作业用一元二次方程解决传播问题

合集下载

人教版九年级上册数学实际问题与一元二次方程——传播问题应用题

人教版九年级上册数学实际问题与一元二次方程——传播问题应用题

人教版九年级上册数学21.3实际问题与一元二次方程——传播问题应用题1.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.(1)求每轮传染中平均每个人传染了几个健康的人;(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?2.某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人:(1)第一轮后患病的人数为;(用含x的代数式表示)(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.3.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为多少?4.在一次象棋比赛中,实行单循环制(即每个选手都与其他选手比赛一局),每局赢者记2分,输者记0分,如果平局,两个选手各记1分.今有4个同学统计了比赛中全部选手的得分总和,结果分别为2005分、2004分、2070分、2008分,经核实只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛.5.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?6.我们知道,“传销”能扰乱一个地区正常的经济秩序,是国家法律明令禁止的.你了解传销吗?某非法传销组织由头目一人可发展若干数目的下线成员,每个下线成员再发展同样数目的下线成员,经过两轮发展后,非法传销组织成员共有421人.问,在每轮发展中平均一个成员发展下线多少人?7.元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?8.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?9.张老师自编了一套健美操,他先教会一些同学,然后让学会健美操的同学每人教会相同的人数,每人每轮教会的人数相同,经过两轮,全班57人(含张老师)都能做这套健美操,请问每轮中每人必须教会几人?10.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?11.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?12.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?13.组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?14.春季是流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出多少小分支?16.有一种传染性疾病,蔓延速度极快.据统计,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?17.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.某象棋比赛,每名选手都要与其他选手比赛一局,每局胜者记2分,负者记0分,和棋各记1分.有四位观众统计了比赛中全部选手得分总数,分别是2017,2070,2018,2078,经核实,只有一位观众统计准确,则这次比赛的选手共有多少名?19.参加足球联赛的每两队之间都进行两场比赛.共要比赛90场.共有多少个队参加比赛?20.元旦来临,全班每一个同学都将自己制作的贺年卡向其他同学各送一张以表示纪念,如果全班有x名学生,则送了多少张贺年卡?(用含x的代数式表示)。

人教版九年级数学上册作业设计 21.3 实际问题与一元二次方程 第1课时 用一元二次方程解决传播问题

人教版九年级数学上册作业设计 21.3 实际问题与一元二次方程  第1课时 用一元二次方程解决传播问题

4.某种植物的主干长出若干数目的支干,每个支干又长出同样 数目的小分支,主干、支干、小分支的总数是111,求每个支干长 出多少个小分支.
解:设每个支干长出x个小分支,根据题意,得1+x+x2=111. 解得x1=10,x2=-11(舍去).答:每个支干长出10个小分支
知识点 2:握手问题和数字问题 5.在某次聚会上,每两人都握了一次手,所有人共握手 210
14.一个两位数,十位上的数字比个位上的数字的平方小2,如 果把这个数的个位数字与十位数字交换,那么所得到的两位数比原 来的数小36,求原来的两位数.
解:设原来两位数的个位数字是x,则[10(x2-2)+x]-(10x+ x2-2)=36,解得x1=3,x2=-2(不合题意,舍去),x2-2=7.所以 原来的两位数为73
练习2:一个两位数等于它个位数的平方,且个位数比十位数大 3,则这个两位数是( C )
A.25 B.36 C.25或36 D.-25或-36
知识点 1:倍数传播问题 1.(2017·安定月考)某班同学毕业时都将自己的照片向全班其 他同学各送一张表示留念,全班共送 1 980 张照片,如果全班有 x 名同学,根据题意,列出方程为( B ) A.x(x+1)=1 980 B.x(x-1)=1 980 C.12x(x+1)=1 980 D.12x(x-1)=1 980
9.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条 航线,一共开辟了15条航线,则这个航空公司共有飞机场( C )
A.4个 B.5个 C.6个 D.7个
10.如图是某月的日历表,在此日历表上可以用一个矩形圈出 3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21, 22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的 和为( D )

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学 杨爱青

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学 杨爱青

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学杨爱青一、内容和内容解析1.内容用一元二次方程解决“传播问题”.2.内容解析许多现实问题的数量关系都可以抽象为一元二次方程,与前面所学的方程比较,一元二次方程有更广泛的应用,是初中学生体会和理解数学与外部世界联系的重要载体.探究1以流感为问题背景,讨论按一定传播速度逐步传播的问题.这类问题在现实世界中有许多原型,例如细胞分裂、信息传播、传染病扩散等.探究1讨论的是两轮的传播,它可以用一元二次方程作为数学模型,相比前面出现的实际问题,它在分析数量关系方面更复杂些,问题情境与实际情况也更接近.二、目标和目标解析1.教学目标(1)通过解决“传播问题”,体验建立方程模型解决问题的一般过程;(2)体会一元二次方程的数学模型作用,增强应用意识和应用能力.2.目标解析(1)理解“传播问题”的问题背景,能找出可以作为列方程依据的主要等量关系,并根据它列出一元二次方程,正确求解所列方程,能检验方程的解是否符合实际意义,得到合乎实际的结果;(2)认识到许多现实问题的数量关系都可以抽象为一元二次方程,通过解“传播问题”的经历,积累问题背景知识,并会把与“传播问题”类似的实际意义问题数学化、方程化.三、教学问题诊断分析本节课是在由实际问题列出一元二次方程,研究其解法的基础上,进一步以“探究”的形式更深入地讨论如何用一元二次方程解决“传播问题”.由于“传播问题”的背景和表达都比较贴近实际,综合性较强,学生缺乏对问题系统、全面的认识,会出现各种认识和理解上的错误,所以在探究过程中正确找到数量关系,建立一元二次方程是主要难点.为此,本节课实施以下三个步骤:(1)由简单问题入手,让学生独立思考然后解答问题,唤起学生对问题的原有认知;(2)针对学生中出现的不同答案(有错有对)再次思考、讨论,形成对问题的初步认识;(3)教师在学生认识的基础上引导学生数学化地解决问题,使学生进一步加深对问题的理解,并独立解决相关问题.四、教学过程设计1.问题引入同学们听说过“一传十,十传百”这句话吗,它出自哪里,本意是什么?“一传十,十传百”语出宋陶谷《清异录·丧葬义疾》:“一传十,十传百,展转无穷,故号义疾.”意思是说,“一个人传染给十个人,十个人传染给一百个人,辗转传染,越传染越多,没有休止,所以这种病叫传染病”.后来人们活用此语,指“言语消息辗转相传,越传越广”.2.对问题的初步认识问题1如果把“一传十”称为第一轮传染,那么两轮之后总共有多少人被传染?师生活动:这里,让学生独立思考,调动学生对“传播问题”的原有认知,通过计算得到答案(121人),也有可能出现错误答案(111人).【设计意图】设置这个简单的算术问题,是想了解学生对“传播问题”了解多少,程度如何,会出现哪些问题.问题2你是怎么得到答案的?师生活动:这里给学生充分表达、展示的机会,引导学生自我反思,借鉴其他同学的观点,再表达,以澄清问题,修正错误,明确正确答案.【设计意图】设置这个问题,是想针对问题1中学生出现的各种答案,通过讨论交流,引导学生自我反思,然后再交流,达到加深对问题理解的目的.3.对问题的深入探究给出课本第19页的探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?问题3若设每轮传染中平均一个人传染了个人,第一轮后共有人患了流感;第二轮传染中,这些人又传染了人,第二轮后共有人患了流感(用含的代数式表示).师生活动:教师提出问题,学生思考、回答.【设计意图】通过回答问题,进一步明确“传播问题”的基本数量关系,同时考查学生用代数式表示未知量的能力.问题4你能得到探究1的答案吗?如何得到的?师生活动:学生依据已知条件列方程,解方程,检验方程的解是否符合实际意义,进而得到探究1的答案.教师巡视,及时发现学生解答中的问题,适时引导.【设计意图】让学生经历建模解题的完整过程.问题5如果按照这样的传染速度,三轮传染后有多少人患流感?师生活动学生独立思考,列出算式,得到答案人.【设计意图】把“传播问题”推广到两轮以上,其基本数量关系不变.通过这个问题的解决,进一步加深学生对“传播问题”的基本数量关系的认识.4.小结问题6通过这节课,你对类似的“传播问题”中的数量关系有什么新的认识?师生活动:请学生回顾“传播问题”的探究过程,并回答问题:若设每轮传染中平均一个人传染了个人,第一轮的传染源有人.第一轮有人被传染,共有人患流感;第二轮传染中,这些人又传染了人,第二轮后共有人患了流感;第三轮传染中,这些人又传染了人,第三轮后共有人患了流感;……第n轮后共有人患了流感.【设计意图】设置这个问题,是想在得到探究1的正确解答后,更进一步,引导学生进行题后反思,使学生加深对“传播问题”的认识,感受与“增长率”相关的数学模型中的数量关系.5.巩固应用利用我们在“探究1”中学会的方法,探究下面的问题:某种传染病,传播速度极快,通常情况下,每天一个人会传染给若干人.(1)现有一人患病,开始两天共有人患病,求一人传染给几个人?(2)两天后人们有所察觉,这样平均一人一天以少传染人的速度递减,求再经过两天后,共有几人患病?师生活动:教师提出问题,学生思考、回答.选学生展示解答过程,教师点评.【设计意图】在完成“探究1”之后,通过类似问题让学生刚刚获取的经验得到巩固和深化,进一步熟悉解决问题的方法和过程,从而提高分析问题和解决问题的能力.附:解题过程(1)设每天一人传染了人.列方程,得.解方程,得(不符合题意,舍去).答:每天一人传染了14人.(2).答:共有人患病.6.布置作业教科书习题21.3第4,6题.五、目标检测设计甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?【设计意图】考查学生对“传播问题”中的基本数量关系的掌握情况及利用一元二次方程解决综合性问题的能力.。

巧用一元二次方程,助力疫情防控

巧用一元二次方程,助力疫情防控

巧用一元二次方程,助力疫情防控作者:***来源:《初中生世界·九年级》2022年第09期一元二次方程存在于我们生活的方方面面,以新冠肺炎疫情为背景的问题就有多种题型。

下面,我们通过三个问题,一起来看一下如何用一元二次方程解决此类问题。

一、传播问题例1 新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后可能有169人患新冠肺炎(假设每轮传染的人数相同),则每轮传染中平均每个人传染了多少人?【分析】设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,那么一轮传染结束后应该有(x+1)人携带病毒,第二轮传染中有(x+1)x人被感染,根据经过两轮传染后可能有169人患新冠肺炎,即可得数量关系:原本携带病毒人数+第一次传染人数+第二次传染人数=总感染人数。

解:设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,第二轮传染中有(x+1)x人被感染。

根据题意,得1+x+(x+1)x=169,即(1+x)2=169。

解这个方程,得x1=12,x2=-14(不合题意,舍去)。

答:每轮传染中平均每个人传染了12人。

【点评】用一元二次方程解决实际问题,主要是找准数量关系,而本题的关键点是一轮传染结束后应该有(x+1)人携带病毒,总的感染人数中原本携带病毒的人数不能忘記,然后才能正确列出一元二次方程。

本题中得出来的两个实数根需要进行检验,检查是否符合实际情况,对于不符合题意的答案,我们要舍去。

二、增长(降低)率问题例2 为了有效抗击新冠肺炎疫情,根据国家的政策,某市疫情防控应急指挥部要求全市符合新冠疫苗接种的人群应接尽接,为落实这一要求,某街道统计,7月份共有2500人接种,9月份增加到3600人,如果每月接种人数的增长率相同,求每月接种人数的平均增长率?【分析】设每月接种人数的平均增长率为x,首先有这样的数量关系:变化前的量×(1+平均增长率)=变化后的量。

一元二次方程应用题(传播问题)

一元二次方程应用题(传播问题)

一元二次方程的定义和公式
定义
一元二次方程是二次多项式方程,其中只有一个未知数,并且最高次数为2。
公式
一元二次方程的一般形式为ax²+ bx + c = 0,其中a、b和c是已知常数。
应用一元二次方程解决传播问题的基 本步骤
1
问题分析
首先要明确传播问题的具体情况和需论和思考
一元二次方程是解决传播问题的有力工具,通过合理的建模和求解,我们可 以优化传播策略,增强信息传递的效果,并提升团队的合作能力。
问题讨论和答疑
如果您对一元二次方程在传播问题中的应用有任何疑问或想要进一步讨论,欢迎在本节中提出。
根据已知条件,建立相关的一元二次方程,将问题转化为数学模型。
3
求解方程
通过求解一元二次方程,得到传播问题的具体解答。
通过实例演示一元二次方程在传播问 题中的应用
企业演讲
使用一元二次方程可以帮助 我们分析演讲的影响力和传 播效果,优化表达方式,提 高演讲的成功率。
社交媒体营销
一元二次方程可以帮助我们 评估社交媒体广告的投放效 果,优化广告策略,提高市 场传播的成功率。
团队头脑风暴
通过应用一元二次方程,我 们可以量化和评估团队头脑 风暴的效果,优化团队协作, 提高创新能力。
一元二次方程在传播问题中的局限性 和注意事项
1 局限性
2 注意事项
一元二次方程只适用于特定的传播问题, 对于复杂的情况可能不适用。
在应用一元二次方程解决传播问题时, 需要准确收集和分析数据,并合理假设 变量之间的关系。
一元二次方程应用题(传 播问题)
传播问题是日常生活、社交媒体和企业环境中常见的挑战。了解一元二次方 程的应用可以帮助我们解决这些问题,并提高我们的沟通和协作能力。

用一元二次方程解决传播问题含答案

用一元二次方程解决传播问题含答案

用一元二次方程解决传播问题基础题知识点1传播问题1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后会有81台电脑被感染,每轮感染中平均一台电脑会感染几台电脑?设每轮感染中平均一台电脑会感染x台电脑,则x满足的方程是(B)A.1+x2=81 B.(1+x)2=81C.1+x+x2=81 D.1+x+(1+x)2=81 2.(大同一中期末)有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为(A) A.1+x+x(1+x)=100B.x(1+x)=100C.1+x+x2=100D.x2=1003.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支?解:设每个支干长出x个小分支,根据题意,得1+x+x2=111.解得x1=10,x2=-11(舍去).答:每个支干长出10个小分支.知识点2 握手问题4.新年里,一个小组有若干人,若每人给小组的其他成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为(C)A .7B .8C .9D .105.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空.解:设应邀请x 支球队参赛,则每队共打(x -1)场比赛,比赛总场数用代数式表示为12x(x -1). 根据题意,可列出方程12x(x -1)=28.整理,得x 2-x -56=0.解得x 1=8,x 2=-7.合乎实际意义的解为x =8.答:应邀请8支球队参赛.6.一条直线上有n 个点,共形成了45条线段,求n 的值.解:由题意,得12n(n -1)=45.解得n 1=10,n 2=-9(舍去).答:n 等于10.知识点3数字问题7.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是98.8.若两个连续整数的积是56,则它们的和是±15.9.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?解:设这个两位数的个位数字为x,则十位数字为(x-3),由题意,得x2=10(x-3)+x.解得x1=6,x2=5.当x=6时,x-3=3;当x=5时,x-3=2.答:这个两位数是36或25.中档题10.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场(B)A.4个B.5个C.6个D.7个11.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?解:设有x 家公司出席了这次交易会,根据题意,得12x(x -1)=78.解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.12.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?解:设最小数为x ,则最大数为x +16,根据题意,得x(x +16)=192. 解得x 1=8,x 2=-24(舍去).故这9个数为8,9,10,15,16,17,22,23,24.所以这9个数的和为8+9+10+15+16+17+22+23+24=144.13.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x人,则1+x+x(x+1)=64.解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.综合题14.(1)6位新同学参加夏令营,大家彼此握手,互相介绍自己,这6位同学共握手多少次?小莉是这样思考的:每一位同学要与其他5位同学握手5次,6位同学握手5×6=30次,但每两位同学握手2次,因此这6位同学共握手15次.依此类推,12位同学彼此握手,共握手66次;(2)我们经常会遇到与上面类似的问题,如:2条直线相交,最多只有1个交点;3条直线相交,最多有3个交点;…;求20条直线相交,最多有多少个交点?(3)在上述问题中,分别把人、线看成是研究对象,两人握手、两线相交是研究对象间的一种关系,要求的握手总次数、最多交点数就是求所有对象间的不同关系总数.它们都是满足一种相同的模型.请结合你学过的数学知识和生活经验,编制一个符合上述模型的问题;(4)请运用解决上述问题的思想方法,探究一个多边形的对角线的条数可能为20条吗?一个多边形的对角线的条数可能为28条吗? 解:(2)每一条直线最多与其他19条直线相交,20条直线相交有20×19=380个交点,但每两条直线相交2次,因此这20条直线相交,最多有20×192=190个交点.(3)答案不唯一,如:现有12个乒乓球队参加乒乓球循环赛(每个队都要与其他队比赛1场),共需比赛多少场?(4)若这个n 边形的对角线条数为20条,则有n (n -3)2=20. 解得n 1=8,n 2=-5(舍去).故一个多边形的对角线的条数可能是20条.若这个n 边形的对角线条数为28条,则有n (n -3)2=28. 整理,得n 2-3n -56=0.因为Δ=32+4×1×56=233,所以n =3±2332.因为233为无理数,而对角线的条数是有理数,所以不存在一个多边形的对角线的条数为28条.。

一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)

一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)

一元二次方程应用题分类汇总一、传播问题:1、 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里, 到2005年已增至144平方公里。

请问:2003至2005年沙化土地的平均增长率为多少?三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。

一元二次方程应用题传播问题

一元二次方程应用题传播问题
通过深入研究一元二次方程在传播问题中的应用,我们可以更加高效地解决现实生活中的传播挑战,并探索更 多创新的传播方法。
一元二次方程应用题传播 问题
本次演讲将探讨一元二次方程的应用,并以传播问题为例,为您呈现一种新 的思维方式。让我们一起来看看它如何应用于现实世界中的传播挑战。
一元二次方程的定义和公式
一元二次方程是一个重要的数学概念,形式为ax^2 + bx + c = 0,其中a、b、 c为常数。它可以帮助我们解决许多实际问题,包括传播问题。
根据调研结果制定传播计划和策略。
3
执行计划
按照计划执行传播活动并监控效果。
应用题解题技巧
找出关键信息
分析问题中的关键信息,有 助于建立方程。
建立方程
将问题转化为数学方程,并 解方程得到答案。
验证答案
通过将答案代入原问题检验 解的准确性。
实际案例分析
营销活动
社交媒体
演讲活动
我们将分析一次成功的营销活动, 揭示其中的传播策略。
我们将探索社交媒体上的传播影 响力,了解其对信息传播的影响。
我们将研究一次影响力强大的演 讲活动,剖析其传播机制。
影响传播的因素
1 媒体环境
媒体的发展和使用方式对 传播的影响。
2 受众特点
受众的特点和行为习惯对 传播结果产生重要影响。
3 传播技巧
一些技巧和策略的基本要素
1 目标群体
了解您要传播到的特定目 标群体是解决传播问题的 关键。
2 信息内容
明确传播的具体信息,目 标明确的信息内容更容易 传递给受众。
3 传播渠道
选择适合目标群体的传播 渠道可以最大限度地提高 传播效果和影响力。
解决传播问题的步骤与方法

上册 用一元二次方程解决传播问题与数字问题人教版九级数学全一册作业实用课件

上册 用一元二次方程解决传播问题与数字问题人教版九级数学全一册作业实用课件
上册第2用1章一元二21次.3方程第解1课决时传播用问一题元与二数次字方问程题解人决教传版播九问级题数与学数全字一问册题作-业20课20 件秋人教 版九年 级数学 全一册 作业课 件(共25 张PPT)
上册第2用1章一元二21次.3方程第解1课决时传播用问一题元与二数次字方问程题解人决教传版播九问级题数与学数全字一问册题作-业20课20 件秋人教 版九年 级数学 全一册 作业课 件(共25 张PPT)
上册第2用1章一元二21次.3方程第解1课决时传播用问一题元与二数次字方问程题解人决教传版播九问级题数与学数全字一问册题作-业20课20 件秋人教 版九年 级数学 全一册 作业课 件(共25 张PPT)
上册第2用1章一元二21次.3方程第解1课决时传播用问一题元与二数次字方问程题解人决教传版播九问级题数与学数全字一问册题作-业20课20 件秋人教 版九年 级数学 全一册 作业课 件(共25 张PPT)
10a
a
位时表示数
,在十位时表示数
,在百位时表示
100a

.
上册 用一元二次方程解决传播问题与数字 问题人 教版九 级数学 全一册 作业课 件
上册 用一元二次方程解决传播问题与数字 问题人 教版九 级数学 全一册 作业课 件
8.连续两个整数的乘积为 12,则这两个整数中较小的一个是
A.3
B.-4
(
D
)
C.-3 或 4
D.-4 或 3
上册 用一元二次方程解决传播问题与数字 问题人 教版九 级数学 全一册 作业课 件
上册 用一元二次方程解决传播问题与数字 问题人 教版九 级数学 全一册 作业课 件
9.一个两位数,十位数字与个位数字之和为 9,且这两个数字之积

传播问题与一元二次方程公式(一)

传播问题与一元二次方程公式(一)

传播问题与一元二次方程公式(一)一元二次方程公式介绍一元二次方程是数学中常见的方程形式,通常可表示为:ax^2 + bx + c = 0。

在传播问题中,一元二次方程公式可以用于计算传播过程中的变量之间的关系。

一元二次方程公式一元二次方程公式可以用于求解传播问题中的变量值。

以下是一元二次方程的公式:1.一元二次方程的一般解求根公式: x = (-b ±√(b^2 - 4ac)) / 2a2.一元二次方程的顶点坐标公式: x = -b / (2a) y =-Δ / (4a),其中Δ = b^2 - 4ac解释和例子下面通过举例来解释一元二次方程公式的应用:例子1:计算传播过程中的变量关系假设某种传播活动的传播速度为v,传播时间为t,传播距离为d,其中传播速度和传播时间满足一元二次方程关系。

已知传播速度为2m/s,传播时间为5s,求传播距离。

根据一元二次方程公式,我们可以得到: t = d / v d = vt代入已知值,可以计算得到: d = 2m/s * 5s = 10m因此,传播距离为10m。

例子2:求解一元二次方程的根解方程:x^2 + 4x + 4 = 0根据一元二次方程公式,我们可以得到: x = (-b ± √(b^2 -4ac)) / 2a代入已知值,可以计算得到: a = 1, b = 4, c = 4 x = (-4 ± √(4^2 - 414)) / (2*1) x = (-4 ± √(16 - 16)) / 2 x = (-4 ± √0) / 2 x = -2因此,该一元二次方程的解为x = -2。

总结一元二次方程公式是解决传播问题中变量关系的重要方法之一。

通过使用一元二次方程公式,我们可以计算出传播过程中各个变量之间的关系,并求解方程的根。

在实际应用中,我们可以根据具体的传播问题,灵活运用一元二次方程公式进行计算。

一元二次方程解决传播问题

一元二次方程解决传播问题
有一人患了流感,经过两轮传 染后共有121人患了流感,每轮传 染中平均一个人传染了几个人?
(1)有一人得了流感,他把流感传染给了10个 人,共有 11 人得流感;第一轮传染后,所有 得流感的人每人又把流感传染给了10个人, 第二轮传染了 110 个人,经过两轮传染后, 共有 121 人得流感.[来
(2)有一人得了流感,他把流感传染给了x个 人,共有 1+x 人得流感;第一轮传染后,所 有得流感的人每人又把流感传染给了x个人, 第二轮传染了 x(1+x) 个人,经过两轮传染后, 共有 1+x+x(1+x) 人得流感。
例:有一人患了流感,经过两轮传染后共 有121人患了流感,每轮传染中平均一个 人传染了几个人?
有一个人知道某个消息,经过两轮传播后共有 49人知道这个消息,每轮传播中平均一个人传 播了几个人?经过三轮传播后知道这个消息的 人超过350人吗?
解:设每轮传播中平均一个人传播了x个人,得
1+x+(1+x)x=49
解得 x1=6,x2=-8(舍去) ∵49×6+49=343<350
∴不超过350 答:平均一个人传播了6个人,知道 这消息的人不超过350.
解:设每轮传染中平均一个人传染了x个人,得 1+x+x(1+x)=121
解得 x1 10, x2 12. (舍去)
答:平均一个人传染了10个人.
通过对这个问题的探究,你对类似的传播问题中 的数量关系有新的认识吗?
如果按照这样的传染速度,三轮传染后 有多少人患流感? 121+121×10=1331人
计划安排90场比赛,应邀请多少个球队参加
比赛?
解:设应邀请x支球队参赛

16 专题 一元二次方程的应用(一)循环、传播问题

16 专题  一元二次方程的应用(一)循环、传播问题

专题一元二次方程的应用(一)循环、传播问题
1.要组织一次篮球联赛,赛制为单循环赛形式(每两个队之间比赛一场),计划安排21场比赛,求参数球队的个数?
2.生物兴趣小组有若干人,他们将自己收集的标本向本组其他成员各赠送1件,已知全组共互赠标本72
件,求生物兴趣小组有多少位同学?
3.有一个人患了感冒,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染几个人?
4.九三班张华老师自编了一套健美操,他先教会一些同学,然后让学会的同学每人教会相同的人数,每人每轮教会的人数相同,这样经过两轮,全班57人(含张华老师)都能做这套健美操,问:每轮中每人必须教会几人?
5.某种电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后。

被感染的电脑会不会超过700台?。

17.传播问题与一元二次方程(一)

17.传播问题与一元二次方程(一)

再见
小明
根据示意图,列表如下:
传染源人数 第1轮传染后的人数 第2轮传染后的人数
1
1+x=(1+x)1
1+x+x(1+x)=(1+x)2
解:设每轮传染中平均一个人传染了x个人.根据题意,得
(1+x)2=121
解方程,得
x1意,舍去) .
10 答:平均一个人传染了________ 个人. 注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.
知识梳理
列一元二次方程解决实际问题
列一元二次方程解决实际问题,就是先把实际问题抽象为数学问题(列 方程),然后通过解决数学问题来解决实际问题。
列一元二次方程解应用题的一般步骤
(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量 以及它们之间的等量关系.
(2)设:是指设元,也就是设未知数.
传播问题与一元二次方程(一)
问题探究
问题:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中
平均一个人传染了几个人? 分析:设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染
示意图如下:
第2轮
第1轮
第1轮后共有(1+x)个人患了流感
1
2 ••• 小明 x
注意:不要 忽视小明的 二次传染
(3)列:就是列方程,这是非常重要的关键步骤,一般先找出能够表达 应用题全部含义的一个相等关系,然后列代数式表示相等关系中的 各个量,就得到含有未知数的等式,即方程. (4)解:就是解方程,求出未知数的值. (5)检验:是指检验方程的解能否保证实际问题有意义. (6)答:就是写出答案.
传播问题与一元二次方程

一元二次方程应用题--传播问题

一元二次方程应用题--传播问题
解得 x1 =15 x2 =-17(不合题意,舍去)
答:每轮繁殖中平均一个细菌繁殖了15个细菌.
1 一轮繁殖后
x
二轮繁殖后
x2
三轮繁殖后
x3
n轮繁殖后
xn
2 一轮繁殖后 2x
始发 终结
axn=b
二轮繁殖后
2x2
三轮繁殖后
2x3
n轮繁殖后
2xn
细胞分裂问题
2. 某生物实验室现有一种细菌活体样本4个, 一个细菌经过两轮繁殖后,共有1024个细菌, 每轮繁殖中平均一个细菌繁殖了多少个细菌?
病毒传染问题
1 一轮传染后
二轮传染后
1+x
(1+x)2
1+x+x(1+x)
三轮传染后
(1+x)3
n轮传染后
(1+x)n
病毒传染问题
2(1+x)
2 一轮传染后
二轮传染后
2+2x
2(1+x)2
2(1+x)+2(1+x)x
三轮传染后
2(1+x)3
n轮传染后
2(1+x)n
病毒传染问题
a 一轮传染后 a(1+x)二轮传染后
始发
终结
a(1+x)n=b
a(1+x)2
三轮传染后
a(1+x)3
n轮传染后
a(1+x)n
病毒传染问题
1.有一人患了流感,经过两轮传染后共有121人
患流感,每轮传染中平均一个人传染了几个人?
第一轮传染后
第二轮传染后 (1+x)2
1
1+x

专题21.12 一元二次方程的应用—传播问题(拓展提高)(解析版)

专题21.12 一元二次方程的应用—传播问题(拓展提高)(解析版)

专题21.12 一元二次方程的应用—传播问题(拓展提高)一、单选题1.参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有( )A .9家B .10家C .10家或9家D .19家【答案】B【分析】每家公司都与其他公司签订了一份合同,设有x 家公司参加,那么每个公司都要签订(x -1)份合同,但每两家公司签订的合同只有一份,所以签订的合同共有112x x -()份.【详解】解:设有x 家公司参加,依题意可得, ()11452x x =-, 整理得:9002x x =--,解得:12109x =x =-,(舍去).答:共有10家公司参加商品交易会.故选:B .【点睛】本题考察了一元二次方程的应用以及不重复计数问题.两两之间互相签订合同,只能算一份,属于典型的不重复计数问题,解答过程中一定要注意舍去不符合题意的解.2.某初中毕业班的第一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张照片,如果全班有x 名学生,根据题意,列出方程为( )A .()12550x x +=B .()12550x x -=C .()212550x x +=D .()125502x x -=⨯【答案】B【分析】如果全班有x 名学生,那么每名学生应该送的相片为(x -1)张,根据“全班共送了2550张相片”,可得出方程为x (x -1)=2550.【详解】解:∵全班有x 名学生,∴每名学生应该送的相片为(x -1)张,∴x (x -1)=2550.【点睛】此题是一元二次方程的应用,其中x(x-1)不能和握手问题那样除以2,要注意题目中是共送,也是互送,所以要把握住关键语.3.疫情期间,若有1人染上“新冠”,不及时治疗,经过两轮传染后有361人染上“新冠”,平均一个人传染()个人.A.14 B.16 C.18 D.20【答案】C【分析】据题意可得第一轮人数加第二轮人数,再加第三轮人数总数为361人,设平均每人感染x人,则列式为1+x+(x+1)x=361.即可解答.【详解】解:设每轮传染中平均一个人传染了x个人,根据题意,得x+1+(x+1)x=361,解得,x=18或x=﹣20(舍去).答:每轮传染中平均一个人传染了18个人.故选:C.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题.4.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是()A.4 B.5 C.6 D.7【答案】B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:1x(x-1)=10,2化简,得x2-x-20=0,解得x1=5,x2=-4(舍去),∴参加此次比赛的球队数是5队.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.5.九年级学生毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了870段毕业感言,如果该班有x名同学,根据题意列出方程为()A.x(x﹣1)=870 B.x(x+1)=870C.2x(x+1)=870 D.(1)2x x=870【答案】A【分析】根据题意得:每人要写(x-1)条毕业感言,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要写(x-1)条毕业感言,有x个人,∴全班共写:(x-1)x=870,故选:A.【点睛】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.6.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253 B.x(x﹣1)=253 C.12x(x+1)=253 D.12x(x-1)=253【答案】D【分析】每个学生都要和他自己以外的学生握手一次,但两个学生之间只握手一次,等量关系为:学生数×(学生数-1)×12=总握手次数.【详解】解:参加数学交流会的学生为x名,每个学生都要握手(x-1)次,因此列方程为12x(x-1)=253,故选D.【点睛】本题考查用一元二次方程解决握手次数问题,得到总次数的等量关系是解决本题的关键.二、填空题7.一个多边形的对角线的条数是20条,多边形的边数为________.【答案】8【分析】设多边形的边数是x,列式()3202x x-=,解出结果.【详解】解:设多边形的边数是x,这个多边形有x个角,每个角可以去连接除自己和相邻的两个以外的所有角,得到一条对角线,可以连()3x-条,则一共可以连接()3x x-条对角线,除去重复的是()32x x-条,列式:()3202x x-=,解得18x=,25x=-(舍去),故答案是:8.【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列方程求解.8.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡190张,设全班有x名同学则可列方程为________.【答案】x(x-1)=190【分析】根据题意x名同学,每个人送出(x-1)张贺卡,由此列出方程.【详解】由题意得(1)190x x-=,故答案为:(1)190x x-=.【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.9.某班师生十年后再次聚会,见面时相互握手一次,共握手1275次,问原来班级师生共________人.【答案】51【分析】设这次参加聚会的同学有x人,已知见面时两两握手一次,那么每人应握(x-1)次手,所以x人共握手12x(x-1)次,又知共握手1275次,以握手总次数作为等量关系,列出方程求解.【详解】解:设这次参加聚会的同学有x人,则每人应握(x-1)次手,由题意得:12x(x-1)=1275,即:x2-x-2550=0,解得:x1=51,x2=-50(不符合题意舍去)所以,这次参加同学聚会的有51人.故答案为:51.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系,列出方程求解.10.经研究发现,若一人患上甲型流感,经过两轮传染后,共有144人患上流感,按这样的传染速度,若3人患上流感,则第一轮传染后患流感的人数共有________人.【答案】36【分析】设这种流感的传播速度是一人可才传播给x人,则一轮传染以后有(x+1)人患病,第二轮传染的过程中,作为传染源的有(x+1)人,一个人传染x 个人,则第二轮又有x(x+1)人患病,则两轮后有1+x+x (x+1)人患病,据此即可通过列方程求出流感的传播速度,然后计算3人患了流感,第一轮传染后患流感的人数共有的人数就可以了.【详解】设这种流感的传播速度是一人可才传播给x人,根据题意有1+x+(x+1)x=144,解得x=11(负值舍去).3人患了流感,第一轮传染后患流感的人数共有3+3×11=36(人).故答案是:36.【点睛】本题考查了一元二次方程的应用,解决本题是要十分注意的是题目中的“共有”二字,否则一定得出错误的结果.11.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为.【答案】x(x﹣1)=2070(或x2﹣x﹣2070=0).【分析】根据题意得:每人要赠送(x-1)张相片,有x个人,然后根据题意可列出方程:(x-1)x=2070.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070(或x2﹣x﹣2070=0),故答案为x(x﹣1)=2070(或x2﹣x﹣2070=0).【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x-1张相片,有x个人是解决问题的关键.12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,若设有x家公司出席了这次交易会,则可列方程为:.【答案】12x(x−1)=78.【分析】每家公司都与其他公司签订了一份合同,设有x家公司出席了这次交易会,则每个公司要签(x-1)份合同,签订合同共有12x(x-1)份,由此列出方程即可.【详解】解:设有x家公司出席了这次交易会,依题意,得12x(x−1)=78.故答案为:12x(x−1)=78.【点睛】本题考查了一元二次的应用.13.某航空公司有若干个飞机场,每两个飞机场之间都有一条航线,一共有15条航线,若设这个航空公司有x个飞机场,则可列方程为_____________________.【答案】1x(x1)15 2-=【分析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数-1)=15×2.【详解】设这个航空公司共有飞机场共有x个,x(x−1)=15×2,12x(x−1)=15.故答案为12x(x−1)=15.【点睛】本题考查了一元二次方程,解题的关键是根据题意找出等量关系列出一元二次方程.14.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.【答案】11【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x (x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x人,由题意得,2+2x+(2+2x)x=288,解得:x1=11,x2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.三、解答题15.某高校有300台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,_________轮感染后机房内所有电脑都被感染.【答案】(1)每轮感染中平均一台电脑会感染3台电脑;(2)5【分析】(1)设每轮感染中平均一台会感染x 台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x 的值即可;(2)结合(1)得出n 轮后共有(1+x)n 台被感染,进而求出即可.【详解】解:(1)每轮感染中平均一台电脑会感染x 台电脑,第一轮传播过后感染的电脑数为:(1+x )台,第二轮传播过后感染的电脑数为:(1+x )+x (1+x )=(x +1)²台,2(1)16+=x解得3x =或5x =-,其中5x =-舍去,答:每轮感染中平均一台电脑会感染3台电脑;(2) ∵由(1)可知,n 轮后,有(1+x)n 台电脑被感染,故(1+3)n =4n ,∵n=4时,44=256,n=5时,45=1024,∵256<301<1024,故经过5轮后所有电脑都被感染,答:5轮感染后机房内所有电脑都被感染.【点睛】此题主要考查了一元二次方程的应用,能够正确表示每轮感染中,有多少台电脑被感染是解决此题的关键.16.某象棋比赛,每名选手都要与其他选手比赛一局,每局胜者记2分,负者记0分,和棋各记1分.有四位观众统计了比赛中全部选手得分总数,分别是2017,2070,2018,2078,经核实,只有一位观众统计准确,则这次比赛的选手共有多少名?【答案】这次比赛的选手共有46名.【分析】全部选手的得分等于一个参赛选手比赛的总局数乘以2分,设比赛的人数是x 则比了12x (x-1)局,根据题意列出方程解答即可.【详解】解:设这次比赛共有x 名选手.由题意可知,无论胜负,每局两名选手得分总和均为2分,x 名选手比赛的总局数为1(1)2x x -, 所以得分总数为(1)x x -.因为x 是正整数,且大于1,所以x ,1x -是两个连续的正整数.不难验证:两个连续的整数之积的末位数字只能是0,2,6,故得分总数只能是2070, 则1(1)220702x x -⨯=, 解得1246,45x x ==-(舍去).答:这次比赛的选手共有46名.【点睛】此题考查一元二次方程的实际运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系解决问题.17.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x 个好友转发,每个好友转发之后,又邀请x 个互不相同的好友转发,已知经过两轮转发后,共有111个 人参与了本次活动.(1)x 的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?【答案】(1)10;(2)再经过两轮转发后,参与人数会超过10000人.【分析】(1)第一轮转发了x 个人,第二轮转发了x 2个人,根据两轮转发共有111人参与列出方程求解即可;(2)根据103=1000,104=10000可得第四轮转发后参与人数会超过10000人,即可得答案.【详解】(1)∵第一轮转发了x 个人,第二轮转发了x 2个人,∴1+x+x 2=111,解得:110x =,211x =-(舍),∴x 的值为10.(2)∵103=1000,104=10000,1+102+103<10000,∴第四轮转发后参与人数会超过10000人,∴再经过两轮转发后,参与人数会超过10000人.【点睛】本题考查了列一元二次方程解实际问题的运用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数根据两轮总人数为111人建立方程是关键.18.我们知道,“传销”能扰乱一个地区正常的经济秩序,是国家法律明令禁止的.你了解传销吗?某非法传销组织由头目一人可发展若干数目的下线成员,每个下线成员再发展同样数目的下线成员,经过两轮发展后,非法传销组织成员共有421人.问,在每轮发展中平均一个成员发展下线多少人?【答案】在每轮发展中平均一个成员发展下线20人.【分析】设在每轮发展中平均一个成员发展下线x 人,根据一个传销组织头目经过两轮发展后,非法传销组织成员共有421人,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设在每轮发展中平均一个成员发展下线x 人,依题意,有21421x x ++=,解得120x =,221x =-(舍去).答:在每轮发展中平均一个成员发展下线20人.【点睛】本题考查了一元二次方程的应用,找准等量关系,列出一元二次方程是解题的关键.19.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?【答案】(1) 每轮传染中平均一个人传染了10个人;(2) 过三轮后将有1331人受到感染.【分析】(1)设每轮传染中平均一个人传染了x 个人,根据经过两轮传染后共有121人受到感染,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)将x =10代入(x +1)3中即可求出结论.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:(x +1)2=121解得:x 1=10,x 2=﹣12(不合题意,应舍去).答:每轮传染中平均一个人传染了10个人.(2)当x =10时,(x +1)3=(10+1)3=1331.答:经过三轮后将有1331人受到感染.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?【答案】(1) 每轮分裂中平均每个有益菌可分裂出19个有益菌.(2) 经过三轮培植后共有480 000个有益菌. 【分析】(1)设每轮分裂中,平均每个有益菌可分裂出x个有益菌,则根据题意可得60(1+x)2=24000,求解即可解答;(2)根据(1)可得经过三轮培植后有60×(1+x)3个有益菌,结合x的值即可解答.试题解析:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌【详解】(1)根据题意,得60(1+x)2=24 000.解得x1=19,x2=-21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)经过三轮培植后,得60(1+19)3=60×203=480 000(个).答:经过三轮培植后共有480 000个有益菌.。

作业:用一元二次方程解决传播问题

作业:用一元二次方程解决传播问题

实际问题与一元二次方程用一元二次方程解决传播问题基础题知识点1 传播问题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A.8人 B.9人C.10人 D.11人2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只 B.11只C.12只 D.13只3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支.知识点2 握手问题4.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )A.x(x+1)=210 B.x(x-1)=210C.2x(x-1)=210 D.12x(x-1)=2105.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( )A.x(x-1)=10 B.x(x-1)2=10C.x(x+1)=10 D.x(x+1)2=106.参加一次足球联赛的每两个队之间都进行两场比赛,若共要比赛110场,则共有________个队参加比赛( )A.8 B.9C.10 D.117.一条直线上有n个点,共形成了45条线段,求n的值.知识点3 数字问题8.两个连续偶数的和为6,积为8,则这两个连续偶数是________.9.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是________.10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?中档题11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A.4个 B.5个C.6个 D.7个12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?13.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?15.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?综合题16.(1)n边形(n>3)其中一个顶点的对角线有________条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.。

用一元二次方程解决传播问题专项训练

用一元二次方程解决传播问题专项训练

用一元二次方程解决传播问题专项训练一.选择题(共10小题)1.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感,每轮传染中平均一只鸡传染()只鸡.A.22B.24C.25D.262.一个人患了流感,经过两轮传染后共有144人患了流感,每轮传染中平均一个人传染了()A.9B.10C.11D.123.有一人患流感,经过两轮传染后共有121人患了流感,求每轮传染中平均一个人传染了几个人?如果设每轮传染中平均一个入传染了x个人,那么依题意可得方程()A.1+x+x2=121B.1+x+x(1+x)=121C.x2=121D.1+2x=1214.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若3人患了流感,第一轮传染后患流感的人数共有()A.1331人B.363人C.33人D.30人5.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,下列列式正确是()A.x+x(1+x)=100B.1+x+x2=100C.1+x+x(1+x)=100D.x(1+x)=1006.2021年3月25日,国家卫健委新闻发言人米锋在发布会上表示,疫情仍在全球扩散蔓延,但我国疫情已得到有效控制.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同),则每轮传染中平均每个人传染了几个人()A.12B.14C.10D.117.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x个人,下列列式正确是()A.x+x(1+x)=81B.1+x+x2=81C.1+x+x(1+x)=81D.x(1+x)=818.有一人患了新型冠状病毒肺炎,经过两轮传染后共有100人患了新型冠状病毒肺炎,那么每轮传染中平均一个人传染的人数为()A.8人B.9人C.10人D.11人9.有一个人患流感,经过两轮传染后新增80个人患流感,则每轮传染中平均一个人传染的人数为()A.11B.10C.9D.810.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A.5B.6C.7D.8二.填空题(共5小题)11.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为.12.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.13.某种传染病,传播速度极快,通常情况下,每天一个人会传染给若干人.现有一人患病,开始两天共有225人患病,则一人平均每天传染个人.14.(2019秋•海曙区校级期末)有一个人患了流感,经过两轮传染后得知第二次被传染的有30人,如果每轮传染率都相同,那么每轮传染中平均一个人传染了个人.15.(2020•黔西南州)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了个人.三.解答题(共10小题)16.流行病学中有一个叫做基本传染数R0的数字,简单来说,就是一个人在一个周期内会感染几个人,有一个人感染了新冠病毒,经过两个周期的传染后共有36人感染,求新冠病毒的基本传染数R0.17.新型冠状病毒肺炎是一种急性感染性肺炎.2020年2月7日,国家卫健委决定将“新型冠状病毒感染的肺炎”命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.2021年10月30日,张文宏教授表示,未来全国和全世界都接种疫苗后,人们还是应该尽量减少聚集,在室内拥挤的地方戴口罩,加强通风.2020年1月,武汉某小区有一人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,求每轮传染中平均一个人传染了多少人?18.我们知道,传销能扰乱一个地方正常的经济秩序,是国家法律明令禁止的.某非法传销组织现有一名头目计划每人发展若干数目的下线,每个下线再发展同样数目的下线成员.经过两轮发展后,非法传销组织成员共有57人,间每个人计划发展下线多少人?19.为了响应“践行核心价值观,传递青春正能量”的号召,小颖决定走入社区号召大家参加“传递正能量志愿服务者”.假定从一个人开始号召,每一个人每周能够号召相同的m 个人参加,被号召参加的人下一周会继续号召,两周后,将有121人被号召成为“传递正能量志愿服务者”.(1)求出m的值;(2)经过计算后,小颖、小红、小丽三人开始发起号召,但刚刚开始,他们就发现了问题,实际号召过程中,不是每一次号召都可以成功,而他们三人的成功率也各不相同,已知小红的成功率比小颖的两倍少10%,第一周后小丽比小颖多号召2人,三人一共号召17人,其中小颖号召了n人.请分别求出他们三人号召的成功率.20.有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了x个人.(1)第二轮被传染上流感人数是;(用含x的代数式表示)(2)在进入第二轮传染之前,如果有4名患者被及时隔离(未治愈),经过两轮传染后是否会有81人患病的情况发生,并说明理由.21.(2020•平原县模拟)某年冬天流感大暴发,有一个人患了流感,经过两轮传染后共有144人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?22.(2021秋•玉田县期中)卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有144人成为新冠肺炎病毒的携带者.(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;(2)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?23.(2021春•长寿区校级月考)新型冠状病毒传染速度非常快,如果一人被感染不加以控制经过两轮传染后就会有225人被感染病毒.(1)请你用所学知识分析,如果不加以控制每轮传染中平均一人传染多少人;(2)某病源地经过两轮传染后已有225人被感染,此时引起了有关部门高度重视,迅速采取隔离措施控制传染源,减少每轮平均一人的传染人数.采取隔离措施后,首轮传染中每个已被感染者的传染人数比(1)中人均传染人数减少10a%,第二轮传染中每个已被感染者的传染人数比首轮传染中人均传染人数减少,这样从采取隔离措施后到两轮传染结束时该地共有5400人被该病毒感染,求a的值.24.(2020•中山市校级模拟)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(2)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业用一元二次方程解
决传播问题
TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】
实际问题与一元二次方程
用一元二次方程解决传播问题
基础题
知识点1 传播问题
1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )
A.8人 B.9人
C.10人 D.11人
2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )
A.10只 B.11只
C.12只 D.13只
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支.
知识点2 握手问题
4.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己
的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x-1)=210
C.2x(x-1)=210 D.1
2
x(x-1)=210
5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( )
A.x(x-1)=10 B.x(x-1)
2
=10
C.x(x+1)=10 D.x(x+1)
2
=10
6.参加一次足球联赛的每两个队之间都进行两场比赛,若共要比赛110场,则共有________个队参加比赛( )
A.8 B.9
C.10 D.11
7.一条直线上有n个点,共形成了45条线段,求n的值.
知识点3 数字问题
8.两个连续偶数的和为6,积为8,则这两个连续偶数是________.
9.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是________.
10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?
中档题
11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )
A.4个 B.5个
C.6个 D.7个
12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?
13.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?
14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?
15.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
综合题
16.(1)n边形(n>3)其中一个顶点的对角线有________条;
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.。

相关文档
最新文档