选择填空统计概率算法框图复数2

合集下载

高中数学中的逻辑推理素养三

高中数学中的逻辑推理素养三
提)推出新判断(结论)的过程,有直接 推理、间接推理等.(《现代汉语词典第 6版》第1323页).
人教版教材选修2-2第70页:推理是人 们思维活动的过程,是根据一个或几个已 知的判断来确定一个新判断的思维过程.
推理是逻辑学名词. 推理是思维的基本形式之一.
逻辑推理是指从一些事实和命题出发, 依据逻辑规则推出其它命题的思维过 程.从推理形式上看,主要包括两类:
故而可得,第 n 行,n 个数,求和为 2n 1,
因此前 n 行,一共有 n n 1 个数,求和为 2n1 n 2
2
根据上面的分析,我们可以类推得到,
前 14 行,有 105 个数,求和为 215 16 ,
当 N 110 时,求和为 215 16 25 1 215 17 2n
1.归纳――猜想之不完全归纳 在概率统计中,我们总是从所研究的对象全体中抽 取一部分进行观测或试验以取得信息,从而对整体作 出推断,这也是归纳推理.
例 6 (2017 年全国卷Ⅰ理科第 19 题)为了监控某种零件的一条生产线 的生产过程,检验员每天从该生产线上随机抽取 16 个零件,并测量其尺寸(单
能力是指空间想象能力、抽象概括能力、
推理论证能力、运算求解能力、数据处理能力 以及应用意识和创新意识.
推理论证能力:推理是思维的基本形式之
一,它由前提和结论两部分组成;论证是由已有 的正确的前提到被论证的结论的一连串的推理 过程.推理既包括演绎推理,也包括合情推理;论 证方法既包括按形式划分的演绎法和归纳法,也 包括按思考方法划分的直接证法和间接证法.一 般运用合情推理进行猜想,再运用演绎推理进行 证明.
特别地,数学运算是数学活动的基本形式,
也是演绎推理的一种形式,是得到数学结果的 重要手段。

高考数学文科生高效提分热点解读之概率与统计程序框图与复数

高考数学文科生高效提分热点解读之概率与统计程序框图与复数

高考数学文科生高效提分热点解读之概率与统计程序框图与复数佚名高考是人生的一种阅历,一次考验,更是一次锻炼。

不是有人说,没有历经过高考的人生是不完整的人生。

在高考中,要取得理想的效果,其数学效果起到关键的作用。

距离高考还有不到40天了,这个时分是冲刺的黄金阶段。

如何抓好这个时间段的温习至关重要,针对大少数文科考生来说,毋容置疑,其单薄环节就是数学。

那么作为文科生考前数学应怎样温习?考前提分的关键又何在?热点七概率与统计、顺序框图与双数考点1 概率概率效果的中心是概率计算,其中以古典概型的概率计算为中心,古典概率计算的中心是基身手情个数的计算,以及随机事情所包括的基身手情个数的计算,要学会经过列表、绘图〔树状图〕等方法罗列基身手情的个数,这是解题的关键。

考点2 统计统计效果的中心是样本数据的散布,反映样本数据的散布的工具有样本频数表、样本频率散布表、频率分步直方图、频率折线图、茎叶图,失掉样本数据的方法是随机抽样,要紧紧抓住这些图表和方法,弄清含义、留意计算。

考点3 顺序框图与双数临近高考,为了高效温习,还是要给同窗们一点给力的小建议:〔1〕做好诊断性模拟练习:可以选择10套精彩的高考模拟题,将之分红选择题、填空题、中档题、压轴题四个局部,每半天做一局部。

当做了10套模拟题之后,就会发现自己在哪些中央存在弱点。

假设你数学基础不错,能够有弱点的中央不多,这时分可以无看法地多训练这些中央,争取提早处置单薄环节的效果。

不会的标题,可以经过问同窗和教员来处置。

这样做,可以同时提高解题速度,到达孤陋寡闻的目的。

〔2〕经过诊断性模拟练习,当你再做教员提供的模拟题时,你会发现,很多题原来都做过或见过相似的,这样的标题做一个就好,其他的标题要举一反三。

还有要留意的是,关于自己印象里错过两次以上的标题,一定要记到错题本上,这些题在高考之前要拿出来看一看,防止出现相似的错误。

〔3〕假设基础不是很好的话,就要多做一些基础题和中等难度的标题,层层推进,毕竟高考150分的标题里,难题只要30分左右,能把基础题做好,同时把中等题做好,异样会考出不错的效果。

2024地区一诊数学双向细目表

2024地区一诊数学双向细目表
数学理科双向细目表
题型 题号 分值
选择 ) % 选择 $ % 选择 " % 选择 + % 选择 % % 选择 ( % 选择 , % 选择 * % 选择 ! % 选择 )& % 选择 )) % 选择 )$ % 填空 )" % 填空 )+ % 填空 )% % 填空 )( % 解答 ), )$ 解答 )* )$ 解答 )! )$ 解答 $& )$ 解答 $) )$ 解答 $$ )& 解答 $" )&
形式
预设 预估
考查层次
难度 得分 了解 掌握 应用
&'*% +'$%
&'*% +'$%
&', "'%

&'* +

&'(% "'$%
&',, "'%
&'(% "'$%

探究
&', "'% &'" )'%

&', "'%

&'" )'%

开放
&'* + &'( "

直线与抛物线标准方程及及其应用 线 线 垂 直 证 明 四 棱 锥 体 积 探 究 不 等 式 证 明 极 值 点 探 究 互 化 方 程 求 范 围 或 最 值
解 绝 对 值 不 等 式 证 明 不 等 式 或 范 围 问 题

高考数学考点解析及分值分布

高考数学考点解析及分值分布

高考数学考点解析1.集合与简易逻辑:10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维实力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。

简易逻辑多为考查“充分与必要条件”及命题真伪的判别。

2.函数与导数:30分+主要章节:必修1其次章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是中学数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。

以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。

函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。

3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐藏”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等学问的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。

选择题和填空题主要考查不等式性质、解法及均值不等式。

解答题会与其它学问的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。

4.数列:20-28分主要章节:必修5其次章《数列》数列是中学数学的重要内容,是初等数学与高等数学的重要连接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它学问的综合题。

高考数学试题及答案 (1)

高考数学试题及答案 (1)

普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。

高中数学考点分数分布表格

高中数学考点分数分布表格

章节重点分值必修一第一章集合与函数的概念1.1集合集合中元素的性质集合中的运算关系(交、并、补)集合中的逻辑关系选择填空为主,5分左右1.2函数及其表示求定义域、值域、函数解析式选择填空为主,5分左右1.3函数的基本性质函数的单调性、奇偶性、周期性综合题为主,也会考察选择填空形式,8分左右第二章基本初等函数(Ⅰ)2.1指数函数实数指数幂的运算法则指数函数的图像与性质0分至5分2.2对数函数对数的运算法则对数函数的图像和性质0分至5分2.3幂函数幂函数的定义以及图像和性质0分至5分第三章函数的应用3.1函数与方程函数零点与其对应方程根的关系5分左右3.2函数模型及其应用1.用已知函数模型解决问题2.建立实际问题的函数模型0分必修二第一章空间几何体1.1空间几何体的结构掌握柱,锥,球的基本概念0分1.2空间几何体的三视图和直观图掌握几何体的三视图与直观图0分至5分1.3空间几何体的表面积与体积掌握计算空间几何体的体积与面积的基本方法0分到6分第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系掌握空间中的基本位置关系0分至5分2.1直线、平面平行的判定及其性质掌握空间中的平行判定定理0分至5分2.2直线、平面垂直的判定及其性掌握空间中的垂直判定定理0分至5分质第三章直线与方程3.1直线的倾斜角和斜率掌握直线斜率的定义不直接考3.2直线的方程学会用不同的方程来表示直线结合解析几何考察3分左右3.3直线的交点坐标与距离公式掌握点与点,直线与点,平行线的距离计算0分至8分第四章圆与方程4.1圆的方程掌握圆的定义与一般方程以及标准方程0分4.2直线、圆的位置关系掌握圆与圆,直线与圆的位置关系相交,相切,相离0分至5分4.3空间直角坐标系掌握空间直角坐标系的定义不直接考查必修三第一章算法初步1.1算法与程序框图掌握框图的要义5分左右1.2基本算法语句掌握算法的基本顺序1.3算法案例熟练算法的计算第二章统计2.1随机抽样掌握三种随机抽样方法的概念和区分8分左右2.2用样本估计总体掌握频率分布直方图的作图方法和茎叶图的特点2.3变量间的相关关系掌握散点图和线性相关的基本概念第三章概率3.1随机事件的概率掌握随机事件的定义和对立事件与互斥事件的区别10分左右3.2古典概型掌握古典概型的定义与计算公式3.3几何概型掌握几何概型的特点和计算公式必修四第一章三角函数1.1任意角和弧度制掌握弧度制和任意角的转化12分至17分1.2任意角的三角函数能够利用终边相同角的表示方法判断角所在的象限,会判断半角和倍角所在的象限1.3三角函数的诱导公式能够利用三角函数的定义求三角函数值,判断三角函数值的符号1.4三角函数的图像与性质掌握图像变换的基本方法1.5函数y=A sin(ωx+φ)掌握正弦函数y=Asin(ωx+φ的基本性质1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念掌握平面向量的相关概念和线性运算5分至8分2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示掌握平面向量基本定理2.4平面向量的数量积掌握数量积的运算,几何定义模与夹角和垂直问题2.5平面向量应用举例掌握平面向量在几何中的应用第三章三角恒等变换3.1两角和与差的正弦,余弦和正切公式提高运用两角和与差的三角公式进行化简变形、求值,二倍角公式的正用、逆用和变形的能力同必修四第一章结合3.2简单的三角恒等变换必修五第一章解三角形1.1正弦定理和余弦定理掌握正弦、余弦定理及三角形面积公式0分至5分1.2应用举例掌握利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题1.3实习作业第二章数列2.1数列的概念与简单表示法掌握数列的概念和基本性质一般出现一道小题和一道大题,13分至18分2.2等差数列掌握等差数列的定义、基本运算和性质2.3等差数列前n项和2.4等比数列掌握等比数列的定义、基本运算和性质2.5等比数列前n项和第三章不等式3.1不等关系与不等式掌握不等式的基本性质,以及对应关系中的不等关系0分3.2一元二次不等式及其解法掌握“三个二次”间的基本关系3分左右3.3二元一次不等式(组)与简单的线性规划问题掌握二元一次不等式组表示的区域面积和目标函数最值(或取值范围)0分至5分3.4基本不等式掌握利用基本不等式解决函数的最大(小)值问题和简单的证明问题5分左右选修1-1 第一章常用逻辑语1.1命题及其关系 1.掌握四种命题的意义及相互关系;2.掌握充分条件、必要条件、充要条件的基本概念0分至5分1.2充分条件与必要条件1.3简单的逻辑联结词掌握逻辑联结词“或”、“且”、“非”的含义,能用“或”、“且”、“非”表述相关的命题1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆掌握椭圆的定义及其基本的性质14分至19分2.2双曲线掌握双曲线的定义及其基本的性质2.3抛物线掌握抛物线的定义及其基本的性质第三章导数及其应用3.1变化率与导数掌握导数的定义以及求导法则和公式14分至19分3.2导数的计算3.3导数在研究函数中的应用掌握利用导数研究函数单调性、单调区间和极值点、极值的方法3.4生活中的优化问题举例选修1-2 第一章统计案例1.1回归分析的基本思想及其初步应用掌握回归方程0分至3分1.2独立性检验的基本思想及其初步应用掌握独立性检验的基本步骤第二章推理与证明2.1合情推理与演绎推理掌握利用归纳推理、类比推理去寻求更为一般的、新的结论不直接考查,穿插在解题当中,7分左右2.2直接证明与间接证明掌握与立体几何、解析几何、函数与导数等知识结合的考察手法第三章数系的扩充与复数的引入3.1数系的扩充与复数概念掌握复数的四则运算规律5分3.2复数代数形式的四则运算第四章框图4.1流程图掌握算法的思想和运算流程5分4.2结构图选修2-1 第一章常用逻辑语1.1命题及其关系 1.掌握四种命题的意义及相互关系;2.掌握充分条件、必要条件、充要条件的基本概念0分至5分1.2充分条件与必要条件1.3简单的逻辑联结词掌握逻辑联结词“或”、“且”、“非”的含义,能1.4全称量词与存在量词用“或”、“且”、“非”表述相关的命题第二章圆锥曲线与方程2.1椭圆掌握椭圆的定义及其基本的性质14分至19分2.2双曲线掌握双曲线的定义及其基本的性质2.3抛物线掌握抛物线的定义及其基本的性质2.4直线与圆锥曲线的位置关系掌握直线与曲线的位置关系以及方程与圆锥曲线的关系2.5曲线与方程第三章空间向量与立体几何3.1空间向量及其运算掌握空间向量的定义以及基本运算方法12分3.2立体几何中的向量方法学会应用空间向量的方法来解决立体几何中的问题选修2-2 第一章导数及其应用1.1变化率与导数掌握导数的定义以及求导法则和公式0分1.2导数的计算5分左右1.3导数在研究函数中的应用掌握利用导数研究函数单调性、单调区间和极值点、极值的方法6分左右1.4生活中的优化问题举例0分至5分1.5定积分的概念掌握定积分的概念和简单的运算及其简单的应用1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理掌握利用归纳推理、类比推理去寻求更为一般的、新的结论5分左右2.2直接证明与间接证明掌握与立体几何、解析几何、函数与导数等知识结合的考察手法6分左右2.3数学归纳法掌握数学归纳法的一般步骤和应用范围第三章数系的扩充与复数的引入3.1数系的扩充与复数概念掌握复数的四则运算规律0分3.2复数代数形式的四则运算0分至5分选修2-3 第一章计数原理1.1分类加法计数原理与分部乘法计数原理掌握分类加法和分步乘法的基本运算方法0分1.2排列与组合掌握排列和组合的基本概念和规律0分至5分1.3二项定理掌握运用二项式定理解决与二项展开式有关的简单问题0分至5分第二章随机变量及其分布2.1离散型随机变量及其分布列掌握离散型随机变量的分布列的求法0分2.2二项分布及其应用掌握条件概率、相互独立事件的概率,n次独立重复试验及二项分布0分2.3离散型随机变量的均值与方差掌握均值与方差的概念和基本算法0分至5分2.4正态分布了解正态分布曲线的特点及曲线所表示的意义0分至5分第三章统计案例3.1回归分析的基本思想及其初步应用掌握回归方程0分3.2独立性检验的基本思想及其初步应用掌握独立性检验的基本步骤3分左右。

2015年重庆市高考数学试题及答案(理科)【解析版】

2015年重庆市高考数学试题及答案(理科)【解析版】

2015年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•重庆)已知集合A={1,2,3},B={2,3},则()A .A=B B.A∩B=∅C.A BD.B A考点:子集与真子集.专题:集合.分析:直接利用集合的运算法则求解即可.解答:解:集合A={1,2,3},B={2,3},可得A≠B,A∩B={2,3},B A,所以D正确.故选:D.点评:本题考查集合的基本运算,基本知识的考查.2.(5分)(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=()A .﹣1 B.0 C.1 D.6考点:等差数列的性质.专题:等差数列与等比数列.分析:直接利用等差中项求解即可.解答:解:在等差数列{a n}中,若a2=4,a4=2,则a4=(a2+a6)==2,解得a6=0.故选:B.点评:本题考查等差数列的性质,等差中项个数的应用,考查计算能力.3.(5分)(2015•重庆)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A .19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.4.(5分)(2015•重庆)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:解“(x+2)<0”,求出其充要条件,再和x>1比较,从而求出答案.解答:解:由“(x+2)<0”得:x+2>1,解得:x>﹣1,故“x>1”是“(x+2)<0”的充分不必要条件,故选:B.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A .B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.解答:解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.点评:本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.6.(5分)(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A .B.C.D.π考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量垂直的等价条件以及向量数量积的应用进行求解即可.解答:解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A点评:本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.7.(5分)(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A .s≤B.s≤C.s≤D.s≤考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>时,退出循环,输出k的值为8,故判断框图可填入的条件是S.解答:解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.点评:本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.8.(5分)(2015•重庆)已知直线l:x+ay﹣1=0(a∈R)是圆C:x2+y2﹣4x﹣2y+1=0的对称轴.过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A .2 B.C.6 D.考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆的标准方程可得圆心和半径,由直线l:x+ay﹣1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.解答:解:圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).由于AC==2,CB=R=2,∴切线的长|AB|===6,故选:C.点评:本题主要考查圆的标准方程,直线和圆相切的性质,属于基础题.9.(5分)(2015•重庆)若tanα=2tan,则=()A .1 B.2 C.3 D.4考点:三角函数的积化和差公式;三角函数的化简求值.专题:三角函数的求值.分析:直接利用两角和与差的三角函数化简所求表达式,利用同角三角函数的基本关系式结合已知条件以及积化和差个数化简求解即可.解答:解:tanα=2tan,则========== ===3.故答案为:3.点评:本题考查两角和与差的三角函数,积化和差以及诱导公式的应用,考查计算能力.10.(5分)(2015•重庆)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是()A .(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞)考点:双曲线的简单性质.专题:计算题;创新题型;圆锥曲线的定义、性质与方程.分析:由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,求出c﹣x,利用D到直线BC的距离小于a+,即可得出结论.解答:解:由题意,A(a,0),B(c,),C(c,﹣),由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,∴c﹣x=,∵D到直线BC的距离小于a+,∴c﹣x=<a+,∴<c2﹣a2=b2,∴0<<1,∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).故选:A.点评:本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)(2015•重庆)设复数a+bi(a,b∈R)的模为,则(a+bi)(a﹣bi)=3.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:将所求利用平方差公式展开得到a2+b2,恰好为已知复数的模的平方.解答:解:因为复数a+bi(a,b∈R)的模为,所以a2+b2==3,则(a+bi)(a﹣bi)=a2+b2=3;故答案为:3.点评:本题考查了复数的模以及复数的乘法运算;属于基础题.12.(5分)(2015•重庆)的展开式中x8的系数是(用数字作答).考点:二项式定理.专题:二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式中的x8的系数.解答:解:由于的展开式的通项公式为T r+1=••,令15﹣=8,求得r=2,故开式中x8的系数是•=,故答案为:.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.考点:余弦定理的应用.专题:解三角形.分析:利用已知条件求出A,C,然后利用正弦定理求出AC即可.解答:解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.点评:本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)(2015•重庆)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=2.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:利用切割线定理计算CE,利用相交弦定理求出BE即可.解答:解:设CE=2x,ED=x,则∵过点A作圆O的切线与DC的延长线交于点P,∴由切割线定理可得PA2=PC•PD,即36=3×(3+3x),∵x=3,由相交弦定理可得9BE=CE•ED,即9BE=6×3,∴BE=2.故答案为:2.点评:本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为(2,π).考点:简单曲线的极坐标方程;直线的参数方程.专题:坐标系和参数方程.分析:求出直线以及曲线的直角坐标方程,然后求解交点坐标,转化我2极坐标即可.解答:解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;曲线C的极坐标方程为,可得它的直角坐标方程为:x2﹣y2=4,x<0.由,可得x=﹣2,y=0,交点坐标为(﹣2,0),它的极坐标为(2,π).故答案为:(2,π).点评:本题考查曲线的极坐标方程直线的参数方程与普通方程的互化,基本知识的考查.16.(2015•重庆)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=﹣6或4.考点:带绝对值的函数.专题:创新题型;函数的性质及应用.分析:分类讨论a与﹣1的大小关系,化简函数f(x)的解析式,利用单调性求得f(x)的最小值,再根据f(x)的最小值等于5,求得a的值.解答:解:∵函数f(x)=|x+1|+2|x﹣a|,故当a<﹣1时,f(x)=,根据它的最小值为f(a)=﹣3a+2a﹣1=5,求得a=﹣6.当a=﹣1时,f(x)=3|x+1|,它的最小值为0,不满足条件.当a≥﹣1时,f(x)=,根据它的最小值为f(a)=a+1=5,求得a=4.综上可得,a=﹣6 或a=4,故答案为:﹣6或4.点评:本题主要考查对由绝对值的函数,利用单调性求函数的最值,体现了转化、分类讨论的数学思想,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)(2015•重庆)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据古典概型的概率公式进行计算即可;(Ⅱ)随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望.解答:解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,X 0 1 2PEX=0×+1×+2×=个.点评:本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.考点:二倍角的余弦;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.解答:解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.点评:本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.19.(13分)(2015•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间角.分析:(Ⅰ)由已知条件易得PC⊥DE,CD⊥DE,由线面垂直的判定定理可得;(Ⅱ)以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,易得,,的坐标,可求平面PAD的法向量,平面PCD的法向量可取,由向量的夹角公式可得.解答:(Ⅰ)证明:∵PC⊥平面ABC,DE⊂平面ABC,∴PC⊥DE,∵CE=2,CD=DE=,∴△CDE为等腰直角三角形,∴CD⊥DE,∵PC∩CD=C,DE垂直于平面PCD内的两条相交直线,∴DE⊥平面PCD(Ⅱ)由(Ⅰ)知△CDE为等腰直角三角形,∠DCE=,过点D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,由∠ACB=得DF∥AC,,故AC=DF=,以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A(,0,0),E(0,2,0),D(1,1,0),∴=(1,﹣1,0),=(﹣1,﹣1,3),=(,﹣1,0),设平面PAD的法向量=(x,y,z),由,故可取=(2,1,1),由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量可取=(1,﹣1,0),∴两法向量夹角的余弦值cos<,>==∴二面角A﹣PD﹣C的余弦值为.点评:本题考查二面角,涉及直线与平面垂直的判定,建系化归为平面法向量的夹角是解决问题的关键,属难题.20.(12分)(2015•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.解答:解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.点评:本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.考点:椭圆的简单性质.专题:创新题型;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|,求出a,再根据2c=|F1F2|==2,求出c,进而求出椭圆的标准方程;(Ⅱ)由椭圆的定义和勾股定理,得|QF1|=|PF1|=4a﹣|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,再一次根据勾股定理可求出离心率.解答:解:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|=2++2﹣=4,故a=2,设椭圆的半焦距为c,由已知PF2⊥PF1,因此2c=|F1F2|==2,即c=,从而b==1,故所求椭圆的标准方程为.(Ⅱ)连接F1Q,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a﹣2|PF1|,又由PQ⊥PF1,|PF1|=|PQ|,知|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,由PF2⊥PF1,知2c=|F1F2|=,因此e=====.点评:本题考查了椭圆的定义2a=|PF1|+|PF2|,椭圆的标准方程,直角三角形的勾股定理,属于中档题.22.(12分)(2015•重庆)在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k 0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.考点:数列与不等式的综合.专题:创新题型;等差数列与等比数列;不等式的解法及应用.分析:(Ⅰ)把λ=0,μ=﹣2代入数列递推式,得到(n∈N+),分析a n≠0后可得a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.从而可得数列的通项公式;(Ⅱ)把代入数列递推式,整理后可得(n∈N).进一步得到=,对n=1,2,…,k0求和后放缩可得不等式左边,结合,进一步利用放缩法证明不等式右边.解答:(Ⅰ)解:由λ=0,μ=﹣2,有(n∈N+).若存在某个n0∈N+,使得,则由上述递推公式易得,重复上述过程可得a1=0,此与a1=3矛盾,∴对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故.(Ⅱ)证明:由,数列{a n}的递推关系式变为,变形为:(n∈N).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0∵=,∴对n=1,2,…,k0求和得:=>.另一方面,由上已证的不等式知,,得=2+.综上,2+<<2+.点评:本题考查了数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式属难度较大的题目.2015年重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•重庆)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A2.(5分)(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=()A.﹣1 B.0C.1D.63.(5分)(2015•重庆)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.234.(5分)(2015•重庆)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.(5分)(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(5分)(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A .s ≤ B .s ≤ C .s ≤D .s ≤8.(5分)(2015•重庆)已知直线l :x+ay ﹣1=0(a ∈R )是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴.过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( ) A . 2 B . C . 6 D .9.(5分)(2015•重庆)若tan α=2tan ,则=( )A . 1B . 2C . 3D . 410.(5分)(2015•重庆)设双曲线=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a+,则该双曲线的渐近线斜率的取值范围是( )A . (﹣1,0)∪(0,1)B . (﹣∞,﹣1)∪(1,+∞)C . (﹣,0)∪(0,)D . (﹣∞,﹣)∪(,+∞)二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5分)(2015•重庆)设复数a+bi (a ,b ∈R )的模为,则(a+bi )(a ﹣bi )= .12.(5分)(2015•重庆)的展开式中x 8的系数是 (用数字作答).13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)(2015•重庆)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=.15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为.16.(2015•重庆)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)(2015•重庆)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.19.(13分)(2015•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.20.(12分)(2015•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.22.(12分)(2015•重庆)在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k 0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.。

专题六 第一讲 概率与统计、推理证明、算法与复数

专题六 第一讲 概率与统计、推理证明、算法与复数

一、选择题1.(2011·江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176 解析:设y 对x 的线性回归方程为y =bx +a , 因为b =-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12, a =176-12×176=88,所以y 对x 的线性回归方程为y =12x +88. 答案:C2.(2011·南昌模拟)甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示如图,若甲、乙小组的平均成绩分别是x 甲,x 乙,则下列结论正确的是( )A.x 甲>x 乙B .x 甲>x 乙,乙比甲成绩稳定 C .x 甲<x 乙,甲比乙成绩稳定 D .x 甲<x 乙,乙比甲成绩稳定解析:依题意得x 甲=15(80×2+90×3+8+9+2+1+0)=90,x 乙=15(80×4+90×1+3+4+8+9+1)=87,x 甲>x 乙;s 2甲=15[(88-90)2+(89-90)2+(92-90)2+(91-90)2]=2,s 2乙=15[(83-87)2+(84-87)2+(88-87)2+(89-87)2+(91-87)2]=9.2,s 2甲<s 2乙,因此甲比乙成绩更稳定.答案:A3.(2011·重庆高考)从一堆苹果中任取10只,称得它们的质量如下(单位:克): 125 120 122 105 130 114 116 95 120 134 则样本数据落在[114.5,124.5)内的频率为( ) A .0.2 B .0.3 C .0.4D .0.5解析:依题意得,样本数据落在[114.5,124.5)内的频率为410=0.4.答案:C4.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110 B.310 C.35D.910解析:从3个红球、2个白球中任取3个,根据穷举法,可以得到10个基本事件,其中没有白球的取法只有一种,因此所取的3个球中至少有1个白球的概率P =1-P (没有白球)=1-110=910.答案:D 二、填空题5.(2011·浙江高考)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数是3 000×0.2=600.答案:6006.在集合A ={m |关于x 的方程x 2+mx +34m +1=0无实根}中随机的取一元素x ,恰使式子lg x 有意义的概率为________.解析:由于Δ=m 2-4(34m +1)<0,得-1<m <4,若使lg x 有意义,必须使x >0.在数轴上表示为,故所求概率为45.答案:457.(2011·江西高考)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析:5个数据的平均数x -=10+6+8+5+65=7,所以s 2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.2 三、解答题8.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品有982件,次品有8件,甲不在现场时,510件产品中,合格品有493件,次品有17件.试分别用列联表、独立性检验的方法对数据进行分析.解:(1)2×2列联表如下.由列联表看出|ac -bd |=|982×17-493×8|=12 750,相差较大,可在某种程度上认为“甲在不在场与产品质量有关”.(2)由2×2列联表中数据,计算K 2=1 500×(982×17-493×8)21 475×25×510×990≈13.097>6.635.所以,约有99%的把握认为“质量监督员甲在不在现场与产品质量有关系”.9.为了调查甲、乙两个网站受欢迎的程度,随机选了14天,统计上午8:00~10:00间各自的点击量,得如右图所示的统计图,根据统计图回答下列问题: 茎叶图甲 乙 85 6(1)甲、乙两个网站点击量的极差分别是多少?(2)甲网站点击量在[10,40]间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由.解:(1)甲网站的极差为:73-8=65;乙网站的极差为:71-5=66.(2)甲网站点击量在[10,40]间的频率为414=0.286.(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方.从数据的分布情况来看,甲网站更受欢迎.10.(2011·天津高考)编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13.从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11},共5种.所以P(B)=515=13.1 2 4 95 4 02 183 6 714 2 2 58 55 47 6 46 13 2 07 1。

2023年高考数学(全国甲卷文科)真题详细解读及评析

2023年高考数学(全国甲卷文科)真题详细解读及评析

2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。

一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。

二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。

数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。

选择填空统计概率算法框图复数

选择填空统计概率算法框图复数

绝密★启用前 2013-2014学年度???学校10月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin () A .00⎡⎤⎢⎥⎣⎦ B .01⎡⎤⎢⎥⎣⎦ C .10⎡⎤⎢⎥⎣⎦ D .11⎡⎤⎢⎥⎣⎦ 2.(82展开式中不含..4x 项的系数的和为( ) A.-1 B.0 C.1 D.2 3.6(2)x +的展开式中3x 的系数是( ) A .20 B .40 C .80 D .160 4.已知集合{}2|(1) , , A x x a a i a R i ==+-∈是虚数单位,若A R ⊆,则a 等于A .1 B .1- C .1± D .0 5.某雷达测速区规定:凡车速大于或等于70m/h 视为“超速”,同时汽车将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有 ( ) A .30辆 B .40辆 C .60辆 D .80辆6.设a R ∈,i 是虚数单位,则当是纯虚数时,实数a 为 A B .1- C D .1 7.两个相关变量满足如下关系: 则两变量的回归方程为( )A .ˆ0.56997.4y x =+B .ˆ0.63231.2y x =-C .ˆ0.56501.4y x =+D .ˆ60.4400.7yx =+8.袋中装有m 个红球和n 个白球, 4m n >≥,现从中任取两球,若取出的两球是同色的概率等于取出的两球是异色的概率,则满足关系40≤+n m 的数组()n m ,的个数为( )A .3B .4C .5D .69.任何一个算法都离不开的基本结构为( )A.逻辑结构 B.选择结构C.循环结构 D.顺序结构10.某店一个月的收入和支出总共记录了n 个数据n a a a ,,,21 ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A .A >0,V =S -TB .A <0,V =S -TC .A >0,V =S +TD .A <0,V =S +T11.执行图2的程序,如果输出的结果是4,那么输入的只可能是( )A .-2或2B .2C .-2或4D .2或-4x 10 15 20 25 30 y 1003 1005 1010 1011 101412独立;则中国队在与日本队和美国队的比赛中,恰好胜一场的概率是 (A (B (C (D第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)13..两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a=,第2个五角形数记作25a=,第3个五角形数记作312a=,第4个五角形数记作422a=,……,若按此规律继续下去,则,若145na=,则14.某校有40个班,每班50人,从中选派150人参加“学代会”,这个问题中样本容量是15.数4557、1953、5115的最大公约数应是16.已知2~(,)X Nμσ,()0.68P Xμσμσ-<≤+=,(22)0.95P Xμσμσ-<≤+=,某次全市20000人参加的考试,数学成绩大致服从正态分布(100 ,100)N,则本次考试120分以上的学生约有人.17.甲、乙、丙、丁4人站到共有5级的台阶上,若每级台阶最多站2人,且同一级台阶上的人不分次序,则不同的站法种数是.(用数字写答)18.存优区间为[ 0,100 ],用0.618法确定试点,第一个试点位置为 . 19.在调试某设备的线路中,要选下列备用电阻之一,备用电阻由小到大已排好为0.5k Ω,1.3kΩ,2kΩ,3kΩ,5kΩ,5.5kΩ,若用分数法,则第二次试点是。

2021届高考数学一轮温习 推理与证明、算法初步、复数专题训练(1)

2021届高考数学一轮温习 推理与证明、算法初步、复数专题训练(1)

推理与证明、算法初步、复数一、基础知识要记牢 (1)复数的模: 复数z =a +b i 的模|z |=a 2+b 2.(2)复数相等的充要条件:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).专门地,a +b i =0⇔a =0且b =0(a ,b ∈R ).(3)复数的除法一样是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 二、经典例题领会好[例1] (1)(2021·安徽高考)设i 是虚数单位,假设复数a -103-i (a ∈R )是纯虚数,那么a 的值为( )A .-3B .-1C .1D .3(2)(2021·陕西高考)设z 1,z 2是复数,那么以下命题中的假命题是( ) A .假设|z 1-z 2|=0,那么z 1=z 2 B .假设z 1=z 2,那么z 1=z 2 C .假设|z 1|=|z 2|,那么z 1·z 1=z 2·z 2D .假设|z 1|=|z 2|,那么z 21=z 22[解析] (1)因为a -103-i =a -103+i3-i 3+i =a -103+i10=(a -3)-i ,由纯虚数的概念,知a -3=0,因此a =3.(2)A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.[答案] (1)D (2)D1与复数z 有关的复杂式子为纯虚数,可设为m i m ≠0,利用复数相等去运算较简便.2在有关复数z 的等式中,可设出z =a +b i a ,b ∈R ,用待定系数法求解.3熟记一些常见的运算结果可提高运算速度:1±i2=±2i,1+i 1-i =i ,1-i1+i=-i ,设ω=-12+32i ,则ω3=1,|ω|=1,ω2=ω,1+ω+ω2=0.三、预测押题不能少1.(1)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,那么|(1-z )·z |=( ) B .2D .1解析:选A 依题意得(1-z )·z =(2+i)(-1+i)=-3+i ,|(1-z )·z |=|-3+i|=-32+12=10.(2)已知i 是虚数单位,z =1+i ,z 为z 的共轭复数,那么复数z 2z在复平面上对应的点的坐标为________. 解析:z =1+i ,那么z 2z=1+i 21-i=2i 1-i=2i 1+i 1-i1+i=-1+i ,那么复数z 2z在复平面上对应的点的坐标为(-1,1). 答案:(-1,1)合情推理一、基础知识要记牢 (1)类比推理的一样步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质推测另一类事物的性质,得出一个明确的结论.(2)归纳推理的一样步骤:①通过观看个别事物发觉某些相同的性质;②从已知的相同性质中推出一个明确表述的一样性命题.一样情形下,归纳的个别事物越多,越具有代表性,推行的一样性结论也就越靠得住.二、经典例题领会好[例2] (2021·陕西高考)观看以劣等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……照此规律,第n个等式可为________.[解析] 12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),……12-22+32-42+…+(-1)n+1n2=(-1)n+1(1+2+…+n)=(-1)n+1n n+12.[答案] 12-22+32-42+…+(-1)n+1n2=(-1)n+1n n+12合情推理的解题思路(1)在进行归纳推理时,要先依照已知的部份个体,把它们适当变形,找出它们之间的联系,从而归纳出一样结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理进程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性. 三、预测押题不能少2.(1)21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,….依此类推,第n 个等式为__________________________.解析:由归纳推理可知,第n 个等式为2n ×1×3×...×(2n -1)=(n +1)×(n +2)×...×2n . 答案:2n ×1×3×...×(2n -1)=(n +1)×(n +2)× (2)(2)关于命题:假设O 是线段AB 上一点,那么有|OB |·OA +|OA |·OB =0. 将它类比到平面的情形是:若O 是△ABC 内一点,那么有S △OBC ·OA +S △O CA ·OB +S △OBA ·OC =0,将它类比到空间的情形应该是:假设O 是四面体ABCD 内一点,那么有________.解析:将平面中的相关结论类比到空间,一般是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知:假设O 为四面体ABCD 内一点,那么有V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0程序框图一、经典例题领会好[例3] (2021·新课标全国卷Ⅱ)执行下面的程序框图,若是输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111![解析] 当输入N =10时,由于k =1,S =0,T =1,因此T =11=1,S =1,k =2,现在不知足k >10;当k =2时,T =11×2=12!,S =1+12!,k =3,现在不知足k >10;当k =3时,T =11×2×3=13!,S =1+12!+13!,k =4,现在不知足k >10; 当k =4时,T =11×2×3×4=14!,S =1+12!+13!+14!,k =5,现在不知足k >10 ; ……当k =10时,T =11×2×3×4×…×10=110!,S =1+12!+13!+14!+…+110!,k =11,现在知足k >10.因此输出S =1+12!+13!+14!+…+110!. [答案] B1解答有关程序框图问题,首先要读懂程序框图,要熟练掌握程序框图的三种基本结构.2利用循环结构表示算法要注意:①要选择准确的表示累计的变量;②要注意在哪一步结束循环;③执行完整每一次循环,防止执行程序不彻底,造成错误.二、预测押题不能少3.(1)程序框图如图,若是程序运行的结果为S =132,那么判定框中可填入( ) A .k ≤10 B .k ≥10 C .k ≤11D .k ≥11解析:选A 输出的S 值是一个逐次积存的结果,第一次运行S =12,k =11;第二次运行S=132,k=10.若是现在输出结果,那么判定框中的k的最大值是10.(2)假设某程序框图如下图,那么该程序运行后输出的值是( ) A.2 B.3C.4 D.5解析:选C 逐次运行的结果是n=3,i=2;n=4,i=3;n=2,i=4.故输出的值是4.程序框图与概率的交汇算法是新课标高考中的一大热点,专门体此刻算法的交汇性问题上,这些问题题目背景新颖,交汇自然,要紧表此刻算法与函数、数列、不等式、概率及统计的交汇.一、经典例题领会好[例] (2021·四川高考节选)某算法的程序框图如下图,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(1)别离求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(2)甲、乙两同窗依据自己对程序框图的明白得,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部份数据.甲的频数统计表(部份)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………2 100 1 027376697乙的频数统计表(部份)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117…………2 100 1 051696353当n=2 100时,依照表中的数据,别离写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判定两位同窗中哪一名所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的散布列及数学期望. (1)学审题——审条件之审视图表和数据程序框图――→审图 计算输出y 的值为1,2,3的数的个数―――――――→古典概型公式 概率. (2)学审题 频数统计表――→审表 各小组频数―→频率―――――→与1比较 结论.(3)学审题 条件―→确信y 的取值13−−−−−−→每次发生的概率为求出散布列―→期望值. [解] (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.因此,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16.(2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率 甲1 0272 1003762 1006972 100 乙1 0512 1006962 1003532 100比较频率趋势与概率,可得乙同窗所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233=827, P (ξ=1)=C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=49,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫231=29, P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫230=127, 故ξ的散布列为因此,E (ξ)=3×13=1.即ξ的数学期望为1.此题要紧考查算法与程序框图、古典概型、频数、频率、随机变量的散布列、数学期望等概念及相关计算,考查运用统计与概率的知识与方式解决实际问题的能力,考查数据处置能力、应用意识和创新意识.解答此题的易错点为:一是错读程序框图使此题在求解第一步时就显现错误,二是处置频数散布表中数据时运算错误. 二、预测押题不能少某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如下图的长方体ABCD ­EFGH 材料切割成三棱锥H ­ACF .(1)假设点M ,N ,K 别离是棱HA ,HC ,HF 的中点,点G 是NK 上的任意一点,求证:MG ∥平面ACF ;(2)已知原长方体材料中,AB =2 m ,AD =3 m ,DH =1 m ,依照艺术品加工需要,工程师必需求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如下图,那么运行该程序时乙工程师应输入的t 的值是多少?解:(1)证明:∵HM =MA ,HN =NC ,HK =KF ,∴MK ∥AF ,MN ∥AC . ∵MK ⊄平面ACF ,AF ⊂平面ACF ,∴MK ∥平面ACF , 同理可证MN ∥平面ACF ,∵MN ,MK ⊂平面MNK ,且MK ∩MN =M ,∴平面MNK∥平面ACF,又MG⊂平面MNK,故MG∥平面ACF.(2)由程序框图可知a =CF ,b =AC ,c =AF , ∴d =b 2+c 2-a 22bc=AC 2+AF 2-CF 22AC ·AF=cos ∠CAF ,∴e =12bc1-d 2=12AC ·AF ·sin∠CAF =S △ACF .又h =3t e ,∴t =13he =13h ·S △ACF =V 三棱锥H ­ACF .∵三棱锥H ­ACF 为将长方体ABCD ­EFGH 切掉4个体积相等的小三棱锥所得, ∴V 三棱锥H ­ACF =2×3×1-4×13×12×3×2×1=6-4=2,故t =2.1.(2021·四川高考)如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )A .AB .BC .CD .D解析:选B 因为x +y i 的共轭复数是x -y i ,应选B.2.(2021·福建质检)执行如下图的程序框图,假设输入的x 值为2,那么输出的x 值为( ) A .3 B .126C .127D .128解析:选C 假设输入的x =2,那么x =22-1=3,而3<126,故x =23-1=7,而7<126,故x =27-1=127.因为127>126,因此输出的x 值为127. 3.(2021·郑州质量预测)假设复数z =2-i ,那么z +10z=( )A .2-iB .2+iC .4+2iD .6+3i解析:选D ∵z=2-i,∴z+10z=(2+i)+102-i=(2+i)+102+i2-i2+i=6+3i.4.(2021·江西高考)阅读如下程序框图,若是输出i=5,那么在空白矩形框中应填入的语句为( )A .S =2*i -2 =2*i -1C .S =2*i =2*i +4解析:选C 此框图依次执行如下循环:第一次:i =1,S =0,i =1+1=2,i 是奇数不成立,S =2*2+1=5,继续循环; 第二次:i =2+1=3,i 是奇数成立,继续循环;第三次:i =3+1=4,i 是奇数不成立,S =2*4+1=9,继续循环;第四次:i =4+1=5,i 是奇数成立,由题意知现在应跳出循环,输出i =5,即S <10不成立. 故应填S =2*i (现在S =10<10不成立).假设填S =2*i +4,那么在第二次循环中就跳出循环.应选C. 5.(2021·河南洛阳模拟)执行如下图的程序框图,任意输入一次x (0≤x ≤1)与y (0≤y ≤1),那么能输出数对(x ,y )的概率为( )解析:选B 依题意,不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1表示的平面区域的面积等于12=1;不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,y ≤x2表示的平面区域的面积等于∫10x 2d x =13x 310=13,因此所求的概率为13.6.假设数列{a n }是等差数列,那么数列{b n }b n =a 1+a 2+…+a nn也为等差数列.类比这一性质可知,假设正项数列{c n }是等比数列,且{d n }也是等比数列,那么d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n解析:选D 假设{a n }是等差数列,那么a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列;假设{c n }是等比数列,那么c 1·c 2·…·c n=c n 1·q 1+2+…+(n -1)=c n 1·q 12n n (-),∴d n =nc 1·c 2·…·c n =c 1·q12n -,即{d n }为等比数列,应选D.7.已知复数z =1-i ,那么z 2-2z z -1=________.解析:z 2-2z z -1=z -12-1z -1=z -1-1z -1=(-i)-1-i =-i -i-i·i=-2i.答案:-2i8.(2021·山东高考)执行下面的程序框图,假设输入的ε的值为,那么输出的n 的值为________.解析:逐次计算的结果是F 1=3,F 0=2,n =2;F 1=5,F 0=3,n =3,现在输出, 故输出结果为3. 答案:39.(2021·福建质检)观看以劣等式: 13+23=1; 73+83+103+113=12; 163+173+193+203+223+233=39; ……那么当m <n 且m ,n ∈N 时,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=________(最后结果用m ,n 表示). 解析:由13+23=1,知m =0,n =1,1=12-02;由73+83+103+113=12,知m =2,n =4,12=42-22; 由163+173+193+203+223+233=39,知m =5,n =8,39=82-52;………依此规律可归纳,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=n 2-m 2.答案:n 2-m 210.已知复数z 1知足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.解:∵(z1-2)(1+i)=1-i,∴z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.11.(2021·郑州质量预测)每一年的3月12日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):甲:137,121,131,120,129,119,132,123,125,133;乙:110,130,147,127,146,114,126,110,144,146.(1)依照抽测结果,画出甲、乙两种树苗高度的茎叶图,并依照你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;(3)假设小王在甲种树苗中随机领取了5株进行种植,用样本的频率散布估量整体散布,求小王领取到的“良种树苗”的株数X的散布列.解:(1)茎叶图如下图:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗高度的中位数为127,乙种树苗高度的中位数为;④甲种树苗的高度大体上是对称的,而且大多数集中在均值周围,乙种树苗的高度散布较为分散.(2)依题意,x =127,S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度的离散程度的量. S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越良莠不齐.(3)由题意可知,领取一株甲种树苗取得“良种树苗”的概率为12,那么X ~B ⎝ ⎛⎭⎪⎫5,12,因此随机变量X 的散布列为12.(2021·北京高考)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右极点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的极点时,判定四边形OABC 是不是可能为菱形,并说明理由. 解:(1)椭圆W :x 24+y 2=1的右极点B 的坐标为(2,0).因为四边形OABC 为菱形,因此AC 与OB 彼此垂直平分. 因此可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.因此菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |=3.(2)四边形OABC 不可能为菱形.理由如下: 假设四边形OABC 为菱形.因为点B 不是W 的极点,且直线AC 只是原点,因此可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),那么x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2.因此AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,因此直线OB 的斜率为-14k.因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1,因此AC 与OB 不垂直.因此四边形OABC 不是菱形,与假设矛盾.因此当点B 不是W 的极点时,四边形OABC 不可能是菱形.。

算法、复数、统计、概率、计数原理复习问答

算法、复数、统计、概率、计数原理复习问答

算法、复数、统计、概率、计数原理复习问答作者:顾燕声来源:《新高考·高三数学》2012年第06期问题一高考中的算法题主要考哪些内容?做好这类题目有哪些技巧?●回●答对于算法初步这章内容,考查用自然语言叙述算法思想的可能性不大,而应重视流程图表示的算法及算法语句(伪代码)表示的算法.虽然不同版本教材中的算法语句不同,但是流程图是相同的,因此更应该重视对流程图的复习.在对本章内容进行复习的时候,不宜搞得太难,掌握基本思想及格式即可.另外要注意的是流程图与其他知识相结合的实际应用型题目,如2008年江苏高考第7题.要做好算法的题目,首先必须熟练掌握程序框图和基本算法语句.不管做哪种形式的算法问题,都要特别注意条件结构和循环结构.常常用条件结构来设计算法的有分段函数的求值、数据的大小关系等问题,而循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等问题.在循环结构中,要注意分析计数变量、累加变量以及循环结构中条件的表达和含义,特别要注意避免出现多一次循环或少一次循环的情况.问题二复数问题会以什么形式出现?主要考查哪些知识点?●回●答高考对复数的要求还是围绕着“数系扩充”和基本概念、基本运算展开的,在考查时,题型仍以小题为主,难度不大.复数的基本概念中,难点在于对复数中诸多概念的正确理解.特别要领会和掌握的有以下几点:①复数是实数的条件:z=a+b i ∈ R(a, b∈ R) b =0 z=z-;②复数是纯虚数的条件:z=a+b i (a,b∈R)是纯虚数 z+z-=0(z≠0);③两个复数相等的条件:a+b i =c+d i a=c且b=d(其中,a,b,c,d∈R),特别地,a+b i =0 a=b=0;④复数z=a+b i (a,b∈R)的模|z|=a 2+b 2,共轭复数z-=a-b i .复数的代数形式运算类似多项式的运算,加法类似合并同类项,乘法类似多项式相乘,除法实际是分母实数化(类似分母有理化).复数运算常用的结论有:① i 2 =-1;②-1, i 4n+3 =- i ,其中i 4n =1, i 4n+1 = i,i 4n+2 =-n∈N; ③(1± i ) 2=±2 i ;④ ω=-12+ 32 i , ω 2=ω,ω=1ω 2,ω 3=1,1+ω+ω 2=0.复数的几何意义是复数中的难点,化解难点的关键是对复数的几何意义的正确理解.理解复数的几何意义可以从以下方面入手:①复数z=a+b i (a,b∈R)的模|z|=a 2+b 2实际上就是指复平面上的点 Z(a, b)到原点O的距离;|z 1-z 2|的几何意义是复平面上的两点Z 1,Z 2之间的距离;②复数z、复平面上的点Z及向量 OZ 一一对应,即z= a+b i (a,b∈R) Z(a,b) OZ .解答复数问题,要学会从整体的角度出发去分析和求解.如果遇到复数就设z=a+b i (a,b∈R),则有时会给问题的解答带来不必要的运算上的困难,如能把握住复数的整体性质,充分运用整体思想求解,则能事半功倍.问题三概率统计部分考查的侧重点是什么?会出哪些题型?●回●答统计初步主要考查对统计思想、统计方法的理解与运用.统计初步的考查重点是:(1)随机抽样的三种方法,即简单随机抽样:适用于总体中的个体数量不多的情况;系统抽样:适用于总体中的个体数量较多的情况;分层抽样:适用于总体中的个体具有明显层次的情况.三种抽样方法的共同点是:它们都是等概率抽样,体现了抽样的公平性.(2)频率分布表和直方图是表示样本数据的图表,在频率分布表中我们可以看出样本数据在各个组内的频数以及频率;而频率分布直方图更加直观地表示了样本数据的分布情况,值得注意的是频率分布直方图中纵轴上的点表示频率除以组距.解答频率分布图表问题的关键是弄清楚其含义.(3)理解样本数据平均数与方差的意义和作用,能从已有样本数据中提取基本的数字特征(如平均数,方差).概率部分的考查内容主要包括古典概型、几何概型以及随机变量的概率问题.古典概型是学习以及高考的重点,几何概型是等可能概型的一种,直观性强,特别要注意对几何图形的构造,体会测度的含义——对线段而言为长度,对平面图形而言为面积,对立体图形而言是体积.对古典概型和几何概型的考查多以小题的形式出现,以中等难度题目为主.古典概型和几何概型的复习关键是:(1)一个事件是否为古典概型,在于这个实验是否具有“有限性和等可能性”这两个基本特征.(2)几何概型具有“无限性和等可能性”这两个特点.化解实际问题向几何概型的转化过程中,要清楚几何概型的意义和计算公式,特别要注意的是很多几何概型往往要通过一定的手段才能转化到几何度量值的计算上来.在解决问题时要善于根据问题的具体情况进行转化,如把从两个区间内取出的实数看成坐标平面上的点的坐标,将问题转化为平面上的区域问题等,这种转化策略是化解几何概型试题难点的关键.(3)在求互斥事件概率时,要合理利用公式P(A+B)=P(A)+P(B).在求对立事件概率时,要运用公式P(A-)=1-P(A).对于比较复杂的概率问题,可尝试利用其对立事件求解(即逆向思维),或分解成若干个互斥事件(即分类讨论),利用互斥事件的概率加法公式求解.概率初步研究的是孤立的事件发生与否的概率,而随机变量研究的概率问题是在一次试验中,某类现象发生概率的状态(即分布).要理解离散型随机变量的数学期望与方差的意义,掌握其计算公式,而超几何分布和二项分布需要引起重视.,此外有:E 离散型随机变量的期望公式是E(X)=x 1p 1+x 2p 2+…+x np n+…(aX+b)=aE(X)+b;方差公式是V(X)= (x 1-μ) 2p 1+ (x 2-μ)2p 2+…+ (x n-μ) 2p n=∑n i=1(x i-μ) 2p i或 V(X)-μ 2,此外也有:V(aX+b)=a 2V(X).=∑n i=1 x 2 ip i问题四近几年高中计数原理的重点在哪里?会以什么样的题型进行考查?●回●答近几年高中普遍提高了对计数原理应用的考查要求,即高考对计数问题的考查更多着眼于对计数原理的应用,而淡化了技巧与繁琐的运算,很多考题已经很难区分是单独地考查计数原理还是排列组合,更多的是趋于统一与融合.计数原理的复习关键是:(1)要理解两个原理的含义,分类加法计数原理强调完成一件事有若干种方法,每一种方法都可以独立完成这件事,各种方法互不干涉;而分步计数原理强调完成一件事分成几个步骤,各步之间彼此依赖,只有完成所有的步骤才能完成这件事,缺少其中任何一步都不能完成这件事且各步中的方法是相互独立的.(2)解排列、组合应用题时,首先要认真审题,弄清是组合问题还是排列问题,可以按元素的性质分类,按事件发生的过程分步;然后要弄清楚题目中的关键字眼“在”与“不在”,“相邻”与“不相邻”等,常用的方法有“先排特殊元素或特殊位置”、“捆绑法”、“插空法”等.(3)常见的解题策略有以下几种:①特殊元素优先安排的策略;②合理分类与准确分步的策略;③排列、组合混合问题先选后排的策略;④正难则反、等价转化的策略; ⑤相 邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直排处理的策略;⑨ “小集团”排列问题中先整体后局部的策略; ⑩构 造模型的策略.(4)对于排列数与组合数的计算问题,要注意依据排列数与组合数公式及其变形,在计算过程中要注意阶乘的运算、组合数性质的使用和提取公因式等方法的运用.另外,含有排列数或组合数的方程都是在正整数范围内求解.利用这一点可以根据题目的条件将方程及时化简.证明题一般用 A m n=n!(n-m)!或 C m n=n!m!(n-m)!及组合数的性质,证明过程中要注意阶乘的运算及技巧.。

专题八概率,统计,算法框图,复数.doc

专题八概率,统计,算法框图,复数.doc

专题八概率,统计,算法框图,复数主备人:杨国安1 概率、本部分内容的基础是概率,安徽高考试题中以古典概型为背景的分布列要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意.2 统计、统计案例3 算法框图,复数高考考查算法初步主要是程序框图,内容则是运行结果的计算、判断条件的确定、题型为选择题或填空题;而复数出现在高考题中一般为复数的计算、复数的几何意义,这两部分题目的难度虽然都较小,属易失分题考点一:古典概型【例1】(1)(2012·衡水模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是A.18125 B.36125C.44125 D.811252.(2012·广州模拟)从3名男生和n名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3435,则n=________.统计与统计案例部分的高考试题难度一般不大,考查的内容多为抽样方法,用样本估计总体、线性回归分析、独立性检验等,这类题目作为解答题出现时,往往与概率结合命题.考点二:抽样方法【例1】(2012·中山模拟)某校共有学生2 000名,各年级男、女学生人数如图表示,已知在全校学生中随机抽取1名,抽到高二级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三级中抽取的学生人数为________.高一级高二级高三级女生385x y男生375360z[审题导引]据题意求出字母的值,按照分层抽样的规则计算.[规范解答]据题意得x=2 000×0.19=380,∴高三级的学生人数为y+z=2 000-385-375-380-360=500,=25.∴在高三级中抽取的学生人数为500×1002 000【规律总结】抽样方法的选取注意分层抽样与系统抽样的计算方法,分层抽样是按比例抽样,比例的性质、方程的方法起主要作用;系统抽样首先是对总体分段的计算,注意分段时可能要排除一些个体,各段的间隔距离是一样的,但各段中抽取的个体就可有不同的规则,要根据这些规则通过计算确立抽取的个体.【变式训练】1.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号.若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析由于组距为5,所以所抽号码为(8-3)×5+12=37.考点三:用样本估计总体【例2】(1)(2012·西城二模)下图是1、2两组各7名同学体重(单位:kg)数据的茎叶图.设1、2两组数据的平均数依次为1和2,标准差依次为s1和s2,那么A.x -1>x -2,s 1>s 2B.x -1>x -2,s 1<s 2C.x -1<x -2,s 1<s 2D.x -1<x -2,s 1>s 2(2)(2012·徐州模拟)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是________.[审题导引] (1)根据茎叶图中的数据分别计算x -1,x -2,s 21,s 22,然后比较大小;(2)根据直方图中各小矩形的面积和为1计算出成绩在[16,18]的频率,然后计算成绩在[16,18]的学生人数.[规范解答] (1)由茎叶图知x -1=58+57+56+53+61+72+707=61.s 21=17[(58-61)2+(57-61)2+(56-61)2+(53-61)2+(61-61)2+(72-61)2+(70-61)2]=2997,同理x -2=64,s 22=3907,所以x -1<x -2,s 1<s 2.(2)由频率分布直方图可知成绩在[16,18]的学生的频率为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为920×120=54.[答案] (1)C (2)54【规律总结】用样本估计总体时应注意的问题(1)理解在抽样具有代表性的前提下,可以用样本的频率分布估计总体的频率分布,用样本的特征数估计总体的特征数,这是统计的基本思想;(2)反映样本数据分布的主要方式,一个是频率分布表,一个是频率分布直方图,要学会根据频率分布直方图估计总体的概率分布以及总体的特征数,特别是均值、众数和中位数;(3)要掌握好样本均值和方差的实际意义,并在具体的应用问题中会根据计算样本数据的均值和方差对实际问题做出解释;(4)茎叶图是表示样本数据分布的一种方法,其特点是保留了所有的原始数据,这是茎叶图的优势. 【变式训练】2.(2012·义乌模拟)在如图所示的茎叶图中,乙组数据的中位数是________;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是________组.解析 把乙组数据从小到大排, 得79,84,84,84,86,87,93,故中位数是84,x -甲=84,x -乙=85,∴x -乙>x -甲.答案 84 乙3.(2012·杭州二模)将容量为n 的样本中的数据分成6组,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为 A .70 B .60 C .50 D .40解析 据题意知2+3+42+3+4+6+4+1=27n ,∴n =60.考点四:线性回归分析y (万元)有以下的统计数据,如表所示 x 3 4 5 6 y2.5344.5(1)画出上表数据的散点图; (2)请根据上表提供的数据,求出y 关于x 的线性回归方程y ∧=bx +a ; (3)估计使用年限为10年,维修费用是多少?[审题导引] (1)根据对应值组成点的坐标,画出各点即可; (2)直接套用求回归直线系数的公式,求出b ,a ;(3)根据求出的回归直线方程,求当x =10时对应的y 值,即使用年限为10年时,维修费用的估计值.[规范解答] (1)作出散点图如图所示.(2)∑4i =1x i y i =66.5,∑4i =1x 2i =32+42+52+62=86, x -=4.5,y -=3.5, b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a =y --b x -=3.5-0.7×4.5=0.35, 所以所求的回归方程为y ∧=0.7x +0.35. (3)当x =10时,y ∧=0.7×10+0.35=7.35,所以使用年限为10年,维修费用的估计值是7.35万元.【规律总结】求线性回归分析问题的方法(1)画出两个变量的散点图; (2)求回归直线方程; (3)用回归直线方程进行预报.其中求回归直线方程是关键.而求回归直线方程的最好方法是“最小二乘法”,即对于线性回归模型y ∧=a +bx 来说,估计模型中的未知参数a 和b 的最好方法就是用最小二乘法,其计算公式为b =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x - y -∑n i =1x 2i -n x -2,a=y --b x -.[易错提示] 虽然由任何一组不完全相同的数据都可以求出回归直线方程,但只有具有线性相关关系的一组数据才能得到有意义的回归直线方程,求出的方程才具有实际价值.线性相关系数可以是正、负或零,线性相关系数为正时是正相关,为负时是负相关,反之也成立.【变式训练】4.(2012·深圳模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ∧=0.67x +54.9.现发现表中有一个数据模糊看不清,请你推断出该数据的值为________.解析 由表知x -=30,设模糊不清的数据为y , 则y -=15(62+y +75+81+89)=307+y 5, ∵y -=0.67 x -+54.9,即307+y5=0.67×30+54.9,解得y =68. 考点五:独立性检验【例4】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下优秀 非优秀 总计甲班 10乙班30合计105已知在全部105人中随机抽取1人为优秀的概率为27. (1)请完成上面的列联表.(2)根据列联表中的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6号或10号的概率.[审题导引] 第(1)问由题易知成绩优秀的概率是27,则成绩优秀的学生数是30,成绩非优秀的学生数是75,据此即可以完成列联表;第(2)问按照独立性检验的原理进行判断;第(3)问列举基本事件个数和随机事件含有的基本事件个数,按照古典概型的概率公式进行计算. [规范解答] (1)列联表如表所示(2)根据列联表中的数据,得到k =105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有(1,1),(1,2),…(6,6),共36个.事件A 包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,故P (A )=836=29. 【规律总结】独立性检验的一般步骤(1)根据样本数据列出2×2列联表,假设两个变量无关系; (2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)比较K 2与临界值的大小关系作统计推断. 【变式训练】5.(2012·南京模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有________%的把握认为该学校15至16周岁的男生的身高和体重超重 不超重 合计 偏高 4 1 5 不偏高 3 12 15 合计71320P (K 2≥k 0) 0.025 0.010 0.005 0.001 k 05.0246.6357.879 10.828独立性检验随机变量K 2值的计算公式: K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解析 k =20(4×12-3×1)25×15×7×13=5.934,根据临界值表可知有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.答案 97.5考点六:计算程序框图的输出结果【例1】(2012·西城二模)执行如图所示的程序框图,若输入如下四个函数:①f (x )=e x ;②f (x )=-e x ;③f (x )=x +x -1;④f (x )=x -x -1.则输出函数的序号为 A .① B .② C .③ D .④[审题导引] 首先依次判断所给四个函数是否存在零点,然后根据程序框图的意义选择输出的函数.[规范解答]易知函数①②③都没有零点,只有函数④f(x)=x-x-1存在零点x=±1.故选D.[答案] D【规律总结】程序框图问题的解法(1)解答程序框图的相关问题,首先要认清程序框图中每个“框”的含义,然后按程序框图运行的箭头一步一步向前“走”,搞清每走一步产生的结论.(2)要特别注意在哪一步结束循环,解答循环结构的程序框图,最好的方法是执行完整每一次循环,防止执行程序不彻底,造成错误.【变式训练】1.执行如图所示的程序框图,则输出的结果为A.49 B.511C.712 D.613解析第一次运行S=11×3,k=3;第二次运行S=11×3+13×5,k=5;第三次运行S=11×3+13×5+15×7,k=7;第四次运行S=11×3+13×5+15×7+17×9,k=9;第五次运行S=11×3+13×5+15×7+17×9+19×11,k=11.循环结束.故输出结果是S =12⎝ ⎛⎭⎪⎫1-111=511.答案 B考点七:判断程序框图中的条件【例2】若如图所示的程序框图输出的S 是126,则①应为________.[审题导引] 因为题干给出的数值不是很大,故可以逐步计算进行验证,也可以根据S 的意义,进行整体求解.[规范解答] 由程序框图,可知该程序框图输出的S 是数列{2n }的前n 项的和,即S =2+22+23+ (2),由等比数列的前n 项和公式,可得S =2(1-2n )1-2=2n +1-2,该题实质上就是解方程S =126,故有2n +1-2=126,即2n +1=128,故n =6, 即该数列的前6项和等于126,但在运算完S 后,n 变为n +1,故最后得到n =7. 所以判断框内的条件是n ≤6或n <7,故填n ≤6. [答案] n ≤6 【规律总结】判断条件的注意事项解决此类问题应该注意以下三个方面:一是搞清判断框内的条件由计数变量还是累加变量来表示;二是要注意判断框内的不等式是否带有等号,这直接决定循环次数的多少;三是要准确利用程序框图的赋值语句与两个变量之间的关系,把握程序框图的整体功能,这样可以直接求解结果,减少运算的次数.[易错提示]解此类题目,易犯的错误有:(1)在循环结构中,对循环次数确定有误;(2)在循环结构中,对判断条件不能正确确定.【变式训练】2.一个算法的程序框图如图所示,若该程序输出的结果为2 0122 013,则判断框内应填入的条件是A.i>2 011? B.i>2 012? C.i>2 013? D.i>2 014?解析这是一个计算11×2+12×3+13×4+…+1i(i+1)=1-1i+1=ii+1的程序,根据题意,该程序计算到i=2 012时结束,此时i+1=2 013,故判断框要保证此时终止程序,故填i>2 012?答案 B考点八:复数【例3】(1)(2012·西城二模)已知复数z满足(1-i)·z=1,则z=________.(2)(2012·济南模拟)复数z满足等式(2-i)·z=i,则复数z在复平面内对应的点所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限[审题导引](1)变形计算即可;(2)求z并化为a+b i(a,b∈R)的形式,然后确定复数z在复平面内对应的点所在的象限.[规范解答] (1)z =11-i =1+i (1-i )(1+i )=12+i 2. (2)z =i 2-i =i (2+i )(2-i )(2+i )=-15+25i ,所以复数z 在复平面内的对应点在第二象限. [答案] (1)12+12i (2)B【规律总结】解决复数问题的两个注意事项(1)复数的四则运算类似于多项式的四则运算,但要注意把i 的幂写成最简单的形式.(2)只有把复数表示成标准的代数形式,即化为a +b i(a ,b ∈R )的形式,才可以运用复数的几何意义.【变式训练】3.(2012·湘潭模拟)复数10i 1-2i = A .-4+2iB .4-2iC .2-4iD .2+4i 解析 10i 1-2i =10i (1+2i )(1-2i )(1+2i )=15×10i(1+2i)=-4+2i.答案 A 4.(2012·邯郸模拟)复数a +i 1-i为纯虚数,则a =________. 解析 a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -12+a +12i. ∵复数a +i 1-i 是纯虚数,∴⎩⎪⎨⎪⎧ a -12=0a +12≠0,即a =1.小结:四个知识点都不难,但一定要在系统复习的基础下认真梳理,总结。

高考数学必考重点知识大全

高考数学必考重点知识大全

高考数学必考重点知识大全高考数学必考重点知识大全一集合与简单逻辑1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

3.易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B 的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5.易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

高考数学-热点专题专练-专题六-算法、统计、概率、复数测试题-理精品

高考数学-热点专题专练-专题六-算法、统计、概率、复数测试题-理精品

专题六算法、统计、概率、复数测试题(时间:120分钟满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z的共轭复数为,若|=4,则z·=( )A.4 B.2C.16 D.±2解析设z=a+,则z·=(a+)(a-)=a2+b2.又|=4,得=4,所以z·=16.故选C.答案C2.(2011·湖北)如图,用K、A1、A2三类不同的元件连接成一个系统,当K 正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( )A.0.960 B.0.864C.0.720 D.0.576解析K正常工作,概率P(A)=0.9A1A2正常工作,概率P(B)=1-P(1)P(2)=1-0.2×0.2=0.96∴系统正常工作概率P=0.9×0.96=0.864.答案B3.(2011·课标)有3个爱好小组,甲、乙两位同学各自参与其中一个小组,每位同学参与各个小组的可能性相同,则这两位同学参与同一个爱好小组的概率为( )解析古典概型,总的状况共3×3=9种,满意题意的有3种,故所求概率为P==.答案A4.对变量x,y有观测数据(,)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(,)(i=1,2,…,10),得散点图2.由这两个散点图可以推断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析夹在带状区域内的点,总体呈上升趋势的属于正相关;反之,总体呈下降趋势的属于负相关.明显选C.答案C5.某个容量为100的样本的频率分布直方图如图所示,则在区间[4,5)上的数据的频数为( )A.15 B.20C.25 D.30解析在区间[4,5)的频率/组距的数值为0.3,而样本容量为100,所以频数为30.故选D.答案D6.(2011·辽宁丹东模拟)甲、乙两名同学在五次测试中的成果用茎叶图表示如图,若甲、乙两人的平均成果分别是x甲、x乙,则下列结论正确的是( )A.x甲>x乙;乙比甲成果稳定B.x甲>x乙;甲比乙成果稳定C.x甲<x乙;甲比乙成果稳定D.x甲<x乙;乙比甲成果稳定解析由题意得,x甲=×(68+69+70+71+72)=×350=70,x乙=×(63+68+69+69+71)=×340=68,所以x甲>x乙.又=×(22+12+02+12+22)=×10=2,=×(52+02+12+12+32)=×36=7.2,所以甲比乙成果稳定.故选B.答案B7.(2012·福建)如图所示,在边长为1的正方形中任取一点P,则点P恰好取自阴影部分的概率是( )解析由图示可得,图中阴影部分的面积S=(-x)=错误!错误!=错误!-错误!=,由此可得点P恰好取自阴影部分的概率P==.答案C8.如图所示的流程图,最终输出的n的值是( )A.3 B.4C.5 D.6解析当n=2时,22>22不成立;当n=3时,23>32不成立;当n=4时,24>42不成立;当n=5时,25>52成立.所以n=5.故选C.答案C9.正四面体的四个表面上分别写有数字1,2,3,4,将3个这样的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为( )解析将正四面体投掷于桌面上时,与桌面接触的面上的数字是1,2,3,4的概率是相等的,都等于.若与桌面接触的三个面上的数字的乘积能被3整除,则三个数字中至少应有一个为3,其对立事务为“与桌面接触的三个面上的数字都不是3”,其概率是3=,故所求概率为1-=.答案C10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号依次平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是( ) A.5 B.6C.7 D.8解析设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故选B.答案B11.(2011·杭州市第一次教学质量检测)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则始终发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是( )解析发球次数X的分布列如下表,所以期望解得p>(舍去)或p<,又p>0,故选C . 答案 C12.(2012·济宁一中高三模拟)某计算机程序每运行一次都随机出现一个五位的二进制数A =,其中A 的各位数中,a 1=1,(k 可取2,3,4,5)出现0的概率为,出现1的概率为.记ξ=a 1+a 2+a 3+a 4+a 5,当程序运行一次时,ξ的数学期望E(ξ)=( )解析 ξ=1,P 1=40=, ξ=2时,P 2=3·=, ξ=3时,P 3=·2·2=, ξ=4时,P 4=·3=, ξ=5时,P 5=4=,E(ξ)=1×+2×+3×+4×+5×=. 答案 C二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.(2012·广东湛江十中模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y)的概率为.解析如图所示,给出的可行域即为正方形与其内部.而所求事务所在区域为一个圆,两面积相比即得概率为.答案14.(2012·山东潍坊模拟)给出下列命题:(1)若z∈C,则z2≥0;(2)若a,b∈R,且a>b,则a+i>b+i;(3)若a∈R,则(a+1)i是纯虚数;(4)若z=,则z3+1对应的点在复平面内的第一象限.其中正确的命题是.解析由复数的概念与性质知,(1)错误;(2)错误;(3)错误,若a=-1,(a+1)i=0;(4)正确,z3+1=(-i)3+1=i+1.答案(4)15.(2011·上海)随机抽取的9位同学中,至少有2位同学在同一月份诞生的概率为.(默认每个月的天数相同,结果精确到0.001)解析P=1-≈0.985.答案0.98516.若某程序框图如图所示,则该程序运行后输出的y等于.解析由图中程序框图可知,所求的y是一个“累加的运算”,即第一步是3;其次步是7;第三步是15;第四步是31;第五步是63.答案63三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某班主任对全班50名学生学习主动性和对待班级工作的看法进行了调查,统计数据如下表所示:是多少?抽到不太主动参与班级工作且学习主动性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习主动性与对待班级工作的看法是否有关系?并说明理由.(参考下表)主动参与班级工作且学习主动性一般的学生有19人,概率为.(2)K2==≈11.5,∵K2>10.828,∴有99.9%的把握说学生的学习主动性与对待班级工作的看法有关系.18.(本小题满分12分)在1996年美国亚特兰大奥运会上,中国香港风帆选手李丽珊以惊人的耐力和斗志,勇夺金牌,为香港体育史揭开了“突破零”的新一页.在风帆竞赛中,成果以低分为优胜.竞赛共11场,并以最佳的9场成果计算最终的名次.前7场竞赛结束后,排名前5位的选手积分如表一所示:表一此时让你预料谁将获得最终的成功,你会怎么看?解由表一,我们可以分别计算5位选手前7场竞赛积分的平均数和标准差,分别作为衡量各选手竞赛的成果与稳定状况,如表二所示.表二就是说,在前7场竞赛过程中,她的成果最为优异,而且表现也最为稳定.尽管此时还有4场竞赛没有进行,但这里我们可以假定每位运动员在各自的11场竞赛中发挥的水平大致相同(实际状况也的确如此),因此可以把前7场竞赛的成果看做是总体的一个样本,并由此估计每位运动员最终的竞赛的成果.从已经结束的7场竞赛的积分来看,李丽珊的成果最为优异,而且表现最为稳定,因此在后面的4场竞赛中,我们有足够的理由信任她会接着保持优异而稳定的成果,获得最终的冠军.19.(本小题满分12分)(2012·苏州五中模拟)设不等式组错误!表示的区域为A,不等式组错误!表示的区域为B,在区域A中随意取一点P(x,y).(1)求点P落在区域B中的概率;(2)若x、y分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P落在区域B中的概率.解(1)设区域A中随意一点P(x,y)∈B为事务M.因为区域A的面积为S1=36,区域B在区域A中的面积为S2=18.故P(M)==.(2)设点P(x,y)落在区域B中为事务N,甲、乙两人各掷一次骰子所得的点P(x,y)的个数为36,其中在区域B中的点P(x,y)有21个.故P(N)==.20.(本小题满分12分)某中学部分学生参与全国中学数学竞赛,取得了优异成果,指导老师统计了全部参赛同学的成果(成果都为整数,试题满分120分),并且绘制了“频率分布直方图”(如图),请回答:(1)该中学参与本次数学竞赛的有多少人?(2)假如90分以上(含90分)获奖,则获奖率是多少?(3)这次竞赛成果的中位数落在哪段内?(4)上图还供应了其他信息,请再写出两条.解(1)由直方图(如图)可知:4+6+8+7+5+2=32(人);(2)90分以上的人数为7+5+2=14(人),∴×100%=43.75%.(3)参赛同学共有32人,按成果排序后,第16个、第17个是最中间两个,而第16个和第17个都落在80~90之间.∴这次竞赛成果的中位数落在80~90之间.(4)①落在80~90段内的人数最多,有8人;②参赛同学的成果均不低于60分.21.(本小题满分12分)(2012·天津)现有4个人去参与某消遣活动,该活动有甲、乙两个嬉戏可供参与者选择.为增加趣味性,约定:每个人通过掷一枚质地匀称的骰子确定自己去参与哪个嬉戏,掷出点数为1或2的人去参与甲嬉戏,掷出点数大于2的人去参与乙嬉戏.(1)求这4个人中恰有2人去参与甲嬉戏的概率;(2)求这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数的概率;(3)用X,Y分别表示这4个人中去参与甲、乙嬉戏的人数,记ξ=-,求随机变量ξ的分布列与数学期望Eξ.解依题意,这4个人中,每个人去参与甲嬉戏的概率为,去参与乙嬉戏的概率为.设“这4个人中恰有i人去参与甲嬉戏\”为事务(i=0,1,2,3,4),则P()=4-i.(1)设4个人中恰有2人去参与甲嬉戏的概率为P(A2)P(A2)=22=.(2)设“这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数”为事务B,则B=A3∪A4,由于A3和A4互斥,故P(B)=P(A3)+P(A4)=3+4=.所以,这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数的概率为.(3)ξ的全部可能取值为0,2,4.由于A1与A3互斥,A0和A4互斥,故P(ξ=0)=P(A2)=,P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=.所以ξ的分布列是随机变量ξ22.(本小题满分14分)(2012·福建)受轿车在保修期内修理费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保障期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预料今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解(1)设“甲品牌轿车首次出现故障发生在保修期内”为事务A.则P(A)==.(2)依题意得,X1的分布列为X2的分布列为(3)由(2)得,E(X1)=1×+2×+3×==2.86(万元),E(X2)=1.8×+2.9×=2.79(万元).因为E(X1)>E(X2),所以应生产甲品牌轿车.。

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。

2022年普通高等学校招生全国统一考试(全国乙卷)解析版-数

2022年普通高等学校招生全国统一考试(全国乙卷)解析版-数

2022年普通高等学校招生全国统一考试(全国乙卷)解析版数学一、选择题1. 本题考查了集合的基本概念和运算。

正确答案是D。

2. 本题考查了复数的基本概念和运算。

正确答案是B。

3. 本题考查了等差数列的基本概念和性质。

正确答案是A。

4. 本题考查了函数的基本概念和性质。

正确答案是C。

5. 本题考查了平面向量的基本概念和运算。

正确答案是D。

6. 本题考查了三角函数的基本概念和性质。

正确答案是B。

7. 本题考查了立体几何的基本概念和性质。

正确答案是A。

8. 本题考查了概率统计的基本概念和性质。

正确答案是C。

9. 本题考查了数列的极限和求和。

正确答案是B。

10. 本题考查了函数的导数和极值。

正确答案是D。

二、填空题11. 本题考查了三角函数的图像和性质。

正确答案是π/4。

12. 本题考查了立体几何的体积计算。

正确答案是8π/3。

13. 本题考查了数列的通项公式。

正确答案是an = 2n 1。

14. 本题考查了概率的计算。

正确答案是1/4。

15. 本题考查了函数的积分。

正确答案是ln2。

三、解答题16. 本题考查了三角函数的恒等变换。

解答过程略。

17. 本题考查了立体几何的面积和体积计算。

解答过程略。

18. 本题考查了数列的极限和求和。

解答过程略。

19. 本题考查了函数的导数和极值。

解答过程略。

20. 本题考查了概率统计的基本概念和性质。

解答过程略。

21. 本题考查了函数的积分和极限。

解答过程略。

22. 本题考查了复数的基本概念和运算。

解答过程略。

23. 本题考查了等差数列的基本概念和性质。

解答过程略。

24. 本题考查了平面向量的基本概念和运算。

解答过程略。

25. 本题考查了函数的基本概念和性质。

解答过程略。

26. 本题考查了概率统计的基本概念和性质。

解答过程略。

27. 本题考查了数列的极限和求和。

解答过程略。

28. 本题考查了函数的导数和极值。

解答过程略。

29. 本题考查了三角函数的基本概念和性质。

解答过程略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2013-2014学年度???学校10月月考卷试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.6(2)x +的展开式中3x 的系数是( ) A .20 B .40 C .80 D .160【答案】D【解析】3333462160T C x x ==,所以应选D2.某雷达测速区规定:凡车速大于或等于70m/h 视为“超速”,同时汽车将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有 ( )A .30辆 B.40辆 C .60辆 D .80辆【答案】B【解析】被处罚的汽车约有0.021020040.⨯⨯=故选B3.已知集合{}2|(1) , ,A x x a a i aR i ==+-∈是虚数单位,若A R ⊆,则a 等于A .1B .1-C .1±D .0【答案】C【解析】2,,10, 1.A R x R a a ⊆∴∈∴-==±故选 A.4.则从k 到1k +时左边应添加的项为 ( ) 【答案】D【解析】n=k 时,n=k+1121k ++- 1121k ++-,增加的是5.两个相关变量满足如下关系:则两变量的回归方程为( )A .ˆ0.56997.4yx =+B .ˆ0.63231.2y x =-C .ˆ0.56501.4yx =+ D .ˆ60.4400.7y x =+ 【答案】A 【解析】101520253020;5x ++++==100310051010101110141008.65y ++++==51252150.56,997.4.5i ii ii x y x yb a y bx xx==-=≈=-≈-∑∑故选A6.(82展开式中不含..4x项的系数的和为( )A.-1B.0C.1D.2【答案】B【解析】展开式中含4x 项的系数为8082 1.C =所以(82展开式中不含..4x项的系数的和为8(210-=故选B x1015 20 25 30 y 1003 1005 1010 1011 1014第3页 共10页 ◎ 第4页 共10页7.设a R ∈,i 是虚数单位,则当是纯虚数时,实数a 为A B .1- C D .1【答案】A 【解析】 考点:复数的运算。

点评:复数a+bi(a b R)Z =∈、,当b=0时,为实数;当b ≠0时,为复数;当a=0,b ≠0时为纯虚数。

8.设随机变量X 服从正态分布N (0,1),P (X>1)= p,则P (X>-1)= ( )A .pB .1-pC .1-2pD .2p 【答案】B【解析】∵随机变量X 服从正态分布N (0,1),P (X >1)=p ,∴P (X <-1)=p ,P (X >-1)=1-P (X <-1)=1-p ,故选B 9. 下列四个命题:①使用抽签法,每个个体被抽中的机会相等; ②将十进制数(10)11化为二进制数为(2)1011;③利用秦九韶算法01,(1,2,,),n k k n k v a v v x a k n --=⎧⎨=+=⎩求多项式 532()231f x x x x x =+-++在1x =的值时32v =;④已知一个线性回归方程是32y x ∧=-,则变量x y 与之间具有正相关关系. 其中真命题的个数是 ( )A .1 B.2 C .3D .4【答案】B【解析】①正确;②正确。

(10)11251,5221,2210,1201;=⨯+=⨯+=⨯+=⨯+(2)111011;=③错误。

()((((2)1)3))1f x x x x x =+-++,01211,1224,411 3.x v v v ===⨯+==⨯-=时,④错误。

x 的系数为20,-<则变量x y 与之间具有负相关关系.故选B 10.x=5 y=6PRINT x+y=11 END上面程序运行时输出的结果是( )A 、x ﹢y=11B 、 出错信息C 、xy=11D 、 11【答案】B【解析】此题考查算法知识;完整的算法要有开始和结束,有输入和输出,此题没有输出的内容,所以选B11.执行图2的程序,如果输出的结果是4,那么输入的只可能是( ) A .-2或2 B .2 C .-2或4 D .2或-422y x x 0x x 0y x 0x 4x 2x 0y x 042B =≥≥=⇒==解:该程序的作用是计算,,<的值,并输出值.当时,,;当<时,<,不可能等于,那么输入的数是.故选.12.任何一个算法都离不开的基本结构为( ) A.逻辑结构 B.选择结构 C.循环结构 D.顺序结构 【答案】D【解析】分析:根据程序的特点,我们根据程序三种逻辑结构的功能,分析后即可得到答案. 解答:解:根据算法的特点如果在执行过程中,不需要分类讨论,则不需要有条件结构; 如果不需要重复执行某些操作,则不需要循环结构; 算法的基本结构不包括逻辑结构. 但任何一个算法都必须有顺序结构 故选D .点评:本题考查的知识点是程序的三种结构,熟练掌握三种逻辑结构的功能是解答本题的关键,是对基础知识的直接考查,比较容易.13.看下面的伪代码,最终输出的结果是()S←0For I from 1 to 100 step 2S←S+I2End forPrint S(A)1+2+3+…+100 (B)12+22+32+…+1002(C)1+3+5+…+99 (D)12+32+52+…+992【答案】D【解析】根据语句“For I from 1to 100step 2”得到I的取值,然后根据循环体可值所求结果.解:∵For I from 1 to 100 step 2∴I的取值为1,3,5,…,99∵S←0,S←S+I2∴最终输出的结果是12+32+52+ (992)故选D.点评:本题主要考查了循环语句,解题的关键是弄清I的取值可能,属于基础题.第7页共10页◎第8页共10页第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)14.甲、乙、丙、丁4人站到共有5级的台阶上,若每级台阶最多站2人,且同一级台阶上的人不分次序,则不同的站法种数是.(用数字写答)【答案】540【解析】略15.已知2~(,)X Nμσ,()0.68P Xμσμσ-<≤+=,(22)0.95P Xμσμσ-<≤+=,某次全市20000人参加的考试,数学成绩大致服从正态分布(100 ,100)N,则本次考试120分以上的学生约有人.【答案】500【解析】略16.在调试某设备的线路中,要选下列备用电阻之一,备用电阻由小到大已排好为0.5kΩ,1.3kΩ,2kΩ,3kΩ,5kΩ,5.5kΩ,若用分数法,则第二次试点是。

【答案】【解析】略17.下列说法中正确的有________①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。

②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。

④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型。

【答案】③④【解析】略18.某校有40个班,每班50人,从中选派150人参加“学代会”,这个问题中样本容量是【答案】150【解析】略19.如右图所示,程序框图(算法流程图)的输出结果是 .【答案】2550【解析】退出循环体时i=102,所5020.用秦九韶算法计算多项式f (x)=8x+5+3+2+1在=2时的值时,2=.【答案】45【解析】略21.如果执行右侧的程序框图,那么输出的i为。

【答案】9【解析】试题分析:=1=3S i,不满足条件,进入循环,第一次循环:=S i=3=+2=5S i i*,,不满足条件,再次循环;第二次循环:=15,=+1=7S S i i i=*,不满足条件,再次循环;第三次循环:=S i=105=+1=9S i i*,,满足条件,结束循环,此时输出9.考点:程序框图。

点评: 程序框图是课改之后的新增内容,在考试中应该是必考内容。

一般情况下是以一道小题的形式出现,属于较容易题目。

一般的时候,如果循环次数较少,我们可以一一写出,若循环次数较多,我们需要寻找规律。

22. x 3的系数是 .【答案】-84 【解析】略 三、解答题(题型注释)。

相关文档
最新文档