最大值?并求出这个最大值;(3)连接BH ,当点E 运动到AD 的何位置时有BEH BAE ∽?∆BCE。
培优专题25 相似三角形的一线三等角模型-解析版
培优专题25 相似三角形的一线三等角模型【专题讲解】1.常见基本类型:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型2.模型构造1.图中已存在“一线三等角”,则直接应用模型结论解题.2.图中存在“一线两等角”,补上“一等角”,构造模型解题.3.图中某直线上只存在1个角,补上“两等角”,构造模型解题.如果直线上只有1个角,要补成“一线三等角”时,该角通常是特殊角(30°、45°、60°)特征:构造特殊角的等角时,一般是在“定线”上做含特殊角的直角三角形。
“一线三等角”得到的相似,通常用外边的两等角的两边对应成比例求解长度3.构造步骤:找角——通常找“特殊角”。
如:30°、45°、60°等;特别地:当tanα=1/2、1/3等特定值时,α也可以是特殊角;定线——通常以“水平线”或者“竖直线”为“一线三等角”中的“一线”;特殊角度时也可以是45°等倾斜直线;构相似——通常以“特殊角”为“中间角”,过“中间角”的两边与“一线”的交点构造两个含特殊角的Rt △;例:如右图,当∠ABP=45°时,∵∠ABP 在y 轴上,∴在y 轴上分别构造两个等腰直角三角形△AOE ,△PHG ,则在y 轴上存在∠AEB=∠ABP=∠PBG=45°,∴△AEB ∽△BGP ∴(常用)GPBEBG AE 4.模型特例——K 型图(三垂定理)应用:1.当一个直角放在一条直线上时,通常要构造“K 型图”解题2.当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题3.由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算4.“K 型图”常和“A 字图”或“8字图”类的平行相似结合在一起求长度“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂线。
如图:【专题训练】1.(2020·河南郑州·二模)如图,已知矩形ABCD 的顶点B A 、分别落在x 轴y 轴上,4OB OA ==,AB=2BC 则点C 的坐标是( )A .()9,3B .(9,C .(4+D .(2,∵四边形ABCD 是矩形,∴CD=AB ,∠ABC=90°,2.(2020·江苏常州·一模)如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=3x(x>0)上运动,此时顶点B也在反比例函数y=mx上运动,则m的值为()A.-9B.-12C.-15D.-18【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出反比例函数图象上点的坐标是解答前提的关键.3.(2021·浙江·九年级专题练习)如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是( )A.B.C.D.16【答案】D【分析】先利用等角的余角证明∠ADF=∠EDC,再根据相似三角形的判定方法证明△ADF∽△CDE,然后利用相似比计算DF与DE的关系式,最后根据矩形的面积公式求得矩形的面积便可..【详解】解:∵四边形ABCD为正方形,∴AD=CD=4,∠ADC=∠C=90°,∵四边形EDFG为矩形,4.(2020·重庆八中九年级阶段练习)如图,点,D E 是正ABC D 两边上的点,将BDE D 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当4AC AF =时,BDBE的值是( )A .23B .34C .35D .57【答案】D【分析】先证明ADF CFE D D ∽,再根据相似三角形的周长比等于相似比和折叠的性质进行转化即可求解.【详解】解:设AF =x ,∵ABC D 为等边三角形,∴AC=AB=BC =4x , ∠A =∠B =∠C =60°,CF =3x ∵BDE D 翻折得到FDE D ,∴B D=FD,BE=FE, ∠B=∠DFE =60°,∴∠AFD +∠DFE =∠C +∠FEC ,∴∠AFD=∠CEF ,∴ADF CFE D D ∽,5.(2020·重庆八中九年级阶段练习)如图,点A是双曲线2yx=在第一象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边ABCV,点C在第二象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=上运动,则k的值为()A.8-B.6-C.4-D.2-6.(2022·湖北襄阳·一模)如图,ABC V 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE V 沿直线DE 翻折得到FDE V ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.∵△ABC为等边三角形,∴∠DFE=∠DAE= 60°∴∠CFE+∠FEC=∠CFE7.(2022·江苏扬州·九年级期末)如图,在边长为6的等边△ABC 中,D 是边BC 上一点,将△ABC 沿EF 折叠使点A 与点D 重合,若BD : DE =2 : 3,则CF=____.【答案】2.4【分析】根据折叠的性质可得∠EDF =∠A ,DF =AF ,再由等边三角形的性质可得∠EDF =60°,8.(2021·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________9.(2019·浙江·九年级期末)已知ABC V 是等边三角形,6AB =,点D ,E ,F 点分别在边,,AB BC AC 上,:2:3BD BE =,DE 同时平分BEF Ð和BDF Ð,则BD 的长为_____.上一点,2⊥于点F,与BD交于点G,则EF的长是______.OE=,连接BE,过点A作AF BE11.(2022·江苏·九年级专题练习)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ^,交射线DC 于点E ,已知3AD =,5AC =.设AP 的长为x .(1)AB =___________;当1x =时,PE PB=_________;(2)试探究:否是定值?若是,请求出这个值;若不是,请说明理由;(3)当PCE V 是等腰三角形时,请求出x 的值.Q 四边形ABCD 是矩形,3BC AD \==,5AC =,90ABC Ð=2222534AB AC BC \=-=-=.在Rt APM △中,1PA =,35PM =,165BM AB AM \=-=,=,90Q,所以只能EP EC PECÐ>°\Ð=Ð,EPC ECPQ,Ð=Ð=°90BPE BCE\Ð=Ð,BPC BCP\=,BP BC=.Q,所以只能CP CEÐ>°PCE90\Ð=Ð,CPE EÐ=ÐQ,PGB CGEÐ=Ð=°90GPB GCE\Ð=Ð=Ð,PBG E CPEÐ+Ð=Q,APB CPEÐ+Ð=°ABP PBC9012.(2022·上海·七年级专题练习)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积;(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.【答案】(1)等边三角形13.(2022·山东菏泽·三模)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B Ð=Ð=Ð=°时,求证:AD BC AP BP ⋅=⋅.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在ABC V 中,AB =45B Ð=°,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E在AC 上,点F 在BC 上,且45EFD Ð=°,若CE =CD 的长.【答案】(1)见解析;(2)成立,理由见解析;(3)5CD =【分析】(1)由∠DPC =∠A =B =90°,可得∠ADP =∠BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;14.(2021·吉林·长春市绿园区教师进修学校九年级期末)【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC Ð=Ð=Ð=°.易证DAP PBC △△∽.(不需要证明)【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B DPC Ð=Ð=Ð.若4PD =,8PC =,6BC =,求AP 的长.【拓展】如图③,在ABC V 中,8AC BC ==,12AB =,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A Ð=Ð,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.15.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF= ;(2)数学思考:①如图2,若点E在线段AC上,则DEDF= (用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.16.(2021·浙江衢州·中考真题)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).(2)如图,连接EH,由(1)得BCE CDG △△≌,9CE DG \==,由折叠得BC BF =,CE FE =同理得HG HF =,DG m \=,同理可得BCE CDG △∽△,可得m CE FE k==,mx DE k \=,2222HF FE DH DE +=+Q ,。
相似三角形几何模型一线三等角(知识讲解)学年九年级数学上册基础知识讲与练(北师大版)
专题4.37 相似三角形几何模型-一线三等角(知识讲解)模型一:一线三直角图一 图二90;B ACE D ABC CDE ∠=∠=∠=∆∆如图一、二,已知:结论:(1)(2)AB DE =BC CD模型二:一线三等角图三 图四;B ACE D ABC CDE ABC CDE ACE α∠=∠=∠=∆∆∆∆∆如图三、四,已知:结论:(1)(2)AB DE =BC CD(3)当C 为BD 中点时,特别说明:一线三等角相似三角形往往以等腰三角形或等边三角形为背景,如下图五。
图五特别说明:一线三直角相似三角形往往以矩形或正方形背景,如下图六。
图六【典型例题】类型一、一线三直角模型1.如图,在四边形ABCD 中,AB ∥CD ,90B =∠,7CD =,E 为BC 上一点,且AE ED ⊥,若12BC =,:1:2BE EC =,求AB 的长.【答案】327【分析】由题意易知AB 和CD 所在的两个三角形相似,再利用相似比即可求出所求线段的长度.解:∵AB 平行CD ,90B =∠,∵180B C ∠+∠=, ∵90B =∠,∵90B C ∠=∠=,90BEA BAE ∠+∠=, ∵AE ED ⊥,∵90AEB DEC ∠+∠=, ∵BAE DEC ∠=∠, ∵ABE ECD ∆∆∽, ∵AB BEEC DC=, ∵12BC =,12BE EC =, ∵48BE EC ==,, ∵7DC =, ∵432877BE AB EC DC =⋅=⨯=. 【点拨】此题主要考查学生对梯形的性质及相似三角形的性质的理解及运用.举一反三【变式1】如图,将矩形ABCD 沿CE 向上折叠,使点B 落在AD 边上的点F 处,AB=8,BC=10.(1)求证:∵AEF∵∵DFC ;(2)求线段EF的长度.EF=.【答案】(1)证明见分析;(2)5【分析】(1)由四边形ABCD是矩形,于是得到∵A=∵D=∵B=90°,根据折叠的性质得∵EFC=∵B=90°,推出∵AEF=∵DFC,即可得到结论;(2)根据折叠的性质得CF=BC=10,根据勾股定理得到6D F,求得AF=4,然后根据勾股定理列方程即可得到结论.解:(1)∵四边形ABCD是矩形,∵∵A=∵D=∵B=90°,CD=AB=8,根据折叠的性质得∵EFC=∵B=90°,∵∵AFE+∵AEF=∵AFE+∵DFC=90°,∵∵AEF=∵DFC,∵∵AEF∵∵DFC;(2)根据折叠的性质得:CF=BC=10,BE=EF,∵6D F=,∵AF=4,∵AE=AB-BE=8-EF,∵EF2=AE2+AF2,即EF2=(8-EF)2+42,EF=.解得:5【点拨】本题主要考查了相似三角形的判定,矩形的性质、翻折变换的性质及其应用问题.解题的关键是灵活运用矩形的性质、翻折变换的性质来分析、判断、解答.【变式2】如图1,在矩形ABCD中,E为DC边上一点,把ADE沿AE翻折,使点D 恰好落在BC边上的点F处.~;(1)求证:ABF FCEAD=,求EC的长;(2)若AB=6+(3)如图2,在第(2)问的条件下,若P,Q分别是AE,AD上的动点,求PD PQ 的最小值.【答案】(1)见分析;(2)EC =;(3)PD PQ +的最小值为 【分析】(1)选证得AFB CEF ∠=∠,即可证明结论;(2)利用折叠的性质,在Rt △ABF 中,求得BF 的长,设CE =x ,在Rt △CEF 中,利用勾股定理构建关于x 的方程,即可求解;(3)根据折叠的性质,点F 、D 关于直线AE 对称,过F 作FQ ∵AD 于Q ,交AE 于P ,此时PD +PQ 的最小值为FQ ,证明四边形QFCD 是矩形,即可求解.(1)证明:∵四边形ABCD 是矩形,∵90B C D ∠=∠=∠=︒, ∵90CEF EFC ∠+∠=︒, ∵AEF 由ADE 翻折得到, ∵90AFE D ∠=∠=︒, ∵90AFB EFC ∠+∠=︒,∵AFB CEF ∠=∠,90ABF FCE ∠=∠=︒, ∵ABF FCE ~;(2)∵四边形ABCD 是矩形,∵AB CD ==6AD BC ==.设CE x =,则DE x =,在Rt ABF 中,3BF ==, ∵633CF BC BF =-=-=,在Rt CEF 中,222EF CE CF =+,即222)3x x =+,解得x =EC =(3)如图,根据折叠的性质,点F 、D 关于直线AE 对称,过F 作FQ ∵AD 于Q ,交AE 于P ,此时PD +PQ 的最小值为FQ ,∵四边形ABCD 是矩形, ∵∵C =∵ADC =90︒,又FQ ∵AD , ∵四边形QFCD 是矩形,∵FQ =CD =AB∵PD PQ +的最小值为【点拨】本题考查了矩形的性质折叠变换,相似三角形的判定和性质,轴对称的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题.类型二、一线三等角模型2.如图,在∵ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE .且∵B =∵ADE=∵C .(1)证明:∵BDA ∵∵CED ;(2)若∵B =45°,BC =6,当点D 在BC 上运动时(点D 不与B 、C 重合).且∵ADE 是等腰三角形,求此时BD 的长.【答案】()见分析;(2)6-或3. 【分析】(1)根据题目已知条件可知180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,即可得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:∵AD =AE ,∵AD =DE ,∵AE =DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.解:(1)180ADE ADB EDC ∠+∠+∠=︒在ABD △中,180B ADB DAB ∠+∠+∠=︒B ADE ∠=∠∴EDC DAB ∠=∠又B C ∠=∠∴BDA CED △∽△;(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形 ∴90BAC ∠=︒BC =6,∴AB =AC ∵当AD =AE 时,则ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒ ∴90DAE ∠=︒ ∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上 ∴此情况不符合题意.∵当AD =DE 时,如图,∴DAE DEA ∠=∠∴由(1)可知EDC DAB ∠=∠又B C ∠=∠ BDA CED ≌∴AB =DC =∴6BD =-∵当AE =DE 时,如图45B ∠=︒,∴==45B C DAE ADE ∠∠∠=∠=︒ ∴AD 平分BAC ∠,AD BC ⊥ ∴1=32BD BC =.综上所述:BD =6-3.【点拨】本题主要考查相似三角形的判定及等腰三角形的存在性问题,解题的关键是利用“K ”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.举一反三【变式1】如图,点M 是AB 上一点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AC 于F ,ME 交BC 于G .(1)求证:∽AMF BGM ; (2)请你再写出两对相似三角形.【答案】(1)见分析;(2)AME MFE △∽△,DMG DBM ∽△△. 【分析】(1)根据三角形内角和证AFM BMG ∠=∠即可;(2)根据公共角相等,利用两个角对应相等,写出相似三角形即可. (1)证明:∵DME A ∠=∠,180AMF BMG DME ∠+∠+∠=︒,180A AMF AFM ∠+∠+∠=︒,∵AFM BMG ∠=∠, ∵A B ∠=∠,∵∽AMF BGM ;(2)∵DME A ∠=∠,∵E=∵E ,∵AME MFE △∽△,同理,DMG DBM ∽△△. 【点拨】本题考查了相似三角形的判定,熟记相似三角形判定定理并能灵活应用是解题关键.【变式2】∵ABC 中,AB =AC ,∵BAC =90°,P 为BC 上的动点,小慧拿含45°角的透明三角板,使45°角的顶点落在点P ,三角板可绕P 点旋转.(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:∵BPE ∵∵CFP ; (2)将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F .∵BPE 与∵CFP 还相似吗?(只需写出结论)(3)在(2)的条件下,连结EF ,∵BPE 与∵PFE 是否相似?若不相似,则动点P 运动到什么位置时,∵BPE 与∵PFE 相似?说明理由.【答案】(1)证明见分析;(2)∵BPE ∵∵CFP ;(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,理由见分析.【分析】(1)找出∵BPE 与∵CFP 的对应角,其中∵BPE+∵BEP=135°,∵BPE+∵CPF=135°,得出∵BEP=∵CPF ,从而解决问题;(2)利用(1)小题证明方法可证:∵BPE∵∵CFP ;(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,同(1),可证∵BPE∵∵CFP ,得 CP :BE=PF :PE ,而CP=BP ,因此 PB :BE=PF :PE ,进而求出,∵BPE 与∵PFE 相似.(1)证明:∵在∵ABC 中,∵BAC =90°,AB =AC ,∵∵B =∵C =45°.∵∵B +∵BPE +∵BEP =180°, ∵∵BPE +∵BEP =135°. ∵∵EPF =45°,又∵∵BPE +∵EPF +∵CPF =180°, ∵∵BPE +∵CPF =135°,∵∵BEP =∵CPF , 又∵∵B =∵C , ∵∵BPE ∵∵CFP .(2)∵BPE ∵∵CFP ;理由:∵在∵ABC 中,∵BAC =90°,AB =AC ,∵∵B =∵C =45°.∵∵B +∵BPE +∵BEP =180°, ∵∵BPE +∵BEP =135°. ∵∵EPF =45°,又∵∵BPE +∵EPF +∵CPF =180°, ∵∵BPE +∵CPF =135°, ∵∵BEP =∵CPF , 又∵∵B =∵C , ∵∵BPE ∵∵CFP .(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,证明:同(1),可证∵BPE ∵∵CFP , 得CP :BE =PF :PE , 而CP =BP ,因此PB :BE =PF :PE . 又因为∵EBP =∵EPF , 所以∵BPE ∵∵PFE【点拨】此题主要考查了相似三角形的判定.它以每位学生都有的三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.类型三、一线三等角综合3.数学模型学习与应用.【学习】如图1,90BAD ∠=︒,AB AD =,BC AC⊥于点C ,DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得∵1=∵D ;又90ACB AED ∠=∠=︒,可以通过推理得到ABC ∵DAE △.我们把这个数学模型称为“一线三等角”模型;(1)【应用】如图2,点B ,P ,D 都在直线l 上,并且ABP APC PDC α∠=∠=∠=.若BP x =,2AB =,5BD =,用含x 的式子表示CD 的长;(2)【拓展】在ABC 中,点D ,E 分别是边BC ,AC 上的点,连接AD ,DE ,B ADEC ∠=∠=∠,5AB =,6BC =.若CDE △为直角三角形,求CD 的长;(3)如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.AOB 是以OA 为斜边的等腰直角三角形,试直接写出点B 的坐标.【答案】(1)21522CD x x =-+(2)3(3)()3,1或()1,3-(1)解:∵ABP APC PDC α∠=∠=∠=,∵A APB APB CPD ∠+∠=∠+∠, ∵A CPD ∠=∠, 又∵ABP PDC ∠=∠, ∵ABP △∵PDC △, ∵AB BP PD CD =, 即25x CD x=-, ∵21522CD x x =-+.(2)解:如图4,当90CED ∠=︒时,∵ADE C ∠=∠,CAD DAE ∠=∠, ∵ACD △∵ADE , ∵90ADC AED ∠=∠=︒,∵B C ∠=∠,90ADC ∠=︒∵点D 为BC 的中点, ∵116322CD BC ==⨯=. 如图5,当90EDC ∠=︒时,∵B C ∠=∠,∵90BAD EDC ∠=∠=︒,过点A 作AF BC ⊥,交BC 于点F , ∵132BF BC ==,3cos 5BF AB B AB BD ===, 2563BD =>,不合题意,舍去, ∵3CD =.(3)解:分两种情况:∵如图6所示,过A 作AC ∵y 轴于D ,过B 作BE ∵x 轴于E ,DA 与EB 相交于C ,则∵C =90°,∵四边形OECD 是矩形∵点A 的坐标为(2,4),∵AD =2,OD =CE =4,∵∵OBA =90°,∵∵OBE +∵ABC =90°,∵∵ABC +∵BAC =90°,∵∵BAC =∵OBE ,在△ABC 与△BOE 中,90C BEO BAC OBE AB BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∵∵ABC ∵∵BOE (AAS ),∵AC =BE ,BC =OE ,设OE =x ,则BC =OE =CD =x ,∵AC =BE =x -2,∵CE =BE +BC =x -2+x =OD =4,∵x =3,x -2=1,∵点B 的坐标是(3,1);∵如图7,同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为(3,1)或(-1,3).【点拨】本题是三角形综合题目,考查了全等三角形的判定和性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确的作出辅助线,证明三角形全等是解题的关键.举一反三【变式1】感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.∵求证:ABP PCD △△∽;∵当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)∵见分析;∵3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)∵根据等腰三角形的性质得到∵B=∵C,根据三角形的外角性质得到∵BAP=∵CPD,即可求证;∵根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.解:感知:(1)∵∵ABC∵∵DAE,∵BC AC AE DE=,∵BC AE AC DE=,故答案为:AE DE;应用:(2)∵∵∵APC=∵B+∵BAP,∵APC=∵APD+∵CPD,∵APD=∵B,∵∵BAP=∵CPD,∵AB=AC,∵∵B=∵C,∵∵ABP∵∵PCD;∵BC=12,点P为BC中点,∵BP=PC=6,·∵∵ABP∵∵PCD,∵AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当P A=PD时,∵ABP∵∵PCD,∵PC=AB=10,∵BP=BC-PC=12-10=2;当AP =AD 时,∵ADP =∵APD ,∵∵APD =∵B =∵C ,∵∵ADP =∵C ,不合题意,∵AP ≠AD ;当DA =DP 时,∵DAP =∵APD =∵B ,∵∵C =∵C ,∵∵BCA ∵∵ACP , ∵BC AC AC CP =,即121010CP=, 解得:253CP =, ∵25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113 . 【点拨】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.【变式2】【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:∵如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ∵如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________; ∵如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD ∵CE 于D ,4cm DE =,6cm AD =,求BE 的长.【答案】∵∵BDF ;∵∵CFD ;∵3;(2)((3)2cm 【分析】∵根据等腰直角三角形的性质及和角关系,可得∵AED ∵∵BDF ;∵根据等边三角形的性质及和角关系,可得∵BDE ∵∵CFD ;∵根据正方形的性质及和角关系,可得∵ABE ∵∵BCF ,由全等三角形的性质即可求得EF 的长;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,根据正方形的性质及和角关系,可得∵COE ∵∵OAD ,从而可求得OE 、CE 的长,进而得到点C 的坐标;(3)由三个垂直及等腰直角三角形可证明∵BCE ∵∵CAD ,由全等三角形的性质即可求得BE 的长.解:∵∵∵ABC 是等腰直角三角形,∵C =90゜∵∵A =∵B =45゜∵∵BDF +∵BFD =180゜−∵B =135゜∵∵EDF =45゜∵∵ADE +∵BDF =180゜−∵EDF =135゜∵∵ADE =∵BFD在∵AED 和∵BDF 中A B ADE BFD AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵AED ∵∵BDF (AAS )故答案为:∵BDF ;∵∵∵ABC 是等边三角形∵∵B =∵C =60゜∵∵BDE +∵BED =180゜−∵B =120゜∵∵EDF =60゜∵∵BDE +∵CDF =180゜−∵EDF =120゜∵∵BED =∵CDFB C BED CDF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵BDE ∵∵CFD (AAS )故答案为:∵CFD ;∵∵四边形ABCD 是正方形∵∵ABC =90゜,AB =BC∵∵ABE +∵CBF =180゜−∵ABC =90゜∵AE ∵l ,CF ∵l∵∵AEB =∵CFB =90゜∵∵ABE +∵EAB =90゜∵∵EAB =∵CBF在∵ABE 和∵BCF 中AEB CFB EAB CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵ABE ∵∵BCF (AAS )∵AE =BF =1,BE =CF =2∵EF =BE +BF =2+1=3故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示∵四边形OABC 是正方形∵∵AOC =90゜,AO =OC∵∵COE +∵AOD =180゜−∵ACO =90゜∵AD ∵x 轴,CE ∵x 轴∵∵CEO =∵ADO =90゜∵∵ECO +∵COE =90゜∵∵ECO =∵AODCEO ADO ECO AOD OC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵COE ∵∵OAD (AAS )∵CE =OD ,OE =AD∵A∵OD =1,AD =∵CE =1,OE =∵点C 在第二象限∵点C的坐标为(故答案为:(; (3)∵∵ACB =90゜∵∵BCE +∵ACD =90゜∵BE ∵CE ,AD ∵CE∵∵CEB =∵ADC =90゜∵∵BCE +∵CBE =90゜∵∵CBE =∵ACD在∵BCE 和∵CAD 中CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵BCE ∵∵CAD (AAS )∵BE =CD ,CE =AD =6cm∵BE =CD =CE -DE =6-4=2(cm)【点拨】本题是三角形全等的综合,考查了全等三角形的判定与性质,掌握全等三角形的判定方法是关键.。
初中数学相似三角形专项练习题:一线三等角相似1(附答案)
16.如图,经过原点的抛物线 与直线 交于 , 两点,其对称轴是直线 ,抛物线与 轴的另一个交点为 ,线段 与 轴交于点 .
(1)求抛物线的解析式,并写出点 的坐标;
(2)若点 为线段 上一点,且 ,点 为线段 上不与端点重合的动点,连接 ,过点 作直线 的垂线交 轴于点 ,连接 ,探究在 点运动过程中,线段 , 有何数量关系?并证明所探究的结论;
(1)求AE的长;
(2)如图2,将∠CDE绕着点D逆时针旋转一定的角度,使角的一边DE刚好经过点B,另一边与y轴交于点F,求点F的坐标;
(3)在(2)的条件下,在平面内是否存在一点P,使以点C、D、F、P为顶点的四边形是平行四边形.若存在,直接写出点P的坐标;若不存在,请通过计算说明理由.
19.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为 上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.
3.在直角坐标系中,已知圆 的圆心坐标为 ,半径为5,点 和点 是圆 上两个不同的点,其中 与均不为0.过点 分别作圆 的切线 与 轴和 分别相交于 两点,则 _________.
4.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cos∠α= ,下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或 ;④0<CE≤6.4.其中正确的结论是_________.(把你认为正确结论的序号都填上)
初中数学相似三角形专项练习题:一线三等角相似1(附答案)
1.如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D D E B C B E
A
C
斜交型
A D
子母型
A
E
B C B
D (E)
C
(三)子母型
如图,若
A D
,则△ACD∽△ABC.
∠ACD=∠B 或∠ADC=∠ACB AD AC 或 AC AB 2 即:AC AD AB
B
C
斜交型
A D E E D B C B C
旋转型
A
(四)旋转型
如图, ∠BAD=∠CAE ,若 △AED∽△ABC. ∠D=∠C
或∠E=∠B
AD AE 或 AC AB
,则
A E D
B
C
一线三直角
已知∠B=∠D=∠ACE=90°
1、从图中能得到什么结论? △ABC∽△CDE AB· ED=BC· CD 2、若AB=2,ED=4,BD=6,你能 求出BC的值吗?
无论这三个角是锐 角,直角还是钝角,这 个结论始终成立。对于 一些试题,只要看到这 个模型可以快速建立解 题思路。
A
E
C B
D
练1、(2013•天津)如图,在边长为9的正 三角形ABC中BD=3 ∠ADE=60°, 则AE的长为 .
练2、如图在⊿ABC中,点D,E分别在BC, AC上连接AD,DE,使∠ 1=∠B= ∠C.
相似三角形复习课之
一线三等角
基本图形
几何图形大都是由基本图形 复合而成,因此熟悉三角形相似 的基本图形,有助于快速准确地 识别相似三角形,从而顺利地找 到解题的思路和方法。
(一)平行型
如图,若DE∥BC,则△ADE∽△ABC. A字型 8字型
A
D B E二)斜交型
如图,若∠AED=∠B ,则△AED∽△ABC.
本节课你有哪些收获?
A E 1
C
B
D
若∠B= 45°, BC=2,点D在BC上运动, (不与B,C重合) ①求CE的最大值; ②若⊿ADE为等腰三角形,求此时CE的长。
练3、如图,Rt△ABC中,∠ACB=90°, ∠A=60°,AC=3,若点D在AB上, 且AD=2,∠CDE=60°DE与BC边交 于点E,求线段EB的长
若点C是BD的中点, 这个图形中还有哪些结论?
1、图中的三个直角三角形相似 2、AC、EC分别是两个角的角 平分线 3、AE=AB+ED
一线三等角
如图在⊿ABC中,点D,E分别在BC,AC 上连接AD,DE,使∠ 1=∠B= ∠C. 请写出几个正确结论。 A
E 1 B D
C
(五)一线三等角
如图,点D是线段BC上异于B和C的 一点,若∠ B=∠ADE=∠C,则 ⊿ABD∽⊿DCE。