2020-2021初中数学反比例函数知识点训练及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学反比例函数知识点训练及答案
一、选择题
1.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1
y x
=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010 B . 011 C .01 1 32 D . 01 【答案】C 【解析】 【分析】 首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1 y x = 的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】 解:依题意得方程3x 2x 10+-=的实根是函数2 y x 2=+与1 y x =的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限. 当x=14时,2 1y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,2 1229y x =+=,1y 3x ==,此时抛物线的图象在反比例函数下方; 当x= 12时,2 1224y x =+=,1y 2x ==,此时抛物线的图象在反比例函数上方; 当x=1时,2 y x 23=+=,1 y 1x = =,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011 2 . 故选C . 【点睛】 此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势. 2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1 =1 k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象 上,∠ABO=30°,则 2 1 k k =( ) A .-3 B .3 C . 1 3 D .- 13 【答案】A 【解析】 【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值. 【详解】 如图,设AB 交x 轴于点C ,又设AC=a. ∵AB ⊥x 轴 ∴∠ACO=90° 在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3 ∴点A 3a ,a ) 同理可得 点B 3,-3a ) ∴k 1332 , k 23a×(-3a )3a ∴ 213333k a k a -==-. 故选A. 【点睛】 考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法. 3.如图,是反比例函数 3 y x = 和7y x =-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( ) A .10 B .4 C .5 D .从小变大再变小 【答案】C 【解析】 【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解. 【详解】 连接AO 、BO ,设AB 与y 轴交于点C . ∵AB ∥x 轴, ∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73 522 ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5. 故选C . 【点睛】 本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键. 4.如图,反比例函数y =2 x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( ) A .1 B .2 C .4 D .8 【答案】C 【解析】 【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积. 【详解】 解:Q反比例函数 2 y x =, 2 OA AD ∴= g. D Q是AB的中点, 2 AB AD ∴=. ∴矩形的面积2224 OA AB AD OA ===⨯= g g. 故选:C. 【点睛】 本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键. 5.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是() A.y=x2B.y=x C.y=x+1 D. 1 y x = 【答案】D 【解析】 【分析】 需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】 解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误; B、y=x是一次函数k=1>0,y随x的增大而增大,错误; C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误; D、 1 y x =是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确; 故选D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键. 6.对于反比例函数 2 y x =,下列说法不正确的是() A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限 C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小 【答案】C 【解析】 【详解】 由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图