初中数学专题整式练习题(含答案)试题及答案
初二数学整式测试卷及答案
一、选择题(每题3分,共15分)1. 下列各式中,不是单项式的是()A. 3a²B. 5x³yC. 2xy - 3y²D. 4a²b2. 若单项式m³n²的系数是-8,则m和n的值分别是()A. m=2,n=3B. m=-2,n=3C. m=2,n=-3D. m=-2,n=-33. 下列各式中,同类项的是()A. 2x²y³ 和3xy²B. 4a²b 和4ab²C. 5mn 和5m²nD. 7x 和 -7x4. 若单项式3a³b²的系数是-9,则其绝对值是()A. 3B. 9C. 27D. 815. 下列各式中,完全平方公式正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²二、填空题(每题5分,共25分)6. 5a²b的同类项是__________。
7. 2xy² - 3xy² + 4xy²的简化结果是__________。
8. (a+2b)²的展开结果是__________。
9. (3a-2b)²的展开结果是__________。
10. 若单项式-2x²y³的系数是-8,则x和y的值分别是__________。
三、解答题(每题10分,共30分)11. 简化下列各式:(1)3a²b - 2ab² + 4a²b²(2)2x³ - 3x²y + 5xy² - 4y³12. 展开:(1)(2x-3y)³(2)(3a+4b)²13. 求下列整式的值:(1)当a=2,b=-3时,求3a²b - 2ab² + 4a²b²的值。
整式的加减练习100题(有答案)
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
初中整式练习题及答案
初中整式练习题及答案作为初中数学的一部分,整式是一个基础且重要的概念。
掌握整式的运算规则和解题技巧,对学生的数学学习能力和解决问题的能力都是非常有帮助的。
在这篇文章中,我们将介绍一些常见的初中整式练习题,并附上它们的答案,希望能够帮助同学们更好地掌握整式的知识。
【题目一】简化下列各式:1. 2x + 3y - x + y答案:x + 4y2. 5a + 7b - (2a - 4b)答案:3a + 11b3. (2x + 3y) - (x - y)答案:x + 4y【题目二】展开下列各式:1. (x + 3)(2x - 5)答案:2x^2 - 5x + 6x - 15 = 2x^2 + x - 152. (2a - b)^2答案:(2a - b)(2a - b) = 4a^2 - 2ab - 2ab + b^2 = 4a^2 - 4ab + b^23. (3x - 2y)(3x + 2y)答案:9x^2 - 4y^2【题目三】对下列各式进行合并同类项:1. 4x + 2y - 3x + y答案:x + 3y2. 5a^2b - 3ab + 2a^2b + ab答案:7a^2b - 2ab【题目四】对下列各式进行分解因式:1. x^2 + 2xy + y^2答案:(x + y)(x + y) = (x + y)^22. 4m^2 - 9n^2答案:(2m + 3n)(2m - 3n)【题目五】计算下列各式的值:1. 3(x - 2) + 2(3x + 1) - 4x答案:3x - 6 + 6x + 2 - 4x = 5x - 42. 2(3a - 4) - 3(2a + 1) + 5a答案:6a - 8 - 6a - 3 + 5a = 5a - 11【题目六】求解下列等式:1. 2x + 3 = 9答案:2x + 3 - 3 = 9 - 3,得到2x = 6,再除以2,得到x = 32. 5(2a - 1) = 13答案:10a - 5 = 13,再加上5,得到10a = 18,再除以10,得到a = 1.8通过解答这些练习题,我们可以发现整式的运算和变形是非常有规律和逻辑性的。
中考复习之整式练习题(含答案)
整式练习题一、填空题1.孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花 了 元.2.某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.3.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为__________.4.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写右表:5.用代数式表示“a 与b 的和”,式子为 .6.受甲型H1N1流感影响,猪肉价格下降了30%,设原来的猪肉价格为a 元/千克,则现在的猪肉价格为____________元/千克.7.计算:①52a a -= .②a 3÷a 2= .③ ()23ab= . ④()4323b a --= .⑤322x x ÷= .⑥322)3(x x -= . ⑦()=÷523y y .⑧()22a ba ÷=8.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________; (x -1)2·x 3= . 31(2)(1)4a a -⋅- = .9. ①化简()221a a -+-的结果是 .②化简(x -y )(x+y )+(x -y )+(x+y )的结果是 .10.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是 . 11.分解因式:①3+2x x= . ②a ax ax 22--= . ③3222x x y xy -+= . ④=+-+)(3)(2y x y x . ⑤_____________223=---x x x ⑥3654a a -=________⑦2221a b b ---= .⑧2m mn mx nx -+-= .⑨32x xy -=___________. ⑩(x+3)2-(x+3) ___________12.因式分解:①=++22363b ab a .②mn 2-m =__________________ ③328x x -=_____ .④227183x x ++= . 13.在实数范围内因式分解44-x = _____________. 14.当x =23x x -+_____________.15.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 16.已知33-=-y x ,则y x 35+-的值是 . 17.若a -b =1,ab=-2,则(a +1)(b -1)=___________________. 18.若m +n =3,则222426m mn n ++-的值为 . 19.已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 20.若2320a a --=,则2526a a +-= . 21.若的值为则2y -x 2,54,32==y x .22.已知102103m n ==,,则3210m n+=____________.23.若523m x y +与3n x y 的和是单项式,则mn = . 24.已知代数式132+n ba 与223b am --是同类项,则=+n m 32 .25.若221m m -=,则2242007m m -+的值是_______________. 26.若m 、n 互为倒数,则2(1)mn n --的值为 .27.长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了 m .28.若x y ,为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为 .29.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = .30.图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.31.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________(1) (2) (3) …………32.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .33.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证一个公式,这个公式 是 .34.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).35.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是(填序号) .36.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).二、选择题1. 下列计算错误的是 ( )A .2m + 3n=5mnB .426a a a =÷ C .632)(x x = D .32a a a =⋅2. 下列计算正确的是( ).A 、235a a a += B 、22ab ab += C 、222()ab a b -= D 、()()26a a a =·33.下列各式计算不正确...的是( ) A .(3)3--= B2 C .()3339x x = D .1122-=(1) (2) (3)… 28题a图甲 图乙27题4.下列各式中,运算正确的是( ) A .(–a )4=a4B3=± C.= D=5.下列运算正确的是( )A .2a +a =3aB .2a -a =1C .2a ·a =32a D .2a ÷a =a 6.下列运算正确的是( )A .222)(b a b a +=+B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D .523a a a =+7.下列运算正确的是( ).A .(2a )2=2a 2B .03215⨯-= C .2a ·2a =22a D .a 2·a 3=a 5 8.下列计算正确的是( )A .(a-b )2=a 2-b 2B .b a b a 22)(2+-=--C . 2a+3b=5abD .9.下列计算正确的是( )A .336()x x =B .6424a a a =· C .4222()()bc bcbc -÷-= D .632x x x ÷= 10.在下列运算中,计算正确的是( ) A .)0(122≠=-m mmB .422)(mn n m =⋅ C .22330ab a b -= D .2224()ab a b =11.下列运算正确的是( )A .22(π 3.14)5-+-= B .332728-⎛⎫= ⎪⎝⎭C .222532x x x=+ D .2233ab a b a b +=12.下列关于数与式的等式中,正确的是( )A .22(2)2-=- B .5840101010⨯= C .235x y xy += D .2x yx y x+=+75 13.下列运算正确的是()A .3222a a a ÷= B .224347x x x +=C .936()()x x x -÷-= D .232(1)x x x x x x --+=--- 14.下列运算正确的是( )A .224236x x x =·B .22231x x -=- C .2222233x x x ÷=D .224235x x x += 15.若01x <<则x ,1x,2x 的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<<16.数学上一般把a ·a ·a ·a ·a ……记为( )mn nn(2)(1)A .naB .n a +C .n aD .an 17.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+18.如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n三、解答题1.已知2514x x -=,求()()()212111x x x ---++的值2观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.3计算:|2-|o 2o 12sin30((tan45)-+-+4先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5先化简,再求值:22(3)(2)1x x x x x -+-+,其中x =6.在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解7.先化简,再求值:)5()1(3---x x ,其中2=x .8.已知:1x =,1y ,求下列各式的值. (1)222x xy y ++; (2)22x y -.9.先化简,再求值:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭,其中x =10.先化简再计算:y x yx y x +---222,其中x =3,y =2答案:一、1.0.4m+2n 2.0.55x 3.120-x120 4.56 80 156.8 5.a+b 6.0.7a7.①3a ②a ③a 2b 6 ④-81a 8b 12 ⑤2x ⑥-6x 5 ⑦y ⑧a 3b 2 8.- 13 x 5 x - 12a 4+2a 9. ①-1 ②x 2-y 2+2x 10.-5x-111.①x(x+3) ②a(x+1)(x-2) ③x(x-y)2 ④(x+y)(x+y-3) ⑤-x(x+1)2 ⑥6a(a+3)(a-3) ⑦(a-b-1)(a+b+1) ⑧(m-n)(m+x) ⑨x(x-y)(x+y) ⑩(x+3)(x+2)12.①3(a+b)2 ②m(n+1)(n-1) ③2x(x+2)(x-2) ④3(2x+1)213.(x 2+2) (x+ 2 )(x- 2 ) 14.2 15.9 16.8 17.-4 18.12 19.2 20.1 21. 35 22.7223. 14 24.13 25.2009 26.1 27.2 2 -2 3 28.-1 29.1 -2 30.3n+1 31.15 2n+532.3n+2 33.a 2-b 2=(a+b)(a-b) 34.2+2n 35. ①② 36.10 3n+1二、1.A 2.C 3.C 4.AD 5.A 6.B 7.D 8.B 9.C 10.AD 11.C 12.A 13.AC 14.A 15.C 16.C 17.D 18.A 三、略。
初一数学整式练习题精选含答案)
初一数学第三单元 整式练习题精选(含答案)一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题 1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y 2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3 D 一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式 5.下列代数式中,不是整式的是( )A 、23x - B 、745b a - C 、xa 523+ D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+x B 、23x C 、3xy -1 D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、ba s + C 、b s a s + D 、bs a s s+29.下列单项式次数为3的是( ) A.3abcB.2×3×4C.41x 3y D.52x 10.下列代数式中整式有( ) x 1, 2x +y , 31a 2b , πyx -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( ) A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1 B .x 2+y +1 C .x 2y -xy 2 D .x 3-x 2+x -113.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3 B .x 3,xy2 C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( ) A 、6- B 、5- C 、2- D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个 B .2个 C .3个 D .4个 20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2 三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ; 12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313mx y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 . 32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 . 四、列代数式 1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
初一整式测试题及答案
初一整式测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3C. 5x^2 - 3xD. 4x^3y^2 / 22. 合并同类项 2x^2 - 3x^2 + 5x^2 的结果是:A. 4x^2B. -x^2C. 0D. 3x^23. 整式 4x - 3y + 2z 的次数是:A. 1B. 2C. 3D. 44. 计算 (3x - 2)(2x + 5) 的结果是:A. 6x^2 + 11x - 10B. 6x^2 - 11x + 10C. 6x^2 + 11x + 10D. 6x^2 - 11x - 105. 多项式 2x^3 - 5x^2 + 3x - 1 的次数是:A. 1C. 3D. 46. 整式 3x^2y - 5x + 2 是关于 x 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式7. 整式 2x^2y + 3xy^2 - 4y 是关于 y 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式8. 计算 (x + 1)(x - 1) 的结果是:A. x^2 - 1B. x^2 + 1C. 2xD. 29. 整式 3x^2 - 2x + 1 的系数分别是:A. 3, -2, 1B. -3, 2, -1C. 3, 2, -1D. -3, -2, -110. 整式 4x^3 - 3x^2 + 2x - 1 的最高次项是:A. 4x^3B. -3x^2D. -1二、填空题(每题4分,共20分)1. 单项式 -5x^3y^2 的系数是 ________。
2. 合并同类项 4x^2 - 2x^2 + 3x^2 的结果是 ________。
3. 整式 2x^2y - 3xy^2 + 4y 是关于 y 的 ________ 次多项式。
4. 计算 (2x + 3)(x - 4) 的结果是 ________。
5. 整式 5x^4 - 3x^3 + 2x^2 - x + 1 的常数项是 ________。
初中数学 整式 练习题(含答案)
第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。
整式综合运算练习题(含答案)
整式专题训练测试题一、填空题:1、 单项式5)2(32y x -的系数是_________,次数是___________。
2、 多项式π2323232----x xy y x 中,三次项系数是_______,常数项是_________。
3、 若,3,2==n m a a 则___________,__________23==--n m n m a a 。
4、 单项式2222,2,21,2xy y x xy y x ---的和是_____________________________。
5、 若2333632-++=⋅x x x ,则x =_________________。
6、 )2131)(3121(a b b a ---=___________________。
7、 若n mx x x x --=-+2)3)(4(,则__________________,==n m 。
8、 ________________)6()8186(32=-÷-+-x x x x 。
9、 442)(_)(_________5⨯⨯⨯⋅⋅⋅⋅-=x x x x x 。
10、22413)(___)(_________y xy xy x +-=+-。
11、______________42125.0666=⨯⨯。
12、_____________)()(22++=-b a b a 。
二、选择题:1、 代数式4322++-x x 是A 、多项式B 、三次多项式C 、三次三项式D 、四次三项式2、 )]([c b a +--去括号后应为A 、c b a +--B 、c b a -+-C 、c b a ---D 、c b a ++-3、=⋅-+1221)()(n n x xA 、n x 4B 、34+n xC 、14+n xD 、14-n x4、下列式子正确的是A 、10=aB 、5445)()(a a -=-C 、9)3)(3(2-=--+-a a aD 、222)(b a b a -=-5、下列式子错误的是 A 、161)2(22=-- B 、161)2(22-=-- C 、641)2(32-=-- D 、 641)2(32=-- 6、=-⨯99100)21(2 A 、2 B 、2- C 、 21 D 、21- 7、=-÷-34)()(p q q pA 、q p -B 、q p --C 、p q -D 、q p +8、已知,109,53==b a 则=+b a 23 A 、50- B 、50 C 、500 D 、不知道9、,2,2-==+ab b a 则=+22b aA 、8-B 、8C 、0D 、8±10、一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是A 、8cmB 、6cmC 、5cmD 、10cm二、计算:1、42332)()()(ab b a ⋅⋅-2、4)2()21(232÷÷-xy y x 3、3334455653)1095643(y x y x y x y x ÷-+ 4、)3121()312(2122y x y x x -+-- 5、)1(32)]1(21[2-----x x x 6、⎭⎬⎫⎩⎨⎧-÷----)21()]2(3[2522222xy y x xy xy y x xy四、先化简,再求值1、2)3()32)(32(b a b a b a -+-+,其中31,5=-=b a 。
初一数学整式练习题精选(含答案)
初一数学整式练习题精选(含答案)初一数学整式练习题精选(含答案)练习一:填空题1. 3x + 5y - 4z + 2x - y - 3z = ________.2. (x - 3)(x + 2) = ________.3. (2a + 3b)(4a - 2b) = ________.4. 2(x - 1)(x + 3) - (x - 2)(x + 1) = ________.答案:1. 5x + 4y - 7z2. x^2 - x - 63. 8a^2 - 8b^24. x^2 + 2x练习二:展开和化简1. (m - 4)(m + 2)2. (2x + 1)(x - 3)3. (3a - 2)(3a + 2) - (2a - 1)(2a + 1)4. (5x - 2)(5x + 2) + (3x - 1)(3x + 1)答案:1. m^2 - 2m - 82. 2x^2 - 5x - 33. 5a^2 - 14. 34x^2 - 1练习三:因式分解1. x^2 - 92. 81m^2 - 163. 25x^2 - y^24. 16a^2 - 49b^2答案:1. (x + 3)(x - 3)2. (9m + 4)(9m - 4)3. (5x + y)(5x - y)4. (4a + 7b)(4a - 7b)练习四:扩展与合并同类项1. 2x + 3y - 4x + y2. 5a^2 - 3a - 2a^2 + a3. 4x - 2y + 3x + 5y4. 7x^2 - 5x - 3x^2 + 4x + 2x^2答案:1. -2x + 4y2. 3a^2 - 2a3. 7x + 3y4. 6x^2 - x练习五:乘法公式1. (x + y)^22. (3a - 2b)(3a + 2b)3. (4m + 5n)^24. (2x + 3y)(2x - 3y)答案:1. x^2 + 2xy + y^22. 9a^2 - 4b^23. 16m^2 + 40mn + 25n^24. 4x^2 - 9y^2练习六:因式分解与提取公因式1. 4x^2 + 8x2. 6a^2b - 12ab3. 9x^2 - 44. 10ab - 20b答案:1. 4x(x + 2)2. 6ab(a - 2)3. (3x + 2)(3x - 2)4. 10b(a - 2)练习七:应用题1. 若已知(x + 3)(x - 1) = x^2 + bx - 3,求b的值。
初中数学整式试题及答案
初中数学整式试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是单项式?A. 3x^2B. -5C. 7x^3yD. 2x+3y答案:D2. 合并同类项后,下列哪个表达式的结果不是同类项?A. 3x^2 + 2x^2 = 5x^2B. 4xy - 3xy = xyC. 5y^2 + 2x^2 = 7y^2D. 6ab - 3ab = 3ab答案:C3. 计算下列表达式的结果,正确的是:A. (3x - 2) + (x + 4) = 4x + 2B. (5x^2 - 3x) - (2x^2 + x) = 3x^2 - 4xC. (2x^3 - 5x^2 + 3x) + (-x^3 + 4x^2 - 2x) = x^3 - x^2 + xD. (4x^2 - 3x + 2) - (2x^2 - 5x + 3) = 2x^2 + 2x - 1答案:D4. 将下列表达式因式分解,正确的是:A. 2x^2 - 4x = 2x(x - 2)B. x^2 - 4 = (x + 2)(x - 2)C. 3x^2 - 6x + 3 = 3(x^2 - 2x + 1)D. x^2 - 2x - 3 = (x - 3)(x + 1)答案:B5. 下列哪个表达式不是完全平方公式?A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^2答案:C6. 计算下列表达式的值,正确的是:A. (3x + 2)(3x - 2) = 9x^2 - 6x + 4B. (2x + 3)(2x - 3) = 4x^2 - 9C. (x + 4)(x - 4) = x^2 - 16D. (x - 5)(x + 5) = x^2 + 25答案:C7. 计算下列多项式乘以单项式的结果,正确的是:A. 3x^2(2x - 5) = 6x^3 - 15x^2B. 4x(3x^2 + 2x - 1) = 12x^3 + 8x^2 - 4xC. 5y(2y^2 - 3y + 4) = 10y^3 - 15y^2 + 20yD. 2a(a^2 - 3a + 5) = 2a^3 - 6a^2 + 10a答案:D8. 计算下列多项式除以单项式的结果,正确的是:A. (3x^2 - 6x + 9) ÷ 3 = x^2 - 2x + 3B. (4x^3 - 12x^2 + 12x) ÷ 4x = x^2 - 3x + 3C. (2x^3 - 4x^2 + 6x) ÷ 2x = x^2 - 2x + 3D. (5x^4 - 10x^3 + 15x^2) ÷ 5x^2 = x^2 - 2x + 3 答案:B9. 计算下列多项式除以多项式的结果,正确的是:A. (x^3 - 2x^2 + x) ÷ (x - 1) = x^2 - x + 1B. (x^3 - 3x^2 + 3x - 1) ÷ (x - 1) = x。
初一整式的试题及答案
初一整式的试题及答案一、选择题(每题3分,共30分)1. 若$a+b=5$,$ab=6$,则$a^2+b^2$的值为()A. 13B. 25C. 37D. 492. 下列整式中,不是同类项的是()A. $3x^2$,$-2x^2$B. $5xy$,$-3xy$C. $7x$,$-2x$D. $4x^2y$,$-5x^2y$3. 计算$(2x-3)^2$的结果是()A. $4x^2-12x+9$B. $4x^2+12x+9$C. $4x^2-12x-9$D. $4x^2+12x-9$4. 合并同类项$2x^2+3x-5+x^2-2x$的结果是()A. $3x^2+x-5$B. $3x^2-x-5$C. $3x^2+x+5$D. $3x^2-x+5$5. 若$x-y=2$,则$x^2-y^2$的值为()A. $4x-4y$B. $4x+4y$C. $-4x+4y$D. $-4x-4y$6. 计算$(3x+2)(2x-3)$的结果是()A. $6x^2-5x-6$B. $6x^2+5x-6$C. $6x^2-5x+6$D. $6x^2+5x+6$7. 整式$2x^2-3x+1$与$-x^2+4x-5$相加的结果是()A. $x^2+x-4$B. $x^2-x-4$C. $x^2+x+6$D. $x^2-x+6$8. 整式$3x^2-2x+1$与$-2x^2+x-3$相减的结果是()A. $5x^2-x+4$B. $5x^2+x-4$C. $-5x^2-x+4$D. $-5x^2+x-4$9. 整式$x^2-2x+1$除以$x-1$的商式是()A. $x+1$B. $x-1$C. $x-2$D. $x+2$10. 整式$x^3-8$可以分解为()A. $(x-2)(x+2)(x+4)$B. $(x-2)(x+2)(x-4)$C. $(x-2)(x^2+2x+4)$D. $(x+2)(x^2-2x+4)$二、填空题(每题3分,共30分)1. 若$a+b=7$,$ab=10$,则$(a-b)^2$的值为______。
人教版七年级上册数学《整式》练习题(含答案)
2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x7.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个D.7个 8.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 10.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式.6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________. 19.多项式x 2y +xy -xy 2-53中的三次项是____________.20.当a=____________时,整式x 2+a -1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。
整式的练习题及解答
整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。
当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。
其中,x² -y²可再分解为(x - y)(x + y)。
因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1整 式一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a - C 、x a 523+D 、-20**6.下列多项式中,是二次多项式的是( ) A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、b a s + C 、b s a s + D 、b s a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是3114.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A 、x 的指数是0B 、x 的系数是0C 、-10是一次单项式D 、-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A 、B 、C 、D 、19.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ; 17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = .23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________. 29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 . 四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
五、求代数式的值1.当x =-2时,求代数式132--x x 的值。
2.当21=a ,3-=b 时,求代数式||a b -的值。
3.当31=x 时,求代数式x x 122-的值。
4.当x =2,y =-3时,求2231212y xy x --的值。
5.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。
六、计算下列各多项式的值:1.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2; 2.x 3-x +1-x 2,其中x =-3;3.5xy -8x 2+y 2-1,其中x =21,y =4;七、解答题1.若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.2.已知ABCD 是长方形,以DC 为直径的圆弧与AB 只有一个交点,且AD=a 。
(1)用含a 的代数式表示阴影部分面积;(2)当a =10cm 时,求阴影部分面积 (取3.14,保留两个有效数字)参考答案一.判断题: 1.(1)√ (2)× (3)× (4)× (5)√二、选择题: BABD C CDD AB C BCCB DDBAB 三、填空题:1.-4; 2、34- ,5 3、五,四 4、三 5、-3,0 6.单项式 多项式7..四 8.三 3 9.21 23x 2y a 522a π;3x -y 2 πx +21y x +1 10.二 11、421-m 12、b 34- 13、10-2x 14、2n -1、2n +115、43224362x y x y x y -+--16、0 17、2 18、119、-8,2;20、5,4,1,-43xy,-9;21、4;22.x 2,π1 ,-3;21(x +y);x 2, 21(x+y),π1,-3 23.75,6 24.x 2y -xy 2 25.1 26.二 二 27.35 28.10 29.不大于n 30.1,-x 2,xy ,-y 2,-xy 3四、列代数式:1、3235+a2、22n m + 3、yx +14、ba y x +-2)(五、求代数式的值 :1、92、2133、37-4、145、4六、计算下列各多项式的值:1.8 2.-32 3.23 4.3 七、解答题:1.-2 (提示:由2x -1=0,y -4=0,得x =21,y =4.所以当x =21,y =4时,1-xy -x 2y =1-21×4-(21)2×4=-2.)2、(1)241a s π= (2)792cmFDC。