专升本高数试题(卷)库
高数专升本真题及答案
高数专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = x^2C. y = cos(x)D. y = tan(x)2. 函数f(x) = x^3 - 6x^2 + 9x + 2在区间[1, 3]上的最大值是:A. 2B. -1C. 12D. 153. 曲线y = x^3在点(1,1)处的切线斜率是:A. 1B. 2C. 3D. 44. 无穷小量o(x)与x的关系是:A. o(x)/x → 0 当x → ∞B. o(x)/x → 1 当x → ∞C. o(x)/x → ∞ 当x → ∞D. o(x)/x → x 当x → ∞5. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 2 + 3 + 4 + ...C. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...6. 函数f(x) = ln(x)的原函数是:A. x^2B. e^xC. x ln(x)D. x7. 已知函数f(x) = 3x^2 + 2x - 1,求f'(1)的值是:A. 7B. 5C. 3D. 18. 以下哪个选项是微分方程dy/dx + 2y = 6x的解?A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 3x + C9. 曲线y = x^2在点(1,1)处的法向量是:A. (1, -1)B. (1, 1)C. (-1, 1)D. (-1, -1)10. 以下哪个选项是二阶偏导数的连续性条件?A. fxx = fyyB. fxx + fyy = 0C. fxx - fyy = 0D. fxx * fyy = 1二、填空题(每空2分,共20分)11. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1,则f'(x) =____________。
2024年成人高考专升本《数学》考卷真题及答案
2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
专升本高等数学(含答案)
高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
专升本高数考试题及答案
专升本高数考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()A. 2x+3B. x^2+3C. 2x+6D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. 2D. 33. 以下哪个选项是无穷小量()A. 1/xB. x^2C. sin(x)/xD. x^34. 曲线y=x^3在点(1,1)处的切线斜率是()A. 3B. 1C. 3/2D. 1/35. 定积分∫(0 to 1) x dx的值是()A. 1/2B. 1C. 2D. 0二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。
2. 函数f(x)=e^x的不定积分是______。
3. 函数y=ln(x)的导数是______。
4. 函数y=x^2-4x+4的最小值是______。
5. 曲线y=x^2在点(2,4)处的法线方程是______。
三、解答题(每题10分,共60分)1. 计算极限lim(x→2) (x^2-4)/(x-2)。
2. 求函数f(x)=x^3-3x+1在区间[-1,2]上的最大值和最小值。
3. 计算定积分∫(0 to 2) (2x+3) dx。
4. 求曲线y=x^3-6x^2+9x+1在点(1,4)处的切线方程。
5. 计算二重积分∬(D) xy dA,其中D是由x=0, y=0, x=2, y=2x围成的区域。
6. 解微分方程dy/dx=2x+y。
四、附加题(每题10分,共10分)1. 证明:如果函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则至少存在一个c∈(a,b),使得f(c)=0。
答案:一、选择题1. A2. B3. C4. A5. A二、填空题1. x=1, x=22. e^x+C3. 1/x4. 05. x+2y-8=0三、解答题1. 极限lim(x→2) (x^2-4)/(x-2) = 42. 最大值f(2)=3,最小值f(-1)=-53. 定积分∫(0 to 2) (2x+3) dx = 84. 切线方程:y-4=12(x-1),即y=12x-85. 二重积分∬(D) xy dA = 46. 解微分方程dy/dx=2x+y,得到y=e^(-2x)(C-1)+1四、附加题1. 证明略。
专升本高数试题及答案
专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。
答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。
答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。
答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。
证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。
由此可证明对于任意实数x,若x²=x,则x=0或x=1。
四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。
现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。
答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。
通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。
2024年专升本高数试题
2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。
高数专升本试题(卷)与答案解析
高数专升本试题(卷)与答案解析普通专科教育考试《数学(二)》一、单项选择题(本大题共10小题,每小题2分,共20题。
在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。
)1.极限=+--+→232lim 221x x x x x ( ) A.—3 B. —2 C.1 D.22.若函数()>=<+=?0,1sin 0,00,sin 1x x x x x a x x x 在0=x 处连续,则=a ()A.2B.0C.1D.—13.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( )A.()x f B.()x f C.()()x f x f -+ D.()()x f x f --4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线()A.不存在B.只有一条C.至少有一条D.有两条以上5.已知某产品的总成本函数 C 与产量x 的函数关系为C (),2000102.02++=x x x C 则当产量10=x ,其边际成本是() A.—14 B.14 C.—20 D.20 6.设二元函数,xyy e x z +=则=??xz() A. xy y e yx+-1B.xy y ye yx +-1C.xy y e x x +lnD.xy y ye x x +ln7.微分方程y x e dxdy-=2的通解为() A.C e ey x=-2 B.C e e y x =-212 C.C e e y x =-221D.C e e y x =+28.下列级数中收敛发散的是()A.∑∞=1!1n n B.∑∞=123n n n C.∑∞=+11n n nD.∑∞=13sin n n π9.设函数()x f 连续,且()()dx x f x x f ?+=122,则()x f =()A.2xB.322-x C.322+x D.22+x 10.设A,B,C 均为n 阶方阵,则下列叙述正确的是()A.()()BC A C AB =B.若,AC AB =则C B =C.若AB=0,则0=A 或0=BD.若,2A A =则E A =或0=A二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在答题纸的相应位置上,填写在其他位置上无效) 11.微分方程x e x y dxdysin cos -=+的通解为 12.?-=++112231sin dx x x x 13.设参数方程==tt y t x cos 2,则=dx dy14.已知三及行列式022321111=a,则=a三、计算题(本大题共6小题,每小题7分,共42分,将答题过程、步骤和答案填写在答题纸的相应位置上,填写在其他位置上无效)15.求极限()3cos 1lim x dt t xx ?-→16.设二元函数()y x z z ,=由方程()xyz z y x sin =++所确定,求xz。
高等数学试题及答案专升本
高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。
A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。
A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。
A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。
A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。
A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。
A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。
A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。
A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。
A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。
答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。
2024年专升本高数试卷
2024年专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 当x→0时,xsin(1)/(x)是()A. 无穷小量。
B. 无穷大量。
C. 有界变量,但不是无穷小量。
D. 无界变量,但不是无穷大量。
3. 设y = f(x)在点x = x_0处可导,则limlimits_Δ x→0frac{f(x_0-Δ x)-f(x_0)}{Δ x}=()A. f^′(x_0)B. -f^′(x_0)C. 0D. 不存在。
4. 设y = x^3ln x,则y^′=()A. 3x^2ln x + x^2B. 3x^2ln xC. x^2D. 3x^2ln x - x^25. 函数y = (1)/(3)x^3-x^2-3x + 1的单调递减区间是()A. (-1,3)B. (-∞,-1)∪(3,+∞)C. (-∞,-1)D. (3,+∞)6. ∫ xcos xdx=()A. xsin x + cos x + CB. xsin x-cos x + CC. -xsin x + cos x + CD. -xsin x-cos x + C7. 设f(x)在[a,b]上连续,则∫_a^bf(x)dx-∫_a^bf(t)dt=()A. 0B. 1C. f(b)-f(a)D. 无法确定。
8. 下列广义积分收敛的是()A. ∫_1^+∞(1)/(x)dxB. ∫_1^+∞(1)/(x^2)dxC. ∫_0^1(1)/(√(x))dxD. ∫_0^1(1)/(x^2)dx9. 由曲线y = x^2与y = √(x)所围成的图形的面积为()A. (1)/(3)B. (2)/(3)C. 1D. (1)/(6)10. 二阶线性齐次微分方程y^′′+p(x)y^′+q(x)y = 0的两个解y_1(x),y_2(x),且y_1(x)≠0,则frac{y_2(x)}{y_1(x)}为()A. 常数。
专升本高数试题及答案
专升本高数试题及答案一、选择题(每题4分,共20分)1. 设函数f(x) = x^3 - 3x^2 + 2x,求f'(x)的值。
A. 3x^2 - 6x + 2B. x^3 - 3x^2 + 2C. 3x^2 - 6x + 2D. 3x^2 + 6x + 2答案:C2. 计算不定积分∫(3x^2 + 2)dx。
A. x^3 + 2x + CB. x^3 + 2x^2 + CC. x^3 + 2x + 3x^2 + CD. x^3 + 2x^2 + 3x + C答案:A3. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,求数列的通项公式。
A. an = 2^n - 1B. an = 2^(n-1) + 1C. an = 2^n + 1D. an = 2^(n+1) - 1答案:A4. 设A为3阶方阵,且|A| = 2,则|2A|的值为多少?A. 4B. 8C. 16D. 32答案:B5. 已知函数y = sin(x) + cos(x),求其导数y'。
A. cos(x) - sin(x)B. sin(x) + cos(x)C. cos(x) + sin(x)D. -cos(x) - sin(x)答案:A二、填空题(每题4分,共20分)1. 设函数f(x) = x^2 - 4x + 4,求其顶点坐标为______。
答案:(2, 0)2. 计算定积分∫(0, 2) (x^2 - 2x + 1)dx的值为______。
答案:23. 已知数列{bn}满足bn = 3bn-1 + 2,且b1 = 1,求b3的值为______。
答案:284. 设矩阵B = |1 2|,求其逆矩阵B^(-1)为______。
答案:|-2 1|5. 已知函数y = e^(-x),求其导数y'。
答案:-e^(-x)三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 9x + 1的极值点。
2024专升本高数试卷
2024专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(√(x - 1))的定义域是()A. (1,+∞)B. [1,+∞)C. (-∞,1)D. (-∞,1]2. 设f(x)=sin x,则f^′(x)=()A. cos xB. -cos xC. sin xD. -sin x3. ∫ x^2dx=()A. (1)/(3)x^3+CB. x^3+CC. (1)/(2)x^2+CD. 2x + C4. 下列函数中为奇函数的是()A. y = x^2B. y=sin xC. y = e^xD. y=ln x(x>0)5. 极限lim_x→ 0(sin x)/(x)=()A. 0.B. 1.C. ∞D. 不存在。
6. 方程y^′′-y = 0的通解是()A. y = C_1e^x+C_2e^-xB. y = C_1cos x+C_2sin xC. y=(C_1+C_2x)e^xD. y = C_1x + C_27. 已知向量→a=(1,2, - 1),→b=(2, - 1,3),则→a·→b=()A. - 1.B. 1.C. 3.D. - 3.8. 函数y = 3x^4-4x^3的极值点为()A. x = 0和x = 1B. x = 0C. x = 1D. x=-19. 定积分∫_0^1e^xdx=()A. e - 1B. 1 - eC. eD. -e10. 曲线y=(1)/(x)在点(1,1)处的切线方程为()A. y=-x + 2B. y = xC. y=-xD. y = x+2二、填空题(每题3分,共15分)1. 函数y = ln(x + √(x^2)+1)是____函数(填“奇”或“偶”)。
2. lim_x→∞(1+(1)/(x))^x=_text{e}。
3. 设y = sin(2x + 1),则y^′=_2cos(2x + 1)。
4. 由曲线y = x^2与y = x所围成的图形的面积为_(1)/(6)。
专升本高数试题及详解答案
专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。
A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。
A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。
A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。
A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。
2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。
3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。
4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。
5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。
三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。
2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。
3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。
2024年成人高考专升本《数学》试卷真题附答案
2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。
A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。
A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。
A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。
A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。
A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。
8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。
9. 已知抛物线y=x^24x+3的顶点坐标为______。
10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。
三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。
12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。
13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。
四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。
五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。
2024年安徽普通专升本高等数学真题试卷及参考答案
2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。
专升本数学试题库及答案
专升本数学试题库及答案一、选择题(每题5分,共20分)1. 下列选项中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = x^3 \)D. \( y = \cos(x) \)答案:C2. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 已知 \( a \) 和 \( b \) 是正整数,且 \( a^2 + b^2 = 100 \),那么 \( a \) 和 \( b \) 的可能值有多少种组合?A. 4B. 5C. 6D. 7答案:C4. 函数 \( f(x) = x^2 - 4x + 4 \) 的图像与x轴的交点个数是?A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共20分)5. 计算定积分 \( \int_{0}^{1} x^2 dx \) 的值是 ________。
答案:\( \frac{1}{3} \)6. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 为锐角,则 \( \cos \alpha \) 的值是 ________。
答案:\( \frac{4}{5} \)7. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)8. 计算矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 的行列式值是 ________。
答案:-2三、解答题(每题10分,共60分)9. 解方程 \( x^2 - 5x + 6 = 0 \)。
答案:\[ x = 2 \quad \text{或} \quad x = 3 \]10. 证明:\( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \)。
专升本高数试题及答案文库
专升本高数试题及答案文库一、选择题1. 函数f(x)=x^2+3x+2在区间[-5,1]上的最大值是()。
A. 6B. 7C. 8D. 9答案:B2. 设函数f(x)=x^3-2x^2-3x+1,求f'(x)。
A. 3x^2-4x-3B. x^3-4x^2C. 3x^2-4x+1D. x^3-2x^2答案:A3. 若曲线y=x^2与直线y=4x-5相切,则切点坐标为()。
A. (1,3)B. (2,3)C. (1,1)D. (2,4)答案:A二、填空题4. 若函数f(x)=x^3-6x^2+11x-6的零点为x0,则x0的值为______。
答案:15. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。
答案:32三、解答题6. 求函数y=x^3-6x^2+9x+2在区间[0,3]上的单调性。
答案:函数y=x^3-6x^2+9x+2的导数为y'=3x^2-12x+9。
令y'>0,解得x>1或x<3。
因此,函数在区间[0,1]和[2,3]上单调递增,在区间[1,2]上单调递减。
7. 求曲线y=x^2-4x+3与x轴的交点坐标。
答案:令y=0,解得x^2-4x+3=0,即(x-1)(x-3)=0,所以曲线与x轴的交点坐标为(1,0)和(3,0)。
四、证明题8. 证明:对于任意实数x,不等式e^x > 1+x恒成立。
答案:设函数f(x)=e^x-x-1,求导得f'(x)=e^x-1。
当x>0时,f'(x)>0,函数f(x)单调递增;当x<0时,f'(x)<0,函数f(x)单调递减。
因此,f(x)的最小值出现在x=0处,即f(0)=e^0-0-1=0。
所以对于任意实数x,有f(x)≥f(0)=0,即e^x≥1+x。
五、综合题9. 已知函数f(x)=sin(x)+cos(x),求f(x)在区间[0,π/2]上的最大值。
高等数学专升本试卷(含答案)
高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A.x<1B.(-3,1)C.{x|x<1}∩[-3,1]D.-3≤x≤1.2.极限lim(sin3x/x) x→∞等于()A.0B.1C.不存在D.3.3.下列函数中,微分等于dx的是()A.x^2/2B.y=ln(lnx)+cXXX.4.d(1-cosx)=()A.1-cosxB.-cosx+cC.x-XXX.5.方程z=(x^2)/(a^2)+(y^2)/(b^2)表示的二次曲面是(超纲,去掉)()A.椭球面B.圆锥面C.椭圆抛物面D.柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x^2+x-6)/(x^2-4) x→2_______________.2.设函数f(x)=|x-a|+x,在点x=a处连续,则a=________________.3.设函数y=xe。
则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(x)|=________________.6.设F(x)=(∫π/4x^2cos^2tdt+1)/4,则F'(x)=_______________________.7.设f(x)+f(-x)=x/(1+x^2),则∫xf(t)+f(-t)dt=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=____________________.9.设z=(2x+y),则∂z/∂x=____________________.10.设D={(x,y)|0≤x≤1,0≤y≤1},则∬D(x^2+y^2)dxdy=_________________.注:题目中的“∫”为积分符号,“∬”为二重积分符号,“∂”为偏导数符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国教师教育网络联盟入学联考(专科起点升本科)高等数学备考试题库2012年一、选择题1. 设)(x f 的定义域为[]1,0,则)12(-x f 的定义域为(). A: ⎥⎦⎤⎢⎣⎡1,21B: 1,12⎛⎫ ⎪⎝⎭ C: 1,12⎡⎫⎪⎢⎣⎭ D: 1,12⎛⎤ ⎥⎝⎦2. 函数()()a r c s i n s i n f x x =的定义域为( ).A: (),-∞+∞ B: ,22ππ⎛⎫- ⎪⎝⎭ C: ,22ππ⎡⎤-⎢⎥⎣⎦D: []1,1-3.下列说法正确的为( ).A: 单调数列必收敛;B: 有界数列必收敛;C: 收敛数列必单调;D: 收敛数列必有界.4.函数x x f sin )(=不是( )函数.A: 有界B: 单调C: 周期D: 奇5.函数123sin +=x e y 的复合过程为( ).A: 12,,sin 3+===x v e u u y vB: 12,sin ,3+===x v e u u y vC: 123,sin ,+===x e v v u u yD: 12,,sin ,3+====x w e v v u u y w6.设⎪⎩⎪⎨⎧=≠=0014sin )(x x xxx f ,则下面说法不正确的为( ).A: 函数)(x f 在0=x 有定义;B: 极限)(lim 0x f x →存在;C: 函数)(x f 在0=x 连续;D: 函数)(x f 在0=x 间断。
7. 极限x xx 4sin lim 0→= ( ).A: 1B: 2C: 3D: 48.51lim(1)n n n -→∞+=( ).A: 1B: eC: 5e -D: ∞9.函数)cos 1(3x x y +=的图形对称于( ).A: ox 轴;B: 直线y=x ;C: 坐标原点;D: oy 轴10.函数x x x f sin )(3=是( ).A: 奇函数;B: 偶函数;C: 有界函数;D: 周期函数.11.下列函数中,表达式为基本初等函数的为().A: 001222≤>⎩⎨⎧+=x x x x yB: x x y cos 2+=C: x y = D: x y sin =12.函数x x y cos sin -=是( ).A: 偶函数;B: 奇函数;C: 单调函数;D: 有界函数13.0sin 4lim sin 3x xx →=( ). A: 1B:C:D: 不存在14.在给定的变化过程中,下列变量不为无穷大量是().A: 0,21→+x x x当B: ∞→-x e x 当,11C: 3,912→-+x x x当D: +→0,lg x x 当15.=++∞→3)11(lim n n n ( ).A: 1B: eC: 3eD: ∞16.下面各组函数中表示同一个函数的是( ). A: 11,)1(+=+=x y x x xy ; B: 2,x y x y ==; C: 2ln ,ln 2x y x y ==D: x e y x y ln ,==;17. 0tan 2lim sin 3x xx →=( ).A: 1 B: 32C: 23D: 不存在18.设⎪⎩⎪⎨⎧=≠=0011sin )(x x xx f ,则下面说法正确的为( ).A: 函数)(x f 在0=x 有定义;B: 极限)(lim 0x f x →存在;C: 函数)(x f 在0=x 连续;D: 函数)(x f 在0=x 可导.19. 曲线 x xy -+=44 上点 (2, 3)处的切线斜率是( ).A: -2B: -1C: 1D: 220. 已知x y 2sin =,则224x d yd x π==( ).A: -4B: 4C: 0D: 121. 若l n (1),y x =-则0x d yd x == ( ).A: -1B: 1C: 2D: -222. 函数y = x e -在定义区间内是严格单调(). A: 增加且凹的B: 增加且凸的C: 减少且凹的D: 减少且凸的23. )(x f 在点0x 可导是)(x f 在点0x 可微的()条件.A: 充分B: 必要C: 充分必要D: 以上都不对24. 上限积分()d xa f t t ⎰是( ).A: ()f x '的一个原函数B: ()f x '的全体原函数C: ()f x 的一个原函数D: ()f x 的全体原函数25.设函数xy y x xy y x f ++=+22),(,则=∂∂y y x f ),(().A: x 2;B: -1C: y x +2D: x y +226. l ns i n y x =的导数d yd x = ( ). A: 1s i n x B: 1c o s xC: tan xD: co t x27. 已知 y =,则==4x |'y ( ).A: 2 B: 1c o t 24C: 1t a n 24D: c o t 228. 设函数()f x 在区间[],a b 上连续,则()d ()d b ba a f x x f t t -⎰⎰ ( ). A: 0<B: 0=C: 0>D: 不能确定29. 2e1=⎰( ).A: 22C: 1D: 230. 设y x z =,则偏导数=∂∂x z(). A: 1-y yxB: x yx y ln 1-C: x x y lnD: y x31. 极限)1ln(1sin lim 0x x e x x +-+→=(). A: 1B: 2C: 0D: 332. 设函数arctan xy x =,则 ==1|'x y ( )。
A: 124π- B: 124π+C: 4πD:33. 曲线24624y x x x =-+的凸区间是( )A: (2,2)-B: (,0)-∞C: (0,)+∞D: (,)-∞+∞34. cos d x x =⎰( )A: c o s x C +B: s i n x C +C: c o s x C -+D: s i n x C -+35. x =⎰( ).A: ()322113x C ++ B: ()322213x C ++ C: ()322312x C ++ D: ()32231x C ++36 .上限积分()d xa f t t ⎰是( ).A: ()f x '的一个原函数 B: ()f x '的全体原函数 C: ()f x 的一个原函数 D: ()f x 的全体原函数37. 设1122-+=y x z 的定义域是(). A: {}1),(22<+y x y x B: {}1),(22>+y x y x C: {}10),(22<+<y x y x D: {}1),(22≥+y x y x38. 已知l nt a n y x =,则4d x y π==(). A: dxB: 2dxC: 3dxD: dx39. 函数x y xe =,则=''y ( ).A: ()xe x y 2+=B: x e x y 2= C: x e y 2= D: 以上都不对 40.21d x x -=⎰( ).A: 1 B: 4 C: 0 D: 2 41. 已知()d s i n 2f x x x C =+⎰,则()f x =( ) A: 2c o s2x - B: 2cos2x C: 2s i n2x - D: 2sin 2x42. 若函数0()s i n (2)d xx t t Φ=⎰,则()x 'Φ=( ).A: sin 2x B: 2sin 2x C: cos 2x D: 2cos2x43.10d x xe x =⎰( ).A: 0 B: e C: 1 D: -e 44.221d x x a =-⎰( ).A:1ln 2x a C a x a-++ B:1ln 2x a C a x a++- C:1ln x a C a x a++- D: 1ln x a C a x a-++45. 设yx z =,则偏导数=∂∂yz( ). A: 1-y yx B: x yx y ln 1- C: x x y ln D: y x二、填空题1. 33321lim 8x x x x →∞++=- .2. 22232lim 4x x x x →-+=- .3. 函数1arcco s 2xy -=的反函数为 .4. x →= .5. 3323lim 45x x x x →∞++=- .6.=-+-→123lim 221x x x x . 7. 212...l i m n nn n→∞+++=+ .8. 函数1arcsin 3xy -=的反函数为 .9. 设 x x f ln )(=,32()x g x e +=, 则=)]([x g f .10. 设111122)(>=<⎪⎪⎩⎪⎪⎨⎧-=x x x xx x f , 则=→)(lim 1x f x .11. =--→11lim 231x x x .12. 曲线1y x=-在点(1,1)-处的切线方程是 .13. 由方程ex xy e y =-+223所确定的函数)(x f y =在点0=x 的导数是 .14. 函数3(1)y x =-的拐点是 .15. x =⎰. 16. 111221d xe x x=⎰.17. 函数l n [(1)]z x y =⋅-的定义域为 .18. 设xy x y x z sin 2+=,则x z '= .19. 函数2x y e-=的单调递减区间为___________ .20. 函数2x y e-=的驻点为 .21. 函数y x =-312()的单调增加区间是 .22. 设函数()x f 在点0x 处具有导数,且在0x 处取得极值,则()='0x f .23. 10d 1xxe x e =+⎰ .24.d x =⎰. 25. 320s i n c o s d x x x π=⎰.26. 曲线1y x=-在点(1,-1)处的切线方程是 .27. 设由方程0yxe e x y -+=可确定y是x 的隐函数,则x d yd x==.28. 0cos d x x x π=⎰.29. 101d 1x xe =+⎰ .30.函数l n [(1)]z x y =+⋅的定义域为 .31. 函数x xe y -= 的极大值是 .32. 函数2x y e-=的单调递增区间为 .33. ()⎰.sindx e e xx. 34. 230d x x =⎰.35. 设()(1)(2)(3)(4)f x x x x x =+-+-, 则(4)()fx = .三、简答题1. 计算 lim n →∞.2. 求函数2x x y e e -=+的极值3. 设"()f x 是连续函数,求"()xf x dx ⎰4.求3sec xdx ⎰5. 设二元函数为y x e z 2+=,求)1,1(dz.6. 计算 5)1(lim+∞→+x x xx .7. 已知ln y =,求y '8. 设()()xf x ee f y =且()x f '存在,求dxdy9. 求1sin d xx ee x ⎰。