二重积分习题及答案
第九章-二重积分-复习题答案
第九章 二重积分 复习题答案一、单项选择题1、设D 是由曲线x y x 422=+围成的闭区域,则()⎰⎰+Dd y x f σ22=( C )A.()dr rf d ⎰⎰πθ012B. ()rdr r f d ⎰⎰-22sin 402ππθθC.()rdr rfd⎰⎰-22cos 402ππθθ D.()dr r f d ⎰⎰-22cos 402ππθθ2、设f 是连续函数,D 是由0,122≥≤+y y x 确定的区域,则=+⎰⎰σd y x f D)(22( A )。
A 、 10()d rf r dr πθ⎰⎰ B 、2100()d rf r dr πθ⎰⎰C 、10()d f r dr πθ⎰⎰ D 、210()d f r dr πθ⎰⎰3、设22:14, D x y ≤+≤则2Ddxdy =⎰⎰( D ) A.3π B.4π C.30π D.6π 4、设D 是由直线,2,1y x y x y ===围成的闭区域,则Ddxdy =⎰⎰( A 、12 B 、14 C 、1 D 、325、设积分区域D 是由圆22x y Ry +=围成,则二重积分22()Df xy d σ+=⎰⎰( D )A 、2sin ()00R d f r dr πθθ⎰⎰B 、22sin ()00R d f r rdr πθθ⎰⎰ C 、2sin ()00R d f r dr πθθ⎰⎰D 、2sin ()00R d f r rdr πθθ⎰⎰6、若{}22(,)12D x y x y =≤+≤,则二重积分Dd σ⎰⎰=( C )A.2π B. 2πC. πD. 3π二、填空题:1、变换二次积分⎰⎰⎰⎰-+=21201),(),(yy dx y x f dy dx y x f dy I 的积分次序,则=I ⎰⎰-=12),(xxdy y x f dx I ;2、改变二次积分210(,)y y dy f x y dx ⎰⎰的积分次序,则I = ⎰⎰1),(xxdy y x f dx ;3、改变二次积分210(,)x dx f x y dy ⎰⎰的积分次序,可得21(,)x dx f x y dy ⎰⎰=_______⎰⎰11),(ydx y x f dy ;4、若D 是由直线 1,1,1,1=-==-=y y x x 围成的矩形区域,则⎰⎰=Ddxdy 25、交换二次积分1(,)00yI dy f x y dx =⎰⎰的积分次序,则I =⎰⎰11),(xdy y x f dx ___;三、计算题:1、求⎰⎰+Ddxdy y x )2(,其中D 是由曲线2x y =和0=+y x 围成的闭区域. 101|)1022()2223(|)22()2()2(:0154314320120122-=---=⋅---=⋅+=+=+------⎰⎰⎰⎰⎰⎰x x x dx x x x dxy xy dy y x dx dxdy y x xx Dxx解2、求σd y x D⎰⎰+22,其中D 是由圆周x y x 222=+所围成的闭区域。
二重积分习题答案
二重积分习题答案 Revised by BLUE on the afternoon of December 12,2020.第八章二重积分习题答案练习题1.设D:0y ≤0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y=200d πθ⎰⎰=222001()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题1.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd y x D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222220(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。
数学分析二重积分的计算练习题解答
2009大专A 班数学分析第13章二重积分的计算练习题解答一、求下列二重积分: 1.22()d d Rx y x y +⎰⎰, 其中R :11x -≤≤,11y -≤≤. 解:13111222221111()d d d ()d d 3Ry x y x y x x y y x y x ----⎡⎤+=+=+⎢⎥⎣⎦⎰⎰⎰⎰⎰ 13121028(2)d 4()3333x x x x -=+=+=⎰.2.(32)d d Rx y x y +⎰⎰,其中R 是由坐标轴与2x y +=所围成的闭区域.解: 如图,积分区域可以表示为x 型区域: 02y x ≤≤-,02x ≤≤.于是有(32)d d Rx y x y +⎰⎰22222000d (32)d 3d xxx x y y xy y x --⎡⎤=+=+⎣⎦⎰⎰⎰ 220(422)d x x x =+-⎰2320220(4)33x x x =+-=. 3.cos()d d Rx x y x y +⎰⎰,其中R 是以(0,0)(π,0)(π,π)为顶点的三角形区域.解: 如图,积分区域可以表示为x 型区域: 0y x ≤≤,0x π≤≤.于是有cos()d d Rx x y x y +⎰⎰[]00d cos()d sin()d x xx x x y y x x y x ππ=+=+⎰⎰⎰001(sin 2sin )d d(cos cos 2)2x x x x x x x ππ=-=-⎰⎰ 001113(cos cos 2)(cos cos 2)d (102222x x x x x x ππππ⎡⎤=---=---=-⎢⎥⎣⎦⎰.4.d Rx y ⎰⎰,其中R 是由2y x =与y =所围成的闭区域. 解: 如图.积分区域可以表示为x型区域: 2x y ≤≤,01x ≤≤.于是有d Rx y⎰⎰311202d [3x x x y x y x ==⎰⎰714402()d 3x x x =-⎰111542416()311555x x =-=. xyπxy225.(+)d d Rx y x y ⎰⎰, 其中R :1x y +≤.解:如图,积分区域为两个x 型区域1R 与2R 之并,其中1R :11x y x --≤≤+, 10x -≤≤, 1R 2R2R :11x y x -≤≤-, 01x ≤≤.于是有12(+)d d (+)d d (+)d d RR R x y x y x y x y x y x y =-+⎰⎰⎰⎰⎰⎰01111101d ()d d ()d xxxx x y x y x x y y +-----=-++⎰⎰⎰⎰011122111011()d ()d 22x xx x y x x y x x +----+-=-++⎰⎰ 012210112[1(21)]d [1(21)]d 223x x x x -=-++--=⎰⎰. 6.22()d d Rxy x x y +-⎰⎰,其中R 是由直线2y =,y x =及2y x =所围成的闭区域.解: 如图,积分区域可以表示为y 型区域:2yx y ≤≤,02y ≤≤. 于是有22()d d Rx y x x y +-⎰⎰ 322222222d ()d d 32yy y y x x y x y x x y x y ⎡⎤=+-=+-⎢⎥⎣⎦⎰⎰⎰232019313()d 2486y y y =-=⎰. 7.d d 1Rxx y y +⎰⎰,其中R 是由21y x =+,2y x =及0x =所围成的闭区域. 解:如图,积分区域可以表示为x 型区域: 221x y x ≤≤+,01x ≤≤.于是有d d 1Rxx y y +⎰⎰22111120201d d [ln(1)]d 1x x x xx x y x y x y ++==++⎰⎰⎰ 1120ln(2)d ln(21)d x x x x x x =+-+⎰⎰91ln 3ln 282=--.xy1y 18.sin d d Rx x y x ⎰⎰,其中R 是由直线y x =,2xy =及2x =所围成的闭区域. 解:将二重积分化为先y 后x 的累次积分.积分区域可表示为x 型区域: 2xy x ≤≤,02x ≤≤(如图).故sin d d Rxx y x ⎰⎰22002sin 11d d sin d (1cos 2)22x x x x y x x x ===-⎰⎰⎰. 9.2sin d d Ry x y ⎰⎰,其中R 是由直线y x =,1y =及0x =所围成的闭区域.解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 0x y ≤≤,01y ≤≤(如图).故2sin d d Ry x y ⎰⎰11220001sin d d sin d (1cos1)2y y y x y y y ===-⎰⎰⎰. 10.2d d yRe x y -⎰⎰,其中R 是由直线1y x =-,2y =及1x =所围成的闭区域. 解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 11x y ≤≤+,02y ≤≤(如图).故2d d y Rex y -⎰⎰222124011d d d (1)2yy y ey x yey e +---===-⎰⎰⎰.二、将二重积分(,)d d Rf x y x y ⎰⎰化为不同次序的累次积分,其中区域R 分别是:1.由直线y x =及抛物线24y x =所围成. 解:积分区域如图.(1) 将二重积分化为先x 后y 的累次积分积分区域为y 型区域: 24y x y ≤≤,04y ≤≤,于是有(,)d d Rf x y x y ⎰⎰2404d (,)d yy y f x y x =⎰⎰.(2) 将二重积分化为先y 后x 的累次积分积分区域为x型区域: x y ≤≤,04x ≤≤,于是有(,)d d Rf x y x y⎰⎰4d (,)d xx f x y y =⎰⎰.y22xy11yy2312.由x 轴及半圆周222x y r +=(0)y ≥所围成. 解:积分区域如图,有(,)d d Rf x y x y⎰⎰0d (,)d rrx f x y y -=⎰d (,)d ry f x y x =⎰.3.环形闭区域:2214x y ≤+≤.解:积分区域如图.可分成4个小的x 型区域(或y 型区域),于是有(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d x f x y y x f x y y --=+⎰⎰⎰1221d (,)d d (,)d x f x y y x f x y y --++⎰⎰.或(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d y f x y x y f x y x --=+⎰⎰⎰1221d (,)d d (,)d y f x y x y f x y x --++⎰⎰.4.由双曲线2xy =,抛物线21y x =+及直线2x =所围成. 解:积分区域如图.表示为x 型区域:221y x x≤≤+,12x ≤≤, 有(,)d d Rf x y x y ⎰⎰22121d (,)d x xx f x y y +=⎰⎰.表示为两个y 型区域: 1R :22x y≤≤,12y ≤≤; 2R2x ≤≤,25y ≤≤,有(,)d d Rf x y x y⎰⎰2252212d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰.5.由圆222x y x +=,224x y x +=及直线y x =,0y =所围成. 解:积分区域如图.可以表示为两个x 型区域: 1Ry x ≤≤,12x ≤≤;2R:0y ≤≤24x ≤≤,xyxy15221x有(,)d d Rf x y x y⎰⎰2412d (,)d d (,)d x x f x y y x f x y y =+⎰⎰.可以表示为两个y 型区域:1R:12x +≤≤,01y ≤≤; 2R:2y x ≤≤, 12y ≤≤,有(,)d d R f x y x y ⎰⎰1222011d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰⎰.三、改变下列累次积分的积分次序: 1.1d (,)d yy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:0x y ≤≤,01y ≤≤,(如图).改变积分次序,积分区域可以表示为: 1x y ≤≤,01x ≤≤,于是有10d (,)d yy f x y x ⎰⎰(,)d d Df x y x y =⎰⎰11d (,)d xx f x y y =⎰⎰.2.2220d (,)d yyy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:22y x y ≤≤,02y ≤≤,(如图).改变积分次序,积分区域可以表示为:2xy ≤≤,04x ≤≤,于是有 2220d (,)d y yy f x y x ⎰⎰402d (,)d x x f x y y =⎰⎰.3.ln 1d (,)d exx f x y y ⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:0ln y x ≤≤,1x e ≤≤,(如图).x改变积分次序,积分区域可以表示为:ye x e ≤≤,01y ≤≤,于是有ln 1d (,)de xx f x y y ⎰⎰10d (,)d y eey f x y x =⎰⎰.4.πsin 0sin2d (,)d xx x f x y y -⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:sinsin 2xy x -≤≤,0x π≤≤,(如图). 改变积分次序, 积分区域为两个y 型区域1D 与2D 之并,其中1D :arcsin arcsin y x y π≤≤-, 01y ≤≤,2D :2arcsin y x π-≤≤, 10y -≤≤,于是有 πsin 0sin2d (,)d xx x f x y y -⎰⎰1arcsin 00arcsin 12arcsin d (,)d d (,)d yyyy f x y x y f x y x ππ---=+⎰⎰⎰⎰.5.12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰.解: 所给累次积分为两个先y 后x 的积分之和,故积分区域为两个x 型区域1D 与2D 之并,其中1D :0y x ≤≤, 01x ≤≤;2D :02y x ≤≤-, 12x ≤≤.改变积分次序,积分区域可以表示为:2y x y ≤≤-,01y ≤≤,于是有12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰120d (,)d y yy f x y x -=⎰⎰.6.11d (,)d x f x y y ⎰.解: 积分区域如图,有原式2121d (,)d d (,)d y y f x y x y f x y x =+⎰⎰⎰.7.12330010d(,)d d(,)dy yy f x y x y f x y x-+⎰⎰⎰⎰.解: 积分区域如图.原式232d(,)dxxx f x y y-=⎰⎰.8.14(4)d(,)dyy f x y x-⎰⎰.解: 积分区域如图.原式204224d(,)dxxx f x y y--+=⎰⎰.9.02222022d(,)d d(,)dx xx f x y y x f x y y +--+⎰⎰⎰⎰.解: 积分区域如图.原式1221200221d(,)d d(,)d d(,)dyyy f x y x y f x y x y f x y x--=++⎰⎰⎰⎰.10.21101d(,)dyyy f x y x+-⎰⎰.解: 积分区域如图.化为先y后x的累次积分,积分区域为两个x型区域1D与2D之并,其中1D:11x y-≤≤, 01x≤≤;2D1y≤≤, 12x≤≤.故原式1121011d(,)d d(,)dxx f x y y x f x y y-=+⎰⎰⎰.xy32y1xyyy=1y x=-。
二重积分(习题)
第九章 二重积分习题9-11、设⎰⎰+=13221)(D d y x I σ,其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ,其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰D d xy σ4;(II)⎰⎰--D d y x R y σ222;(III)⎰⎰++Dd y x xy σ2231cos . 解:令⎰⎰=Dd y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数,于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x x y y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ. 3、根据二重积分的性质,比较下列积分的大小:(1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(,其中}10,53|),{(≤≤≤≤=y x y x D . 解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y x I σ)94(22,其中}4|),{(22≤+=y x y x D ;解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ;解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=. 习题9-21、计算下列二重积分:(1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域:1||,1||≤≤y x ;解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy xDdx xe e e dy xye dx d y x 22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x xDσ.(4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域.解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x x D.2、画出积分区域,并计算下列二重积分:(1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;解:556)(321044712=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y x xx Dσ.(2)⎰⎰Dd xyσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ. (3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域;解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+Dy x d e σ,其中D 是由1||||≤+y x 所确定的闭区域.解:⎰⎰⎰⎰⎰⎰+--+-+--+++=10110111x x y x x x y x Dy x dy e dx dy e dx d e σe e e e e e dx e e dx e e x x 1212232)()(101201112-=++-=-+-=⎰⎰---+. a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,即12(,)()()b d a c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰. 证明:1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y ex dx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;>plot([(1-x^2)^(1/2),-1*(1-x^2)^(1/2)],x=0..1,color=1); 解:⎰⎰⎰⎰-----==aay a ax a x a dx y x f dy dy y x f dx I 22222200),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.>plot([x^2,3-2*x],x=-3..1,color=1); 解:319201(,)(,)y y yyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(y y dx y x f dy ;解:⎰⎰=12),(x xdy y x f dx I .(2)⎰⎰10),(eey dx y x f dy ;解:⎰⎰=e xdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;解:⎰⎰-=102),(y ydx y x f dy I .(5)⎰⎰-π0sin 2sin),(xx dy y x f dx ;>plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]],x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xa ax x ax dy y x f dx dy y x f dx .>plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]],x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a ay dx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.>plot([2-x,x],x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(x yDdx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y . 7、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.>with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y =0..1-x):display({A,B,F,G,H},grid=[25,20],axes=BOXED, scaling=CONSTRAINED,style=PATCHCONTOUR);解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V x Dσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin 500sin 10ππ+=,试计算所需挖掉的土方量.>plot3d(10*sin(Pi*y/500)+sin(Pi*x/20),y=0..500,x=0..20);解:)(70028)20sin 500sin10(32005000m dy x y dx zd V D =+==⎰⎰⎰⎰ππσ. 9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)],x=0..1,color=1);解:⎰⎰-=22)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;>plot([1+(1-x^2)^(1/2),1-(1-x^2)^(1/2)],x=-1..1,color=1); 解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.>plot([x^2,[[1,0],[1,1]]],x=0..1,color=1);解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;>plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdrr r f d rdr r r f d I . (2)⎰⎰--+1011222)(x xdy y x f dx ;>plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值: (1)⎰⎰-+ax ax dy y x dx 2020222)(;>plot((2*x-x^2)^(1/2),x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =,于是4204420cos 20343cos 4a adr r d I a πθθππθ===⎰⎰⎰.(2)⎰⎰+103221xxdy yx dx ;>plot([3^(1/2)*x,x],x=0..1,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I . (3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 23022233302222.>plot([3^(1/2)*x/3,(1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是36036002183a d a dr r d I a πθθππ===⎰⎰⎰.12、利用极坐标计算下列各题:(1)⎰⎰--Dd y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .(2)⎰⎰++Dd y x σ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;>plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(20102-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd x yσarctan ,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1); 解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题:(1)⎰⎰D d y x σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域;>plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1);解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I x x .(2)⎰⎰+Dd y x σ22sin ,其中D 是圆环形区域22224ππ≤+≤y x ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;>plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1);解:4332232214)32()(a dx a y a ay dx y x dy I a a a a y a y =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x .>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1);解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I . 14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--. 15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r +米,试求该水池的蓄水量. >plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr r d V (米3). 16、讨论并计算下列广义二重积分: (1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且))(1(1q p q I --=. (2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ. 即当1>p 时,广义二重积分收敛,且1-=p I π.。
高数二重积分习题解答
第9章 重积分及其应用1.用二重积分表示下列立体的体积:(1) 上半球体:2222{(,,)|;0}x y z x y z R z ++≤≥;(2) 由抛物面222z x y =--,柱面x 2+y 2=1及xOy 平面所围成的空间立体解答:(1) 222d ,{(,)|}DV x y D x y x y R ==+≤;(2) 2222(2)d d ,{(,)|1}DV x y x y D x y x y =--=+≤⎰⎰所属章节:第九章第一节 难度:一级2.根据二重积分的几何意义,确定下列积分的值:(1) D σ,其中D 为222x y a +≤;(2)(Db σ⎰⎰,其中D 为222,0x y a b a +≤>>解答:(1)32π3Da σ=;(2)232(ππ3Db a b a σ=-⎰⎰ 所属章节:第九章第一节难度:一级3.一带电薄板位于xOy 平面上,占有闭区域D ,薄板上电荷分布的面密度为(,)x y μμ=,且(,)x y μ在D 上连续,试用二重积分表示该板上的全部电荷Q . 解答:(,)d DQ x y μσ=⎰⎰所属章节:第九章第一节 难度:一级4.将一平面薄板铅直浸没于水中,取x 轴铅直向下,y 轴位于水平面上,并设薄板占有xOy 平面上的闭区域D ,试用二重积分表示薄板的一侧所受到的水压力 解答:d Dp g x ρσ=⎰⎰所属章节:第九章第一节 难度:一级5.利用二重积分性质,比较下列各组二重积分的大小(1) 21()d DI x y σ=+⎰⎰与32()d DI x y σ=+⎰⎰,其中D 是由x 轴,y 轴及直线x +y =1所围成的区域;(2) 1ln(1)d DI x y σ=++⎰⎰与222ln(1)d DI x y σ=++⎰⎰,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(3) 21sin ()d DI x y σ=+⎰⎰与22()d DI x y σ=+⎰⎰,其中D 是任一平面有界闭区域;(4) 1e d xy DI σ=⎰⎰与22e d xy DI σ=⎰⎰,其中D 是矩形区域:–1≤x ≤0,0≤y ≤1;解答:(1) 在区域D 内部,1x y +<,所以I 1>I 2;(2) 在区域D 内部,22,x x y y <<,故22ln(1)ln(1)x y x y ++<++,所以 I 1>I 2;? (3) 由于22sin ()()x y x y +<+,所以I 1<I 2;(4) 在区域D 内部,0xy <,故2xy xy e e >,所以I 1>I 2 所属章节:第九章第一节 难度:一级6.利用二重积分性质,估计下列二重积分的值 (1) d ,{(,)|04,08}ln(4)DI D x y x y x y σ==≤≤≤≤++⎰⎰;(2) 2222π3πsin()d ,(,)44DI x y D x y x y σ⎧⎫=+=≤+≤⎨⎬⎩⎭⎰⎰;(3) 221d ,{(,)|||||1}100cos cos DI D x y x y x yσ==+≤++⎰⎰;(4) 22221e d ,(,)4xy DI D x y x y σ+⎧⎫==+≤⎨⎬⎩⎭⎰⎰解答:(1) 由于{(,)|04,08}D x y x y =≤≤≤≤的面积为32,在其中111ln16ln(4)ln 4x y ≤≤++,而等号不恒成立,故816ln 2ln 2I <<;(2) 由于22π3π(,)44D x y x y ⎧⎫=≤+≤⎨⎬⎩⎭的面积为212π,在其中22sin()12x y ≤+≤,而等号不恒成立,故22π42I <<;(3) 由于{(,)|||||1}D x y x y =+≤的面积为2,在其中22111102100100cos cos x y ≤≤++,而等号不恒成立,故115150I <<; 注:原题有误?还是原参考答案有误?如将{(,)|||||1}D x y x y =+≤改为{(,)|||||10}D x y x y =+≤,则区域面积为200,结论为100251I << (4) 由于221(,)4D x y x y ⎧⎫=+≤⎨⎬⎩⎭的面积为14π,在其中12241sin()x y e ≤+≤,而等号不恒成立,故14ππe44I <<. 所属章节:第九章第一节 难度:二级7.设f (x ,y )是连续函数,试求极限:22221lim (,)d πr x y r f x y r σ+→+≤⎰⎰解答:先用积分中值定理,再利用函数的连续性,即得222220011lim (,)lim (,)lim (,)(0,0)r r r x y r f x y d f f f r rσξησξηππ+++→→→+≤=⋅==⎰⎰. 所属章节:第九章第一节难度:二级8.设f (x ,y )在有界闭区域D 上非负连续,证明: (1) 若f (x ,y )不恒为零,则(,)d 0Df x y σ>⎰⎰;(2) 若(,)d 0Df x y σ=⎰⎰,则f (x ,y )≡0解答:(1) 若f (x ,y )不恒为零,则存在00(,)x y D ∈,00(,)0f x y >,利用连续函数的保号性,存在00(,)x y 的一个邻域1D D ⊂,在其上恒有(,)0f x y >,于是1(,)d 0D f x y σ>⎰⎰,而1(,)d 0D D f x y σ-≥⎰⎰,所以11(,)d (,)d (,)d 0DD D D f x y f x y f x y σσσ-=+>⎰⎰⎰⎰⎰⎰;(2) 假若f (x ,y )不恒为零,则由上题知(,)d 0Df x y σ>⎰⎰,矛盾,故f (x ,y )≡0.所属章节:第九章第一节 难度:二级9.计算下列二重积分: (1) πsin d ,(,)12,02Dx y D x y x y σ⎧⎫=≤≤≤≤⎨⎬⎩⎭⎰⎰; (2) {}22(e )d ,(,)11,01x y D xyD x y x y σ++=-≤≤≤≤⎰⎰;(3) {}2e d ,(,)01,01xy Dxy D x y x y σ=≤≤≤≤⎰⎰; (4) 22πsin()d ,(,)0,022Dx y xy D x y x y σ⎧⎫=≤≤≤≤⎨⎬⎩⎭⎰⎰; (5){}2222d ,(,)2,2Dx D x y xy x y x σ=+≥+≤⎰⎰解答:(1)222113sin d sin 2Dx y dx x ydy xdx πσ===⎰⎰⎰⎰⎰; (2)22111112222221111(1)(e)d ()(1)22x yx yx yxD e xydx xy edy dx edy e e dx eσ+++----+=+==-=⎰⎰⎰⎰⎰⎰⎰; (3)2211101d )(1)122xy xyx Dexye dx xye dy e dx σ==-=-⎰⎰⎰⎰⎰; (4)22222222001sin()d sin()(cos 4)216D xy xy dx x y xy dy x x x dx πππσ==-=⎰⎰⎰⎰⎰;(5)11112Dxd dy xdx πσ--===⎰⎰⎰⎰.所属章节:第九章第二节难度:一级10.画出下列各题中给出的区域D ,并将二重积分(,)d Df x y σ⎰⎰化为两种次序不同的二次积分:(1) D 由曲线y =ln x ,直线x =2及x 轴所围成; (2) D 由抛物线y =x 2与直线2x +y =3所围成; (3) D 由y =0及y =sin x (0≤x ≤π)所围成; (4) D 由曲线y =x 3,y =x 所围成;(5) D 由直线y =0,y =1,y =x ,y =x –2所围成 解答:本题图略,建议画出 (1) 2ln ln 221(,)(,)y xedx f x y dy dy f x y dx =⎰⎰⎰⎰;(2)2313219231(,)(,)(,)y xxdx f x y dy dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰⎰;(3) sin 1arcsin 000arcsin (,)(,)xyydx f x y dy dy f x y dx ππ-=⎰⎰⎰⎰;(4)3301111(,)(,)(,)(,)x xyxxydx f x y dy dx f x y dy dy f x y dx dy f x y dx --+=+⎰⎰⎰⎰⎰⎰;注:原题有误?还是原参考答案有误?如将“D 由曲线y =x 3,y =x 所围成”改为“D 由曲线3,1,1y x y x ===-所围成”,则答案为原参考答案3111111d (,)d d (,)d xx f x y y y f x y x ---=⎰⎰⎰;(5)1213112122d (,)d d (,)d d (,)d d (,)d x y x yx f x y y x f x y y x f x y y y f x y x +-++=⎰⎰⎰⎰⎰⎰⎰⎰所属章节:第九章第二节 难度:一级11.计算下列二重积分: (1) 22d D x yσ⎰⎰,D 由曲线x =2,y =x ,xy =1所围成; (2) cos()d d Dx x y x y +⎰⎰,D 由点(0,0),(π,0),(π,π)为顶点的三角形区域;(3) Dσ⎰⎰,D由抛物线y =y =x 2围成; (4) d d Dxy x y ⎰⎰,D 由抛物线y 2=x 与直线y =x –2所围成; (5)sin d Dx y σ⎛⎫ ⎪⎝⎭⎰⎰,D 由直线y =x ,y =2和曲线x =y 3所围成 解答:(1) 22223122119()4x x Dx x d dx dy x x dx y y σ==-=⎰⎰⎰⎰⎰;(2)0003cos()cos()(sin 2sin )2xDx x y dxdy dx x x y dy x x x x dx ππ+=+=-=-⎰⎰⎰⎰⎰;(3)2711440026()355xD dx x x dx σ==-=⎰⎰⎰⎰; (4)22222411145(44)28y y Dxydxdy dy xydx y y y y dx +--==++-=⎰⎰⎰⎰⎰; (5) 3222113cos1sin1sin 4sin()sin()(cos1cos )2y y Dx x d dy dx y y y dy y y σ+-==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:二级12.画出下列各题中的积分区域,并交换积分次序(假定f (x ,y )在积分区域上连续):(1) 1d (,)d yy f x y x ⎰;(2) 212201d (,)d d (,)d x xx f x y y x f x y y -+⎰⎰⎰⎰;(3) 2122d (,)d yy y f x y x --⎰⎰;(4)2d (,)d x f x y y ⎰;(5) 11d (,)d x x f x y y -⎰(6)132d (,)d y y f x y x -⎰解答:本题图略,建议画出 (1) 210(,)xx dx f x y dy ⎰⎰;(2) 12(,)y dy f x y dx -⎰;(3) 14 20 1(,)(,)xdx f x y dy dx f x y dy -+⎰⎰⎰⎰;(4)11 1 21 1 0(,)(,)(,)dy f x y dx dy f x y dx dy f x y dx ++⎰⎰⎰⎰⎰;(5) 01110(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰;(6)2313201(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰⎰所属章节:第九章第二节 难度:一级13.计算下列二次积分:(1) 1/3110d yy x ⎰⎰;(2) 23211d e d y x x y --⎰⎰;(3) ππ220sin d d yxy x x⎰⎰; (4) 2220d 2sin()d xx y xy y ⎰⎰;(5)π12arcsin d cos yy x ⎰⎰;(6)24212ππd d d d 22xx x x y x y y y+⎰⎰解答:(1)31/1111000016x y dy dx x ===⎰⎰⎰⎰⎰; (2) 222322124110001(1)2y y y y x dx e dy dy e dx ye dy e +-----===-⎰⎰⎰⎰⎰;(3) 22220000sin sin sin 1x y xx dy dx dx dy xdx x xππππ===⎰⎰⎰⎰⎰; (4) 222222202sin()2sin()[22cos()]4sin 4y xdx y xy dy dy y xy dx y y y dy ==-=-⎰⎰⎰⎰⎰;(5)1sin 2220arcsin 0cos cos sin cos xydy dx x πππ==⎰⎰⎰⎰⎰3222011(1cos )1)33x π=-+=;(6)22422231211284sincos2222xy yxxxdx dy dx dy dy dx y ydy yyyπππππππ++==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节 难度:二级14.利用积分区域的对称性和被积函数关于x 或y 的奇偶性,计算下列二重积分: (1) 222||d ,:Dxy D x y R σ+≤⎰⎰; (2) 2322(tan 4)d d ,:4Dx x y x y D x y +++≤⎰⎰; (3) 2222(1)arcsin d ,:()Dyx x D x R y R Rσ++-+≤⎰⎰; (4)(||||)d d ,:||||1Dx y x y D x y ++≤⎰⎰解答:(1) 设2221:,0,0D x y R x y +≤≥≥,则14320||4||4sin cos 2RDD R xy d xy d d r dr πσσθθθ===⎰⎰⎰⎰⎰⎰; (2)23(tan 4)416DDx x y dxdy dxdy π++==⎰⎰⎰⎰; (3) 由于积分区域关于x 对称,被积函数是关于y 的奇函数,故2(1)arcsind 0Dyx x Rσ++=⎰⎰;(4) 设1:1,0,0D x y x y +≤≥≥,则11104(||||)2||883xDDD x y dxdy x dxdy xdxdy dx xdy -+====⎰⎰⎰⎰⎰⎰⎰⎰. 所属章节:第九章第二节 难度:二级15.利用极坐标化二重积分(,)d Df x y σ⎰⎰为二次积分,其中积分区域D 为:(1) 22:,(0)D x y ax a +≤>; (2) 22:14D x y ≤+≤; (3) :01,01D x y x ≤≤≤≤-; (4) 22:2()D x y x y +≤+ (5) 22:24D x x y ≤+≤ 解答:(1)πcos 2π02d (cos ,sin )d a f r r r r θθθθ-⎰⎰;(2) 2π21d (cos ,sin )d f r r r r θθθ⎰⎰;(3) π12cos sin 0d (cos ,sin )d f r r r r θθθθθ+⎰⎰;(4)3π2(cos sin )4π04d (cos ,sin )d f r r r r θθθθθ+-⎰⎰;(5)π3π2222ππ2cos 022d (cos ,sin )d d (cos ,sin )d f r r r r f r r r r θθθθθθθ-+⎰⎰⎰⎰所属章节:第九章第二节 难度:一级16.利用极坐标计算下列二重积分:(1) 22d ,:Dx y D x y Rx +≤;(2) 22222222()d d ,:()()Dx y x y D x y a x y ++≤-⎰⎰; (3)22arctand d ,:14,0,Dyx y D x y y y x x≤+≤≥≤⎰⎰;(4)2222d d ,:2,2Dx x y D x y x y x +≥+≤⎰⎰;(5) arctan22,:14,yxDD x y x y σ≤+≤≤≤(6)22()d d Dx y x y +⎰⎰,D :第一象限中由圆22222,4x y y x y y +=+=及直线,x y ==所围成.解答:(1)cos 33322022114d (1sin )()333R Dx y d R d R ππθππθθθπ--==-=-⎰⎰⎰;(2)223424440()4cos 28Dx y dxdy d dr a d a πππθθθ+===⎰⎰⎰⎰⎰;(3) 224013arctan d d 64Dy x y d rdr x ππθθ==⎰⎰⎰⎰;(4)2cos 2444448cos (cos cos )332Dxdxdy d r dr d ππθπππθθθθθ--==-=⎰⎰⎰⎰;注:本小题与第9大题第(5)小题相同.(5)arctan233414yxDd e dr e e πππθπσθ==-⎰⎰;(6)4sin 2234332sin 6615()d d 60sin (28Dx y x y d r dr d ππθππθθθθπ+===⎰⎰⎰⎰⎰. 所属章节:第九章第二节 难度:二级17.设r ,θ为极坐标,在下列积分中交换积分次序: (1) πcos 2π02d (,)d (0)a f r r a θθθ->⎰⎰;(2) π200d (,)d (0)f r r a θθ>⎰⎰;(3) 0d (,)d (02π)af r r a θθθ<<⎰⎰;(4)π4cos 0d (,)d (0)a f r r a θθθ>⎰⎰;解答:(1)arccosarccosd (,)d r aa ra r f r θθ-⎰⎰;(2) 2222πarcsin 210arcsin 2d (,)d r aa r ar f r θθ⎰⎰;(3) 0d (,)d aa rr f r θθ⎰⎰;(4)ππ44arccosd (,)d d (,)d aa rr f r r f r θθθθ+⎰⎰⎰.所属章节:第九章第二节 难度:一级18.计算下列二次积分:(1) 221d d xy x y +⎰;(2) 0d d yyy x x;(3) 20d x y ⎰;(4)1223/201d )d x x x y y --+⎰.解答:(1)22211221(1)24x y r e e dx dy d e rdr d πππθθ+--===⎰⎰⎰⎰;(2)21242000011264yy dy dx d rdr d x ππθθθθπ===⎰⎰⎰;(3)22cos 232200816cos 39dx d r dr d ππθθθθ===⎰⎰⎰⎰;(4)11223/2222110sin cos )(sin cos 1)22xdx x y dy d r dr d ππθθπθθθθ---++==+-=-⎰⎰⎰⎰所属章节:第九章第二节 难度:二级19.计算下列二重积分: (1)22max(,)e d d ,:{(,)|01,01}x y Dx y D x y x y ≤≤≤≤⎰⎰;(2) 2222|4|d d ,:{(,)|9}Dx y x y D x y x y +-+≤⎰⎰; (3) ππ|cos()|d d ,:{(,)|0,0}22Dx y x y D x y x y +≤≤≤≤⎰⎰;(4)d ,:{(,)|11,02}Dx y D x y x y -≤≤≤≤.解答:(1)222211max(,)1xyx y x y D edxdy dx e dy dy e dx e =+=-⎰⎰⎰⎰⎰⎰;(2)22232222221|4|(4)(4)2Dx y dxdy d r rdr d r rdr ππθθπ+-=-+-=⎰⎰⎰⎰⎰⎰; (3)222202|cos()|cos()cos()2xxDx y dxdy dx x y dy dx x y dy ππππππ--+=+-+=-⎰⎰⎰⎰⎰⎰;(4)211152223x xDdx dx π=+=+⎰⎰⎰⎰ 所属章节:第九章第二节 难度:三级20.选择适当坐标计算下列各题: (1)22d Dx yσ⎰⎰,其中D 是由双曲线xy =1与直线y =x ,x =2围成;(2) Dσ,其中22{(,)|1,0,0}D x y x y x y =+≤≥≥; (3) 22()d d Dx y x y +⎰⎰,其中D 是直线y =x ,y =x +a ,y =a ,y =3a (a >0)围成; (4)d d Dxy x y ⎰⎰,其中2222{(,)|0,1,2}D x y y x y x y x =≥+≥+≤. 解答:(1) 22223122119()4x x Dx x d dx dy x x dx y y σ==-=⎰⎰⎰⎰⎰;注:本小题与第11大题第(1)小题重复.(2)2220(2)28D Dx d d y ππππσσθ-===⎰⎰⎰⎰⎰; (3)3222220()()14a xx aDx y dxdy dy x y dx a ++=+=⎰⎰⎰⎰;(4)2cos 353301019sin cos (4cos sin sin cos )416Dxydxdy d r dr d ππθθθθθθθθθ==-=⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:二级21.用适当的变量变换,计算下列二重积分: (1) 22sin(94)d d Dx y x y +⎰⎰,中D 是椭圆形闭区域22941x y +≤位于第一象限内的部分; (2)22d d Dx y x y ⎰⎰,D 是由双曲线xy =1,xy =2与直线x =y ,x =4y 所围成的在第一象限内的闭区域;(3) 2222()d d Dx y x y a b +⎰⎰,D 是椭圆形闭区域22221x y a b +≤;(4) e d d x yDx y +⎰⎰,D 是闭区域|x |+|y |≤1; (5)32()cos ()d d Dx y x y x y +-⎰⎰,其中D 是以(π,0),(3π,2π),(2π,3π),(0,π)为顶点的平行四边形; 参考答案:(1)π(1cos1)24-(提示:作变换11cos ,sin 32x r y r θθ==); (2) 7ln 23(提示:作变换,yxy u v x ==);(3) 1π2ab (提示:作变换cos ,sin x ar y br θθ==);(4) 1e e --(提示:作变换,x y u x y v +=-=); (5) 78π5(提示:作变换,x y u x y v +=-=)解答:(1) 作变换11cos ,sin 32x r y r θθ==,则16J r =,1222201sin(94)d d sin (1cos1)624Dx y x y d r rdr ππθ+=⋅=-⎰⎰⎰⎰; (2) 作变换,y xy u v x ==,则12J v=, 2122211417d d ln 223Dx y x y du u dv v ==⎰⎰⎰⎰; (3) 作变换cos ,sin x ar y br θθ==,则J abr =,2221322001()d d 2Dx y x y d abr dr ab a b πθπ+==⎰⎰⎰⎰;(4) 作变换,x y u x y v +=-=,则12J =, 111111ed d 2x yuDx y du e dv e e +---==-⎰⎰⎰⎰; (5) 作变换,x y u x y v +=-=,则12J =52323251()cos ()d d cos 392Dx y x y x y du u v dv πππππ+-=⋅=⎰⎰⎰⎰. (原参考答案有误?)所属章节:第九章第二节 难度:三级22.利用二重积分求下列平面区域的面积: (1) D 由曲线e ,e x x y y -==及x =1围成; (2) D 由曲线y =x +1,y 2= –x –1围成; (3) D 由双纽线22222()4()x y x y +=-围成; (4) {(cos ,sin )|24sin }D r r r θθθ=≤≤; (5) 1{(cos ,sin )|1cos }2D r r r θθθ=≤≤+; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由曲线y =x 3,y =4x 3,x =y 3,x =4y 3所围成的第一象限部分参考答案:(1) 1e e 2-+-;(2)16;(3) 4;(4) 4π3+;(5) 5π6+;(6) 25π8a ;(7) 18解答:(1) 1110()2xx e x x eDA dxdy dx dy e e dx e e ---===-=+-⎰⎰⎰⎰⎰;(2) 201021111()6y y DA dxdy dy dx y y dx -----===--=⎰⎰⎰⎰⎰; (3) 双纽线22222()4()x y x y +=-用极坐标表示24cos2r θ=,44048cos24DA dxdy d d ππθθθ====⎰⎰⎰⎰⎰;(4) 4sin 222662(48cos2)DA dxdy d rdr d ππθππθθθ===-=⎰⎰⎰⎰⎰4π3+;(5) 221cos 331252(4cos cos2)2DA dxdy d rdr d ππθθθθθ+===++=⎰⎰⎰⎰⎰5π6+ (6) 曲线2223()2(0)x y ax a +=>用极坐标表示32cos r a θ=,32cos 2622024cos a DA dxdy d rdr ad ππθθθθ====⎰⎰⎰⎰⎰25π8a ; (7)4sin 222662(48cos2)DA dxdy d rdr d ππθππθθθ===-=⎰⎰⎰⎰⎰18?所属章节:第九章第二节 难度:二级23.利用二重积分求下列各题中的立体Ω的体积:(1) Ω为第一象限中由圆柱面y 2+z 2=4与平面x =2y ,x =0,z =0所围成;(注:象限应为卦限?) (2) Ω由平面y =0,z =0,y =x 及6x +2y +3z =6围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤; (4) 222{(,,)|1,11x y z x y z z Ω=+≤+-≤≤; 参考答案:(1)163;(2) 14;(3) 7π6;(4) 8π3解答:(1) 2221623DV dy ====⎰⎰⎰; (2) 21(22)34DV x y dxdy =--=⎰⎰;(3) 2122207[(1()](1)6DV x y dxdy d r rdr ππθ=-+=+=⎰⎰⎰⎰;(4) 220822423xyD V d rdr πππθπ=⋅-=-=⎰⎰⎰所属章节:第九章第二节 难度:二级24.设f (x )在[0,1]上连续,D 由点(0,0)、(1,0)、(0,1)为顶点的三角形区域,证明:1()d ()d Df x y uf u u σ+=⎰⎰⎰解答:将二重积分化为二次积分,再用积分变换u =x +y ,然后交换积分顺序111111()d ()()()()d xu xDf x y dx f x y dy dx f u du du f u dx uf u u σ-+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰.所属章节:第九章第二节 难度:三级25.设f (x )连续,证明:221()d d (x y f x y x y f u u +≤+=⎰⎰解答:作变量变换11(),()22x u v y u v =-=+,则12J =,22221211()()()(22x y u v f x y dxdy f u dudv f u dv f u +≤+≤+===⎰⎰⎰⎰. 所属章节:第九章第二节 难度:三级26.设f (x )在[a ,b ]上连续,证明:()22()d ()()d bbaaf x xb a f x x ≤-⎰⎰解答:设区域{(,)|,}D x y a x b a y b =≤≤≤≤,则2(())()()()()bbbbb aaaaaf x dx f x dx f x dx f x dx f y dy =⋅=⋅⎰⎰⎰⎰⎰()()Df x f y dxdy =⎰⎰2222()()11()()222DD Df x f y dxdy f x dxdy f y dxdy +≤=+⎰⎰⎰⎰⎰⎰222()()()()bbbaaaDf x dxdy dx f x dy b a f x dx ===-⎰⎰⎰⎰⎰.所属章节:第九章第二节难度:三级27.设f (x )在[a ,b ]上连续,f (x )>0,证明:21()d d ()()bb a af x x x b a f x ≥-⎰⎰解答:设区域{(,)|,}D x y a x b a y b =≤≤≤≤,则11()()()()()()bbb b aaa a D f x f x dx dx f x dx dy dxdy f x f y f y ==⎰⎰⎰⎰⎰⎰,11()()()()()()b bb b a aa a Df y f x dx dx f y dy dx dxdy f x f x f x ==⎰⎰⎰⎰⎰⎰,所以211()()()()()()2()()bbaaD Df x f x f x dx dx dxdy dxdy b a f x f y f y =+≥=-⎰⎰⎰⎰⎰⎰. 所属章节:第九章第二节难度:三级28.在曲线族y =c (1–x 2)(c>0)中试选一条曲线,使这条曲线和它在(–1,0)及(1,0)两点处的法线所围成的图形面积最小解答:曲线在(1,0)处的法线为1122y x c c=-,由对称性知所围图形面积为21(1)1102241232c x x c cA dx dy c c--==+⎰⎰,令0dAdc=,得唯一驻点c =(负值舍去)又由于该实际问题的最小值存在,故当c =所属章节:第九章第二节难度:三级29.设f (x )是连续函数,区域D 由y =x 3,y =1,x = –1围成,计算二重积分22[1()]d d Dx yf x y x y ++⎰⎰ 解答:将D 分成两块,记为{}{}3312(,)1,(,),10D x y x y D x y x y x x =≤≤≤=≤≤--≤≤,则由函数的奇偶性与积分区域的对称性得12222222[1()][1()][1()]DD D x yf x y dxdy x yf x y dxdy x yf x y dxdy ++=+++++⎰⎰⎰⎰⎰⎰321225x D xdxdy dx xdy --===-⎰⎰⎰⎰.所属章节:第九章第二节 难度:三级30.设f (x )、g (x )在[0,1]上连续且都是单调减少的,试证:111()()d ()d ()d f x g x x f x x g x x ≥⎰⎰⎰解答:设{(,)|01,01}D x y x y =≤≤≤≤,则111()()()()()()()()DDI f x g x dx f x dx g x dx f x g x dxdy f x g y dxdy =-=-⎰⎰⎰⎰⎰⎰⎰()[()()]Df xg x g y dxdy =-⎰⎰,类似地有()[()()]DI f y g y g x dxdy =-⎰⎰,两式相加,并利用条件f (x )、g (x )在[0,1]上连续且都是单调减少的,就有2[()()][()()]0DI f x f y g x g y dxdy =--≥⎰⎰,所以0I ≥,即111()()d ()d ()d f x g x x f x x g x x ≥⎰⎰⎰.所属章节:第九章第二节 难度:三级31.设f (x )在[0,1]上连续,并设1()d f x x A =⎰,求11d ()()d xx f x f y y ⎰⎰解答:设{(,)|01,01}D x y x y =≤≤≤≤,则11110()()()()()()y xxdx f x f y dy dy f x f y dx dx f x f y dy ==⎰⎰⎰⎰⎰⎰1110001[()()()()]2x x dx f x f y dy dx f x f y dy =+⎰⎰⎰⎰112001()()()()2Df x f y dxdy f x dx f y dy A ==⋅=⎰⎰⎰⎰. 所属章节:第九章第二节难度:三级32.至少利用三种不同的积分次序计算三重积分2()d x yz v Ω+⎰⎰⎰,其中Ω=[0,2]×[–3,0]×[–1,1]解答:212222220313()()2616x yz dv dx dy x yz dz dx x dy x dx Ω---+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰,类似0212231()()16x yz dv dy dx x yz dz Ω--+=+=⎰⎰⎰⎰⎰⎰,1222130()()16x yz dv dz dy x yz dx Ω--+=+=⎰⎰⎰⎰⎰⎰.所属章节:第九章第三节 难度:一级33.将三重积分(,,)d f x y z v Ω⎰⎰⎰化为累次积分(三次积分),其中积分区域Ω分别是:(1) 2222:,0x y z R z Ω++≤≥;(2) Ω由x 2+y 2=4,z =0,z =x +y +10所围成; (3) 22222:2,x y z z x y Ω++≤≥+(4) Ω:由双曲抛物面z =xy 及平面x +y –1=0,z =0所围成的闭区域 解答:(1) 22222220d d (,,)d RR x R x y RR x x y f x y z z ------⎰⎰⎰;(2) 222410240d d (,,)d x x y x x y f x y z z -++---⎰⎰⎰;(3) 22222211211d d (,,)d x x y x x y x y f x y z z ------+⎰⎰⎰;(4)110d d (,,)d xxy x y f x y z z -⎰⎰⎰双曲抛物面所属章节:第九章第三节 难度:二级34.计算下列三重积分: (1)d y v Ω⎰⎰⎰,其中Ω是在平面z =x +2y 下放,xOy 平面上由y =x 2、y =0及x =1围成的平面区域上方的立体; (2) e d x y z v Ω++⎰⎰⎰,其中Ω是在平面x +y +z =1与三个坐标面围成; (3)sin()d d d x y z x y z Ω+⎰⎰⎰,其中 π{(,,)|0,0}2x y z x y z y Ω=≤≤≤≤- (4) d z v Ω⎰⎰⎰,其中Ω是第一象限中由曲面y 2+z 2=9与平面x =0、y =3x 和z =0所围成的空间立体;(5) 222d d d 1xyz x y z x y zΩ+++⎰⎰⎰,其中222{(,,)|0,0,1}x y z x z x y z Ω=≥≥++≤; (6)d d d x x y z Ω⎰⎰⎰,其中Ω是由抛物面x =4y 2+4z 2与平面x =4围成 参考答案:(1) 528;(2) e 12-;(3) π142-;(4) 278;(5) 0;(6)16π3解答:(1) 528; (2)e12-;(3)π142-; (4) 278;(5) 0;(6) 16π3所属章节:第九章第三节 难度:二级35.用截面法(先算二重积分后算单积分)解下列三重积分问题: (1) 计算三重积分sin d z v Ω⎰⎰⎰,其中Ω是由锥面z =和平面z =π围成;(2) 设Ω是由单叶双曲面x 2+y 2–z 2=R 2和平面z =0,z =H 围成,试求其体积;(3) 已知物体Ω的底面是xOy 平面上的区域222{(,)|}D x y x y R =+≤,当垂直于x 轴的平面与Ω相交时,截得的都是正三角形,物体的体密度函数为(,,)1xx y z Rρ=+,试求其质量; (4) 试求立体2222(,,)1x y x y z z a b Ω⎧⎫=+≤≤⎨⎬⎩⎭的形心坐标参考答案:(1) π2–4π;(2) 231ππ3R H H +;(3) 3;(4)20,0,3⎛⎫ ⎪⎝⎭解答:(1)230sin d sin sin 4zD z v zdz dxdy z z dz ππΩπππ==⋅=-⎰⎰⎰⎰⎰⎰⎰;与原参考答案不同(2) 2223001()3zHHD V dv dz dxdy R z dz R H H πππΩ===+=+⎰⎰⎰⎰⎰⎰⎰;(3) 223(,,)(1)(1))xR R R R D x x m x y z dv dx dydz R x dx R R ρ--Ω==+=+-=⎰⎰⎰⎰⎰⎰⎰;(4) 由对称性,0x y ==,110012zD V dv dz dxdy abzdz ab ππΩ====⎰⎰⎰⎰⎰⎰⎰,1120011123zD z zdv zdz dxdy abz dz V V V πΩ====⎰⎰⎰⎰⎰⎰⎰,即所求形心坐标为20,0,3⎛⎫ ⎪⎝⎭. 所属章节:第九章第三节难度:二级36.利用柱面坐标计算下列三重积分: (1) 22()d x y v Ω+⎰⎰⎰,其中22{(,,)|4,12}x y z x y z Ω=+≤-≤≤; (2) 32()d d d x xy x y z Ω+⎰⎰⎰,其中Ω由柱面x 2+(y –1)2=1及平面z =0,z =2所围成;(3) v Ω,其中22{(,,)|09}x y z z x y Ω=≤≤--;(4) d d d y x y z Ω⎰⎰⎰,其中22{(,,)|14,02}x y z y z x z Ω=≤+≤≤≤+; (5)d xy v Ω⎰⎰⎰,其中Ω为z ≥0上平面y =0、y =z 及柱面x 2+z 2=1围成 解答:(1)222222230010()d 2324x y v d rdr r dz r dr πΩθππ-+===⎰⎰⎰⎰⎰⎰⎰;(2) 由于被积函数、积分区域关于x 为奇,故32()d d d 0x xy x y z Ω+=⎰⎰⎰;(3) 223932403242(9)5r v d rdr rdz r r dr πΩπθπ-==-=⎰⎰⎰⎰; (4) d d d 0y x y z Ω=⎰⎰⎰; (5)d 0xy v Ω=⎰⎰⎰ 所属章节:第九章第四节难度:三级37.利用球面坐标计算下列三重积分:(1) v Ω⎰⎰⎰,其中2222:x y z a Ω++≤;(2)2222()e d x y z x v Ω++⎰⎰⎰,其中Ω是第一象限中球面2221x y z ++=与球面2224x y z ++=之间的部分; 卦限? (3)2d y v Ω⎰⎰⎰,其中Ω是单位球体在第五象限部分;(4) 222222sin(1)d 1x y z v x y z Ω++++++⎰⎰⎰,其中Ω是0z ≤≤(5)v Ω,其中Ω是锥面π6ϕ=上方与上半球面ρ=2所围立体 解答:(1)22220sin 44(22)8aar r a v d d e r dr r e dr e a a ππΩθϕϕπππ===-+-⎰⎰⎰⎰⎰⎰⎰;(2)222242()22201ed sin cos sin x y z r x v d d re r dr ππΩθϕϕθϕ++=⋅⎰⎰⎰⎰⎰⎰161622200cos sin 416e e e e d d ππθθϕϕπ--==⎰⎰;(3)122222232200221d sin sin sin sin sin 530y v d d r r dr d d ππππππΩπθϕϕθϕθθϕϕ=⋅=⋅=⎰⎰⎰⎰⎰⎰⎰⎰;(4) 222321222222000ln(1)d ln(1)sin cos 11z x y z r v d d r dr x y z r ππΩθϕϕϕ+++=+++++⎰⎰⎰⎰⎰⎰ 220112(ln 2ln 2)sin cos 24d ππϕϕϕ=--⎰2(4ln 22ln 2)4π=--;(5)223660sin 8sin 4(2v d d r dr d πππΩθϕϕπϕϕπ===⎰⎰⎰⎰.所属章节:第九章第四节难度:三级38.将下列三次积分化为柱面坐标或球面坐标下的三次积分,再计算积分值,并画出积分区域图:(1) 222212223/21d ()d x y x yx y x y z ---++⎰⎰;(2) 221d d x y y x xyz z +⎰;(3) 330d x y z -⎰;(4)32220d )d y x x y z z ++⎰;参考答案:(1)8π35;(2) 196;(3) 243π5;(4)1)π5- 解答:本题图略(1) 用柱面坐标,222222122121223/234618d ()d 4()35x y r x y rx y x y z d rdr r dz r r dr πθππ----++==-=⎰⎰⎰⎰⎰⎰; (2) 用柱面坐标,22211222000011d d sin cos sin cos 4896rx y r y x z d rdr r dz d ππθθθθθθ+===⎰⎰⎰⎰⎰;(3) 用球面坐标,3234223000243243d sin cos sin 255x y z d d r dr d πππθϕϕϕπϕϕπ-===⎰⎰⎰⎰⎰;(4) 用球面坐标,322242401)d )d sin 5y x x y z z d d dr ππθϕϕπ++==⎰⎰⎰⎰. 所属章节:第九章第四节 难度:三级39.选择适当坐标计算下列三重积分: (1) 2d z v Ω⎰⎰⎰,其中Ω由柱面x 2+y 2=8,椭圆锥面z =及平面z =0所围成;(2) ()d x y v Ω+⎰⎰⎰,其中{(,,)|11x y z z Ω=≤≤; (3) d z v Ω⎰⎰⎰,其中Ω由曲面22222222,()z x y x y x y =++=-及平面z =0所围成;(4)2221d v x y z Ω⎫⎪++⎭⎰⎰⎰,其中Ω由曲面222222,33z x y z x y =+=+及平面z =1所围成; (5)2d z v Ω⎰⎰⎰,其中Ω是两个球体2222x y z R ++≤与2222x y z Rz ++≤的公共部分 解答:(1) 用柱面坐标,22202d 16(1sin )48z v d zdz d ππΩθθθπ==+=⎰⎰⎰⎰⎰⎰⎰;(2) 用柱面坐标,21101()d (sin cos )0x y v d rdr dz πΩθθθ+=+=⎰⎰⎰⎰⎰⎰;(3) 用柱面坐标,2142041d 238r z v d zdz ππΩθ-==⎰⎰⎰⎰⎰; (4) 用球面坐标,1224cos 222200611d []sin v d d r r dr x y z r ππϕπΩθϕϕ⎫=+⋅⎪++⎭⎰⎰⎰⎰⎰⎰(ln 3ln 2)27π-=+-; (5) 用柱面坐标,两球面的公共部分在xOy 面上的投影222)23(R y x ≤+,在柱面坐标下积分区域可表示为2222 ,230 ,20 :ρρρπθ-≤≤--≤≤≤≤ΩR R z R R R ,所以2220R z dv d d dz πθρρΩ=⎰⎰⎰⎰5230322232248059])()[(312R d R R R R πρρρρπ=----=⎰.注:本题也可用截面法来计算,分上下两部分,222202d zzR RR D D z v dz z dxdy dz z dxdy Ω=+⎰⎰⎰⎰⎰⎰⎰⎰⎰22222202(2)()RRR z Rz z dz z R z dz ππ=-+-⎰⎰5551475940480480R R R πππ=+=. 所属章节:第九章第四节 难度:三级40.利用三重积分求所给立体Ω的体积:(1) Ω由柱面x =y 2和平面z =0及x +z =1围成的立体; (2) Ω由抛物面z =x 2+y 2和z =18–x 2–y 2围成的立体;(3) Ω为圆柱体r ≤a cos θ内被球心在原点、半径为a 的球所割下的部分解答:(1) 1311122008(22)15xV dv dx dz x x dz -Ω===-=⎰⎰⎰⎰⎰⎰; (2)222318081r rV dv d rdr dz πθπ-Ω===⎰⎰⎰⎰⎰⎰;(3)cos 3332200424(1sin )(34)39a V dv d rdr a d a ππθθθθπΩ===-=-⎰⎰⎰⎰⎰⎰.所属章节:第九章第四节难度:二级41.设Ω是Oxyz 坐标系中体积为V =5的有界闭区域,Ω*为Ω在变换u =4x +4y +8z ,v =2x +7y +4z ,w =x +4y +3z下的有界闭区域,试求Ω*的体积V *解答:在变换u =4x +4y +8z ,v =2x +7y +4z ,w =x +4y +3z 下,448(,,)27420(,,)143u v w x y z ∂==∂,所以V *=20 V =100. 所属章节:第九章第四节 难度:二级42.计算三重积分222222d d x y z ab c x y z ++≤⎰⎰⎰解答:作变换sin cos ,sin sin ,cos x a y b z c ρϕθρϕθρϕ===,则2sin J abc ρϕ=,22222222008d d sin 9x y z a b c x y z abc d d d abc ππθϕρϕρπ++≤==⎰⎰⎰⎰⎰⎰.所属章节:第九章第四节 难度:三级43.计算三重积分2222222()()()()d d d x a y b z c R I x y z x y z -+-+-≤=++⎰⎰⎰解答:作变换sin cos ,sin sin ,cos x a y b z c ρϕθρϕθρϕ=+=+=+,则2sin J ρϕ=, 222220(2sin cos 2sin sin 2cos )sin RI d d a b c a b c d ππθϕρϕθρϕθρϕρϕρ=+++++⎰⎰⎰5322244()53R R a b c ππ=+++. 所属章节:第九章第四节 难度:三级44.计算平面6x +3y +2z =12在第一象限中的部分的面积 参考答案:14解答:平面方程3632z x y =--,:6312,0,0D x y x y +≤≥≥,投影面积4,72dA d σ=,7741422DA d σ==⨯=⎰⎰.所属章节:第九章第五节 难度:二级45.求球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面面积解答:由对称性,设z =22:,0D x y ax y +≤≥,则dA =,cos 220442(2)a DA d a πθθπ===-⎰⎰⎰⎰.所属章节:第九章第五节 难度:二级46.计算旋转抛物面2z =x 2+y 2被柱面(x 2+y 2)2= x 2–y 2所截下部分的曲面面积解答:柱面投影曲线方程化为r =dA σθ==,442093DA d πππθθ-===-⎰. 所属章节:第九章第五节 难度:二级47.求双曲抛物面z =y 2–x 2夹在圆柱面x 2+y 2=1和x 2+y 2=4之间部分的曲面面积 解答:曲面方程22z y x =-,投影区域为圆环域22:14D x y ≤+≤,dA σθ==,2016DA d ππθθ===⎰⎰.所属章节:第九章第五节 难度:二级48.计算由球面22223(0)x y z a z ++=>和旋转抛物面222(0)x y az a +=>所围成立体的表面积 参考答案:216π3a解答:上半曲面方程z =投影区域为圆环域222:2D x y a +≤,dAσθ==,221002(3DA d aπθθπ===⎰;类似,下半曲面面积,2220012)3DA d aπθθπ===⎰;所以所求总的曲面面积为21216π3A A a+=.所属章节:第九章第五节难度:二级49.求由圆柱面229x y+=、平面4y+3z=12和4y–3z=12所围成立体的表面积解答:该立体表面可分成两块来计算面积,一块为上下底,在两个平面上,由于对称,只计算上底面积1A,另一块为侧面,面积记为2A,整个立体的表面积122A A A=+.先计算1A,由于对应曲面方程为443z y=-,40,3z zx y∂∂==-∂∂,xyD为投影区域,53dA dσ==,所以15591533xy xyD DA dA dσππ===⋅=⎰⎰⎰⎰,再计算2A,由于对应曲面方程之一为y=0,y yz x∂∂==∂∂,xzD为投影区域,dAσ==,所以382302248xzDA dA dxπ-===⎰⎰⎰⎰,于是,总面积为122304878A A Aπππ=+=+=.所属章节:第九章第五节难度:三级50.设两个圆柱半径相等,轴相互垂直,求它们所围立体的表面积解答:设两个圆柱面的方程为222222,x y R x z R +=+=,由对称性,只要计算出立体在第一卦限部分上面部分面积1A ,再乘以16即可,由于z dA ===,所以121016161616RD A A dx R ====⎰.所属章节:第九章第五节难度:二级51.设平面薄片所占的闭区域D 是由直线x +y =2,y =x 和x 轴所围成,它的面密度ρ(x )=x 2+y 2,求该薄片的质量解答:122204(,)()3y yDm x y dxdy dy x y dx ρ-==+=⎰⎰⎰⎰所属章节:第九章第五节 难度:二级52.求占有下列区域D 的平面薄片的质量与重心(质心):(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形区域,ρ(x ,y )=x +y ; (2) D 是第一象限中由抛物线y =x 2与直线y =1围成的区域,ρ(x ,y )=xy ; (3) D 由心脏线r =1+sin θ所围成的区域,ρ(x ,y )=2; (4) 22{(,)|(1)1},(,)|1|D x y x y x y y y ρ=+-≤=+- 解答:(1) 23102(,)()6xxDm x y dxdy dx x y dy ρ-==+=⎰⎰⎰⎰,23210211(,)3()46D x x dx x xy d x x x y dxdy m y ρ-===+⎰⎰⎰⎰,23210211(,)3()26D x x dx xy y d y y x y dxdy m y ρ-=+==⎰⎰⎰⎰, 即所求平面薄片的质量为6,质心坐标为33(,)42;(2) 211150011(,)()26xDm x y dxdy dx xydy x x dx ρ===-=⎰⎰⎰⎰⎰, 2111226004163((),)7x D dx x ydy x x x x y dxd m x x y d ρ=-===⎰⎰⎰⎰⎰,。
高等数学第八章二重积分试题及答案
第八章 多元函数积分学一、二重积分的概念与性质1.定义设()y x f ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域,,,,21n σσσ∆∆∆ 对小区域()n k k ,,2,1 =∆σ上任意取一点()k k ηξ,都有()k nk k kd f σηξ∆∑=→1,lim存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而k nk d d ≤≤=1max ) 则称这个极限值为()y x f ,在区域D 上的二重积分 记以()⎰⎰Dd y x f σ,,这时就称()y x f ,在D 上可积。
如果()y x f ,在D 上是有限片上的连续函数,则()y x f ,在D 上是可积的。
2.几何意义当()y x f ,为闭区域D 上的连续函数,且()0,≥y x f ,则二重积分()⎰⎰Dd y x f σ,表示以曲面()y x f z ,=为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。
当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()y x f z ,2=,下半曲面方程为()y x f z ,1=,则封闭曲面S 围成空间区域的体积为()()[]σd y x f y x f D⎰⎰-,,123.基本性质 (1)()()⎰⎰⎰⎰=DDd y x f k d y x kf σσ,,(k 为常数)(2)()()[]()()σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±,,,,(3)()()()⎰⎰⎰⎰⎰⎰+=12,,,D D Dd y x f d y x f d y x f σσσ 其中21UDD D =,除公共边界外,1D 与2D 不重叠。
(4)若()()y x g y x f ,,≤,()D y x ∈,,则()()⎰⎰⎰⎰≤DDd y x g d y x f σσ,,(5)若()M y x f m ≤≤,,()D y x ∈,,则()⎰⎰≤≤DMS d y x f mS σ, 其中S 为区域D 的面积。
经济数学(二重积分习题及答案)
经济数学(二重积分习题及答案)第九章二重积分习题 9-11.设0),(≥y x f ,试阐述二重积分(,)d Df x y σ的几何意义.解当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底,以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积.2.试确定下列积分的符号并说明理由:221(1)ln()d d x y x y x y+<+??224(2)d x y x y*+≤??解 (1) 因1x y +<,则将此式两边平方,得220121x y xy ≤+<-<于是 0)ln(22<+y x 故221ln()d d 0.x y x y x y +<+(2)因为224d x y x y+≥??222222221122343d d d d x y x y x y x y x y x y x y x y+≤<+≤<+≤<+≤=+++当221x y +≤1,且此区域面积为π,则21d x y x y π+≤≤??当2212x y <+≤0,且此区域面积为π,则2212d 0xy x y <+≤≤??当2223x y <+≤1-,且此区域面积为π,则2223d x y x y π<+≤≤-??当2234x y <+≤且此区域面积为π,则22d x y x y <+≤≤??故 224d 00x y x y ππ+≤≤+--=3.试用二重积分的定义证明: (1) d DDS σ=??(其中D S 为D 之面积)(2) (,)d (,)d DDkf x y k f x y σσ=(k 为常数)证 (1) 由二重积分的定义,有.1(,)d lim (,)n i i ii Df x y f λσεησ→==?∑??则当1),(≡y x f 时,上式变为0 1d lim lim ni D Di DS S λλσσ→→==?==∑??.(2) 由二重积分的定义,有,1,101(,)d lim () lim () lim (,)n i iioi Dni i ioi ni i ii kf x y kf k f k f λλλσξησξησξησ→=→=→==?=?=?∑??∑∑(,)d .Dk f x y σ=??4.根据二重积分的性质,比较下列积分的大小. ()2(1) d Dx y σ+??与3()d Dx y σ+??,其中D 由x 轴、y 轴及直线1x y +=围成;(2) d Dx y σ+??与3()d Dx y σ+??,其中D 由圆2(2)x -+ 2(1)2y -=围成.解 (1) 积分区域D 如图9-1 所示.因在所围区域内有10≤+≤y x ,所以 32)()(y x y x +≥+故 ()23d ()d D D x y x y σσ+≥+. 图9-1 (2) 积分区域D 如图9-2 所示.因圆22(2)(1)2x y -+-=的参数方程为21x y θθ?=+??=+??则3cos )32sin()4x y πθθθ+=+=++ 图9-2 min ()321,1,x y x y +=-=+≥而且于是32)()(y x y x +≤+故 ()2d ()d .D D x y x y σσ+≤+5.利用二重积分的性质,估计下列积分的值.(1) ()d DI xy x y σ=+??,:01,01D x y ≤≤≤≤22(2) sin sin d DI x y σ=??,:0,0D x y ππ≤≤≤≤(3) (1)d DI x y σ=++??,:01,02D x y ≤≤≤≤22(4) (49)d DI x y σ=++??,22:4D x y +≤ 解 (1) 因01,01x y ≤≤??≤≤?则0102xy x y ≤≤??≤+≤?故00d 2d 2d 2 2.D DDDI S σσσ=≤≤===(2) 因0,0x y ππ≤≤??≤≤?则0sin 10sin 1x y ≤≤??≤≤?于是 220sin sin 1x y ≤≤ 故200d d .D DDI S σσπ=≤≤==(3)因0102x y ≤≤??≤≤?,则411≤++≤y x故d (1)d 4d DDDx y σσσ≤++≤即28.I ≤≤(4) 因4022≤+≤y x ,则22229494()925x y x y ≤++≤++≤于是99d 25d 25D DDDS I S σσ=≤≤=而 24D S r ππ== 故36100.I ππ≤≤习题 9-21.计算下列二重积分:22(1) ()d ,Dx y σ+??其中D 是矩形区域:1,1x y ≤≤; 22(2) ()d ,Dx y x σ+-??其中D 由直线22y y x y x ===、与所围成; 2(3) d ,Dxy σ??其中D 2y x y x ==由抛物线和直线所围成;211(4) d .y x ?解 (1)9-3 所示.11222211()d d ()d Dx y x x y y σ--+=+12128(2)d .33x x -=+=? 图9- 3(2)积分区域D 如图9-4所示.22222102 ()d d ()d yyDx y x y x y x xσ+-=+-232019313()2486y y dy =-=?图9-4(3)积分区域D 如图9-5所示.2112232001 d d d ()d 3xx D xxy x xy y x y xx σ== 1470111()d 3340x x x =-=?图9-5(4)积分区域D 如图9-6所示.2211110110sin d d d sin d sin1cos1.x x y x x yx x x x +===-?图9-62.积分区域}{(,),D x y a x b c y d =≤≤≤≤,且被积函数为()(),f x g y ?求证:()()d d ()d ()dbdacDf xg y x y f x x g y y ?=??.证积分区域D 如图9-7所示.()()d d d ()()d b dacDf xg y x y x f x g y y=??()[()d ]d ()d ()d ()d ()d b dacd bcab dacf xg y y xg y y f x xf x xg y y ==?=??图9-73.设(,)f x y 在D 上连续且D 由y x y a x b b a ===>、与()围成,求证:d (,)d d (,)d .bx b baa a y x f x y y y f x y x =?证积分区域D 如图9-8 所示. 交换等式左边二次积分的积分顺序有d (,)d d (,)d bx b baaayx f x y y y f x y x=?图9-84.下列条件下,将(,)d DI f x y σ=??按不同积分顺序化为二次积分:2(1) 4D y x y x ==由与所围成;(2) D x 由轴与半圆周()2220x y r y +=≥所围成. 解 (1) 由24y x =和y x =,得交点为(0,0),(4,4).积分区域D 如图9-9 所示.于是将I 化为先对y 后对x 的二次积分,得40d (,)d xI x f x y y=??将I 化为先对x 后对y 的二次积分,得24104d (,)d .y y I y f x y x =??(2)积分区域D 如图9-10 所示. 图9-9 将I 化为先对y 后对x 的二次积分,得d (,)d rrI x f x y y-=?将I 化为先对x 后对y 的二次积分,得d (,)d rI y f x y x=? 图9-105.更换下列二次积分的积分顺序:10(1) d (,)d y y f x y x10(2) d (,)d yy f x y x1(3) d (,)d e ln xx f x y y10(4) d (,)d y f x y x2113(3)2001(5) d (,)d d (,)d x x x f x y y x f x y y-+??解 (1)因为原积分区域{(,)01,D x y y y x =≤≤≤≤为Y 型区域, 其图形如图9-11 所示. 交换积分次序区域D 应视为X 型区域.故2110d (,)d d (,)d .xyxy f x y x x f x y y =?(2) 因为原积分区域{}(,)01,0D x y y x y =≤≤≤≤为Y 型区域, 其图形如图9-12 所示. 交换积分次序区域D 应视为X 型区域. 故111d (,)d d (,)d .y oxy f x y x x f x y y =(3)因为原积分区域{}(,)1,0ln D x y x e y x=≤≤≤≤为X 型区域, 其图形如图9-13 所示. 交换积分次序区域D 应视为Y 型区域.图9-11 图9-12故ln 11d (,)d d (,)d .x exeex f x y y y f x y x =??(4)因为原积分区域{(,)01,D x y y x =≤≤为Y 型区域, 其图形如图9-14 所示. 交换积分次序区域D 应视为X 型区域.故1101d (,)d d (,)d .y f x y x x f x y y -=??图9-13 图9-14(5)因为原积分区域{}2121,(,)01,0D D D D x y x y x =+=≤≤≤≤其中21(,)13,032D x y x y x ??=≤≤≤≤??(-)为X 型区域, 其图形如图9-15 所示. 交换积分次序区域D 应视为Y 型区域.图9-15 图9-16 2113(3)20011320d (,)d d (,)d d (,)d .故x x y x f x y y x f x y yy f x y x --+=??6.求由平面0011x y x y ====、、、所围成的柱体被平面0z =与2x + 3y + z = 6所截得的立体的体积.解该曲顶柱体如图9-16所示.习题 9-31.作适当变换,计算下列二重积分:()22(1) ()sin d d Dx y x y x y-+??.D 是顶点为(,0)(2,)(,2)πππππ、、、(0,)π的四边形;22(2) d d ,Dx y x y ??1240D xy xy y x y x x ====>由、、和所围成且、0y >;(3) d d ,yx yDex y +?? D 由x 轴,y 轴和直线1x y +=所围成; ()()1100623d d 7d 623d .2DV x y x yx x y y =--=--=2222(4) ()d d ,Dy x x y a b +2222:1y x D a b +≤.解 (1) 积分区域D 如图9-17所示.令x y ux y v -=??+=?,解得()()1212x u v y v u ?=+=-?? 于是原积分区域D 的边界x y π+=、3x y π+=、x y π-=、x y π-=-与图9-17 新积分区域D’的边界3v π=、v π=、u π=、u π=-相对应. 其积分区域D’的图形如图9-18所示.因为11(,)12211(,)222xx x y u v J yy u v u v====-??故()()22sin d d Dx y x y x y -+??22'322321sin d d 21d sin d 231sin 2324D u v u vu u v v u v v ππππππππ-=?==?- ? ? ? ?- 图9-183431().3223ππππ=?-=(2) 积分区域D 如图9-19所示.令 x y u yv x ==??,解得x y ?==?则新积分区域D’由u = 1,u = 2,v = 1,v = 4围成. 其积分区域D’的图形如图9-20所示. 图9-19 因为(,)(,)x xx y u v J y yu v u v ==2)12u v v -==22'2'1d d d d 211 d d 2DD D u x y x y uv u v v v u u v v=??=故图9-2024211117d d ln 2.23u u v v ==?? (3)积分区域D 如图9-21所示.令x y u y v +=??=?,解得x u vy v =-??=?则新积分区域D’由u = v 、v = 0和u = 1围成. 图9-21 其积分区域D’的图形如图9-22所示.因为11(,)101(,)xxx y u v J y y u v u v-====图9-22故 10'd d 1d d d dy vv x yuuuoDD ex y e u v u ev +=??=()1011d 2e u e u -=-=.(4)积分区域D 如图9-23所示.令cos sin x ar y br θθ=??=?则新积分区域为(){}',02,01D r r θθπ=≤≤≤≤ 图9-23 因为(,)(,)xxx y r J yyr r θθθ==cos sin sin cos a ar abrb br θθθθ-==22222'21300 ()d d d d 1d d .2DD y x x y r abr r abab r r ab πθθπ+===故2.用变量替换,求下列区域D 的面积:(1)334851500.D xy xy xy xy x y ====>>由曲线、、和所围成且、(2)D 由曲线333344y x y x x y x y ====、、、所围成且00.x y ≥≥、解 (1) 令3u xy v xy =??=?,解得x y ==则新积分区域D’由 u = 4、u = 8、v = 5、v = 15围成.因为(,)(,)x xx y u v J y yu v u v ==12v==81515545' d d 111 d d d d 4ln 2ln 3.222D DD S x yu v u v v v v ====?=故图9-24(2) 令33y u x x v y ?==?,解得x y ?==??则新积分区域D’由u = 1、u = 4、v = 1和v = 4围成. 其积分区域D’的图形如图9-25所示.因为(,)(,)xx y u v J yyu v u v ==图9-251113988883293111888831188()81388u v u v uv u v v u -----------= =--故d d D DS x y=??()33442211342111d d d ()d 881 1d .88D uv u v u uv vuu-====’100D x y x y +===3.设由直线、与所围成,求证:1cos()d d sin1.2D x y x y x y -=+??证积分区域D 如图9-26所示.令x y vx y u +=??-=?,解得()()1212x v u y v u ?=+=-??则新积分区域'D 由v = 1,v = -u , 及v = u 围成. 图9-26因为11(,)12211(,)222xx x y u v J yy u v u v====-??'1cosd d cos d d 2DD x y u x y u v x y v -=?+故图9-27 101d cos d 2vv uv uv -=??101[s i n ]d 21s i n 1d s i n 1.2v v u v v v v v =-==4.选取适当变换,求证:()()11d d d , : 1.Df x y x y f u u D x y -+=+≤??证积分区域D 如图9-28所示.令x y ux y v +=??-=?, 解得()()1212x u v y u v ?=+=-??则新积分区域'D 由u = 1, u = -1,v = 1及v = -1所围成其积分区域D’的图形如图9-29所示. 图9-28 因为 11(,)12211(,)222x x x y u v J y y u v u v ====--?? 故'1()d d ()d d2DD f x y x y f u u v +=-??1111111d ()d ()d .2u f u v f u u ---==习题 9-41.画出下列积分区域D 并把积分(),d d Df x y x y ??化成极坐标形式:()22222(1) 0 (2) 2x y a a x y x +≤>+≤()2222(3)0 (4) 0101a x yb a b y x x ≤+≤<<≤≤-≤≤且解积分区域D 如图9-30所示.(1)令cos sin x r y r θθ=??=?则积分区域D 被夹在0θ=与2θπ=之间,且远近极点的边界方程分别为0r a r ==与,故图9-30()20,d d d (cos ,sin )d .aDf x y x y f r r r r πθθθ=(2) 积分区域D 如图9-31所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为r=2cos θ与r = 0.由r ≥0和2cos 0θ≥得22ππθ-≤≤图9-31 则D 被夹在22ππθθ==-和之间, 故2cos 202(,)d d d (cos ,sin )d Df x y x y f r r r rπθπθθθ-=??.(3) 积分区域D 如图9-32所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为r a r b ==与,图9-32 而D 被夹在02θθπ==与之间, 故20(,)d d d (cos ,sin )d .baDf x y x y f r r r r πθθθ=??(4) 积分区域D 如图9-33所示.令cos sin x r y r θθ=??=?则远近极点的边界方程分别为图9-331cos sin r θθ=+0r =与,而D 被夹在02πθθ==和之间,故12cos sin 0(,)d d d (cos ,sin )d .Df x y x y f r r r r πθθθθθ+=2.将下列二次积分化为极坐标形式:2222001122222000(1) d )d (2) d (3) d ()d (4) d )d aaxa xx x y y x y x x y y yx y x-+++解 (1)积分区域D 如图9-34所示. 令cossin x ry rθ==则y2cos,r aθ=而D被夹在2πθθ==与之间, 故图9-3422cos22320000d)d d d.a ax x y y r r πθθ+=(2) 积分区域D如图9-35所示. 令cossinx ry rθθ==则0x a x==与的极坐标方程分别为图9-26 cosarθ=与0;r=0y x y==与的方程分别为04π==与,故sec240000d d d.a ax y r rπθθ=(3) 积分区域D如图9-36所示. 令cossinx ry rθθ==2y x y x==与的极坐标方程分别为图9-36 tan sec rθθ=4πθ=与,故211tan sec2224000d()d d d.xxx x y y rπθθθ-+=(4) 积分区域D如图9-37所示.令cossiny rθθ==则222x y a+=上方程为, r a=而D被夹在2πθθ==与之间, 故22320000d)d d d.a ay x y x r r π+=图9-37 3.用极坐标计算下列各题:22(1) d,x yDeσ+D由圆周224x y+=所围成;(2) ,Dσ{}2222(,);D x y a x y b=≤+≤(3) arctan d,Dyxσ2222D x y x y y y x+=+===由、、和所围成的第I象限部分;224 , :.DD x y Rx σ+≤()解 (1) 积分区域D 如图9-38所示.令cos sin x r y r θθ=??=?{}(,)02,02D r r θθπ=≤≤≤≤则,故222220d d d x y r De e r rσθ+=图9-382224012d (1)2re r e ππ==-?.(2) 积分区域D 如图9-39所示.令cos sin x r y r θθ=??=?(){},,02D r a r b θθπ=<<≤≤则,故图9-39223333d d 22().33baDr rb a b a πσθππ=-=?=?-?(3) 积分区域D 如图9-40所示.令cos sin x r y r θθ=??=?(),12,04D r r πθθ??=≤≤≤≤??则,故图9-40 2224401013arctan d d d d d .64D y r r r r x ππσθθθθπ===(4) 积分区域D 如图9-41所示.令cos sin x r y r θθ=??=?(),0cos ,22D r r R ππθθθ??=≤≤-≤≤??则, 故图9-41 ()cos 202cos 20322220 d d 2d d cos 2 d 03R DR r rr rR R r πθππθπσθθθθ-==??=--33332024 (sin )d ()333R R R πθθπ=--=-?.4.选择适当的坐标系,计算下列各题:()22(1) ()d d 30Dx y x y D y x y x a y a y a a +==+==>??,由、、、所围成;222(2) d d :,00;D y x y D x y a x y +=≥≥??,、 (3) d d 212D x y x y D y x y x x y x y ====??,由、、与围成 ()2(4) d d :1,2,,2.Dx xy x y D x y x y y x y x ++=+===??,解 (1) 令,y x u y v -=??=?得变换式x v uy v =-??=?则新积分区域D’由u = 0、u = a 、v = a 及v = 3a 所围成. D ’如图9-42所示.因为11(,)101(,)x y J u v -?===-?()22222'322032230 ()d d 1d d d (22)d 2(1882)d 14.3DD aaa x y x y v u u u vu v vu u va a u au u u a ??+=-+?-??=-+=-+-=故图9-42(2)积分区域D 如图9-43所示.令cos sin x r y r θθ=??=?(),0,02D r r a πθθ??=≤≤≤≤??则,故32d d d sin d .3aDa y x y r r r πθθ==图9-43(3)令y u xxy v ?==?.得变换式x y ?==?则新积分区域D’由u = 1、u = 2、v =1、 v = 2所围成.D’如图9-44所示.因为()(,)1,2x y J u v u===-图9-44故'2211113d d d d d d ln 2.224DD v xy x y v u v u v u u =-=?=(4)令x y u y v x +==??,得变换式11u x vuv y v ?=??+??=?+? 则新积分区域D’由u = 1、u = 2、v = 1、v =2所围成. D’如图9-44所示.因为 ()()()()()222111,,111uv v x y uJ v u u v v v v -++?===+++()'22()d d d d 11D D u ux xy x y u u v v v +=??++故 () 322233111525d d d .72961u u v u u v ===+ 5.试求区域D 的面积,其中D 为()()12,.r ?θ?θαθβ≤≤≤≤解积分区域D 如图9-45所示.21()()d d d d .D DS x y r r βθαθθ==图9-45习题 9-51.计算下列广义二重积分:{}()20(1) d d . (,),0 (2)d d x yy Dx yxe x y D x y y x x e x y-+-≤≤=≥≥解(1)积分区域D 如图9-46所示.2200 d d d d 1 d .2y y xDx xe x y x xe yxe x +∞+∞--+∞-===故(2)积分区域D 如图9-47所示. 图9-46 ()()020d d d d 1 d .2x yx y xDx e x y x e ye x +∞+∞-+-++∞-===故2.用极坐标计算下列广义积分:(){}2222()()22221224(1) d d (2) cos()d d d d (3) ,1.()x y x y De x y e x y x y x y D x y xy x y +∞+∞-+-∞-∞+∞+∞-+-∞-∞+=+≤+,图9-47解 (1)cos sin x r y r θθ=??=?令(){},0,02D r r θθπ=≤≤+∞≤≤则,故22222()1d d d d d .2x y re x y e r r ππθθπ+∞+∞+∞-+--∞-∞===(2)cos sin x r y r θθ=??=?令(){},0,02D r r θθπ=≤≤+∞≤≤则,故2222()222200222020cos()d d d cos d 1 sin cos d 041 d .42x y r r e x y x ye r r re r r πππθθπθ+∞+∞-+-∞-∞+∞--+=+∞=-==??(3) 积分区域D 如图9-48所示.cos sin x r y r θθ=??=?令(){},01,02D r r θθπ=≤≤≤≤则,故图9-4821210224d d 24 d d d 33()Dx yr r x y ππθθπ=?==+??.3.计算下列广义积分:()()224452(1) d (2)1d x x x ex x x e x+∞+∞-++--∞-∞++?解()()22445214(1) d d x x x ex ex+∞+∞-++-+--∞-∞=()2221441d(21)2121d ()212x t e e x t x e e t e +∞-+--∞+∞---∞-=+=+=??由普阿松积分()222222222212332 (2) 1d d d d d ,d ,d 0.x x x x x x x x x e x x e x xe x e x I x e x I xe x I exI I +∞+∞+∞+∞-----∞-∞-∞-∞+∞+∞+∞----∞-∞-∞++=++=====?。
二重积分习题答案精编WORD版
二重积分习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第八章二重积分习题答案练习题8.11.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =20d πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题8.21.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。
二重积分习题解答
二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.12200I dy x y dx =⎰,则交换积分次序后得 C 。
(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。
2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xx dx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。
(A )221[]r I e dr d πθ-=⎰⎰;(B )2124[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。
5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。
(A)120I dy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。
填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。
故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dx y dxdy +=⎰⎰ 0 3.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df xy dxdy +=⎰⎰在极坐标下的二次积分为 。
练习103(二重积分的计算(交换积分次序)) - 答案
所以
2
dx
2xx2
1
1 1 y2
f x, y dy dy
f x, y dx 。
1
2x
0 2 y
3、交换二次积分
e
dx
ln x f x, ydy 的积分次序。
1
0
解:因为二次积分的积分区域 D x, y 1 x e, 0 y ln x,
画出积分区域 D (如右图所示),
所以积分区域 D x, y 0 y 1, ey x e 。
xy 2d 2
xy 2d 2
2 d
2
r
cos
r2
sin 2
rdr
2
2 cos sin2 d
2 r 4dr
0
0
0
0
D
D1
2 32 5
2 0
sin 2
d sin
64 5
sin 3 3
2 0
64 。 15
所以
3
dx
1
2 sin y2dy
x1
2
dy
1 y sin y2dx
01
2 0
y sin
y 2 dy
1 2
cos
y2
2 0
1 cos 4 2
。
5、计算二重积分 x5 sin y3 3 d ,其中 D x, y x 1, y 2。
D
解:画出积分区域 D (如右图所示),考虑到被积函数的奇偶性和积分
所以,
D
xy 2d
2
D1
xy 2d
2
2
dy
0
0
4 y2
xy 2dx
2
2 1 0 2
二重积分习题及答案
在第一象限部分.
y
解: (1) 作辅助线 y x2 把与D 分成
1 D1
D1, D2 两部分, 则
1 o 1 x
I D1 dxdy D2 dxdy
D2
1
dx
1
1
x2 dy
1 dx
1
x2
dy
0
2 3
(2) 提示:
I D ( x2 y2 2xy 2) dxdy
y
作辅助线 y x 将D 分成 D1 , D2 两部分
1 求 x2e y2dxdy ,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
解 e y2dy 无法用初等函数表示
积分时必须考虑次序
x2e y2dxdy
1
dy
y x2e y2 dx
00
D
e1 y2 y3dy e1 y2 y2dy2 1 (1 2).
1
yx
D1
D2
o
1x
2D2 (x y)dxdy 2D dxdy
2 ( 2 1)
3
2
说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算 ( x y )dxdy, D : x2 y2 1
D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号.
解 采用直角坐标
1
( x y )dxdy 4 dx
1 x2 ( x y)dy 8
D
0
0
3
【注】在利用对称性计算二重积分时,要同时考虑被积
函数的奇偶性和积分区域的对称性,不能只注意积分区域
二重积分的计算方法例题及解析
二重积分的计算方法例题及解析一、利用直角坐标计算二重积分1. 例题- 计算∬_D(x + y)dσ,其中D是由直线y = x,y = x^2所围成的闭区域。
2. 解析- (1)首先确定积分区域D的范围:- 联立方程<=ft{begin{array}{l}y = x y = x^2end{array}right.,- 解得<=ft{begin{array}{l}x = 0 y = 0end{array}right.和<=ft{begin{array}{l}x = 1 y = 1end{array}right.。
- 所以在x的范围是0≤slant x≤slant1,对于每一个x,y的范围是x^2≤slant y≤slant x。
- (2)然后将二重积分化为累次积分:- ∬_D(x + y)dσ=∫_0^1dx∫_x^2^x(x + y)dy。
- (3)先计算内层积分:- ∫_x^2^x(x + y)dy=∫_x^2^xxdy+∫_x^2^xydy。
- ∫_x^2^xxdy=x<=ft(y)<=ft.rve rt_x^2^x=x(x - x^2)=x^2-x^3。
- ∫_x^2^xydy=(1)/(2)y^2<=ft.rvert_x^2^x=(1)/(2)(x^2-x^4)。
- 所以∫_x^2^x(x + y)dy=x^2-x^3+(1)/(2)(x^2-x^4)=(3)/(2)x^2-x^3-(1)/(2)x^4。
- (4)再计算外层积分:- ∫_0^1((3)/(2)x^2-x^3-(1)/(2)x^4)dx=(3)/(2)×(1)/(3)x^3-(1)/(4)x^4-(1)/(2)×(1)/(5)x^5<=ft.rvert_0^1。
- =(1)/(2)-(1)/(4)-(1)/(10)=(10 - 5 - 2)/(20)=(3)/(20)。
第九章 二重积分 复习题答案
第九章 二重积分 复习题答案一、单项选择题1、设D 是由曲线x y x 422=+围成的闭区域,则()⎰⎰+Dd y x f σ22=( C )A.()dr rf d ⎰⎰πθ012B.()rdr r f d ⎰⎰-22sin 402ππθθC.()rdr rf d ⎰⎰-22cos 42ππθθ D. ()dr r f d ⎰⎰-22cos 402ππθθ2、设f 是连续函数,D 是由0,122≥≤+y y x 确定的区域,则=+⎰⎰σd y x f D)(22( A )。
A 、 10()d rf r dr πθ⎰⎰ B 、210()d rf r dr πθ⎰⎰C 、10()d f r dr πθ⎰⎰ D 、210()d f r dr πθ⎰⎰3、设22:14, D x y ≤+≤则2Ddxdy =⎰⎰( D )A.3πB.4πC.30πD.6π 4、设D 是由直线,2,1y x y x y ===围成的闭区域,则Ddxdy =⎰⎰( B )A 、12 B 、14 C 、1 D 、325、设积分区域D 是由圆22x y Ry +=围成,则二重积分22()Df x y d σ+=⎰⎰( D )A 、2sin ()00R d f r dr πθθ⎰⎰ B 、22sin ()00R d f r rdr πθθ⎰⎰C 、2sin ()00R d f r dr πθθ⎰⎰D 、2sin ()00R d f r rdr πθθ⎰⎰ 6、若{}22(,)12D x y x y =≤+≤,则二重积分Dd σ⎰⎰=( C )A.2π B. 2πC. πD. 3π二、填空题:1、变换二次积分⎰⎰⎰⎰-+=2120100),(),(yydx y x f dy dx y x f dy I 的积分次序,则=I ⎰⎰-=12),(xx dy y x f dx I ;2、改变二次积分21(,)yydy f x y dx ⎰⎰的积分次序,则I = ⎰⎰1),(xxdy y x f dx ;3、改变二次积分210(,)x dx f x y dy ⎰⎰的积分次序,可得21(,)x dx f x y dy ⎰⎰=_______⎰⎰101),(ydx y x f dy ;4、若D 是由直线 1,1,1,1=-==-=y y x x 围成的矩形区域,则⎰⎰=Ddxdy 25、交换二次积分1(,)00y I dy f x y dx =⎰⎰的积分次序,则I =⎰⎰11),(xdy y x f dx ___;三、计算题:1、求⎰⎰+Ddxdy y x )2(,其中D 是由曲线2x y =和0=+y x 围成的闭区域. 101|)1022()2223(|)22()2()2(:0154314320120122-=---=⋅---=⋅+=+=+------⎰⎰⎰⎰⎰⎰x x x dx x x x dxy xy dy y x dx dxdy y x xx Dxx解2、求σd y x D⎰⎰+22,其中D 是由圆周x y x 222=+所围成的闭区域。
二重积分计算习题
1 计算下列二重积分:
(1) ( x2 y2 )d ,其中D {(x, y) x 1, y 1}
D
解 积分区域下图所示
y
( x2 y2 )d
D
1
dx
1 (x2
y2 )dy
1 1
D
x
1 [x2
1
y
1 3
2
习题解答 习题8-2 P288 2题(1)-----作业题 2 画出积分区域,并计算下列二重积分
(1) x yd ,其中D是由两条抛物线y x,
D
y x2所围成的区域
解 积分区域下图所示
x yd
D
D
1
x
dx ydy
0
x2
x
[2 3
y
3 2
]
x x2
dx
(
x
x 3 )dx
1
D
o
2x
[
x2 2
x4 4
]
2 1
9 4
习题解答 习题8-2 P290 11题(4)
(2) x2 y2d ,其中D是圆环形闭区域
D
{(x, y) a2 x2 y2 b2 }
解 D如下图所示:
y
则 x2 y2d
D
2
b
0 d a r rdr
y
e
ln x
1 dx0 f ( x, y)dy
1
e
dy f ( x, y)dx
0
ey
(e ,1)
D
o
二重积分部分练习题
题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分Dxydxdy ⎰⎰ (其中D :0≤y ≤x 2,0≤x ≤1)的值为(A )16 (B )112 (C )12 (D )14答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2Dxy dxdy =⎰⎰=(A )0; (B )323 (C )643(D )256 答 ( )(3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分22(,)Df x y dxdy =⎰⎰__________122(,)D f x y dxdy ⎰⎰(A )2 (B )4 (C )8 (D )12答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分11(,)x dx f x y dy -+⎰(A)112111(,)(,)y dy f x y dx dy f x y dx ---+⎰⎰⎰(B)1101(,)y dy f x y dx --⎰⎰(C)11111(,)(,)y dy f x y dx f x y dx ---+⎰⎰⎰(D)21(,)dy f x y dx -⎰⎰答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)Df x y dxdy ⎰⎰可化累次积分为(A)201(,)x dx f x y dy -⎰(B)21(,)x dx f x y dy -⎰⎰(C)21(,)y dy f x y dx -⎰⎰(D)210(,)y dy f x y dx ⎰答 ( )(3分)[7]设f (x ,y )为连续函数,则二次积分21102(,)y dy f x y dx ⎰⎰可交换积分次序为(A)1010(,)(,)dx f x y dy f x y dy +⎰(B)112102(,)(,)(,)dx f x y dy f x y dy f x y dy ++⎰⎰⎰(C)1(,)dx f x y dy ⎰(D)222cos 0sin (cos ,sin )d f r r rdr πθθθθθ⎰⎰答 ( ) (3分)[8]设f (x ,y )为连续函数,则积分212201(,)(,)x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰可交换积分次序为 (A)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰(B)2122001(,)(,)x xdy f x y dx dy f x y dx -+⎰⎰⎰⎰(C)120(,)y dy f x y dx -⎰(D)2120(,)xxdy f x y dx -⎰⎰答 ( ) (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)Df x y dxdy ⎰⎰化成累次积分为(A)2cos 0(,)d F r dr πθθθ⎰⎰(B)2cos 0(,)d F r dr πθπθθ-⎰⎰(C)2cos 202(,)d F r dr πθπθθ-⎰⎰(D)2cos 202(,)d F r dr πθθθ⎰⎰其中F (r ,θ)=f (r cos θ,r sin θ)r .答 ( ) (3分)[10]若区域D 为x 2+y 2≤2x,则二重积分(Dx y +⎰⎰化成累次积分为(A)2cos 202(cos sin d πθπθθθ-+⎰⎰(B)2cos 30(cos sin )d r dr πθθθθ+⎰⎰(C)2cos 3202(cos sin )d r dr πθθθθ+⎰⎰(D)2cos 3222(cos sin )d r dr πθπθθθ-+⎰⎰答 ( ) (4分)[11]设777123[ln()],(),sin ()DDDI x y dxdy I x y dxdy I x y dxdy =+=+=+⎰⎰⎰⎰⎰⎰其中D 是由x =0,y =0,12x y +=,x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序是 (A)I 1<I 2<I 3; (B)I 3<I 2<I 1; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (5分)[12]设2211cos sin x y dxdyI x y +≤=++⎰⎰,则I 满足 (A)223I ≤≤ (B)23I ≤≤ (C)12D I ≤≤ (D)10I -≤≤答 ( ) (4分)[13]设12x y +=其中D 是由直线x =0,y =0,及x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序为(A)I 3<I 2<I 1; (B)I 1<I 2<I 3; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (3分)[14]设有界闭域D 1与D 2关于oy 轴对称,且D 1∩D 2=φ,f (x ,y )是定义在D 1∪D 2上的连续函数,则二重积分2(,)Df x y dxdy =⎰⎰(A)122(,)D f x y dxdy ⎰⎰(B)224(,)D f x y dxdy ⎰⎰(C)124(,)D f x y dxdy ⎰⎰(D)221(,)2D f x y dxdy ⎰⎰ 答 ( )(3分)[15]若区域D 为|x |≤1,|y |≤1,则cos()sin()xy Dxexy dxdy =⎰⎰(A) e; (B) e -1;(C) 0; (D)π.答 ( ) (4分)[16]设D :x 2+y 2≤a 2(a >0),当a =___________时,222.Da x y dxdy π--=(A)1答 ( ) 二、填空 (6小题,共21.0分)(4分)[1]设函数f (x ,y )在有界闭区域D 上有界,把D 任意分成n 个小区域Δσi (i =1,2,…,n ),在每一个小区域Δσi 任意选取一点(ξi ,ηi ),如果极限 01lim(,)niiii f λξησ→=∆∑(其中入是Δσi (i =1,2,…,n )的最大直径)存在,则称此极限值为______________的二重积分。
二重积分练习题答案
8、 ∫∫ x − y dxdy , D : x = 0, y = 0, x = 1, y = 1 y
D
1
解: 原式 = ∫∫ ( y − x)dxdy + ∫∫ ( x − y )dxdy
D1 D2
D1
D2
0
1
x
= ∫ dx
0
1
∫x ( y − x)dy + ∫ dx
1 0
1
∫0 ( x − y) 2 y
f ( x, y )dx
D
.
( -1,-1)
⎞ ⎛ 1 ⎜ - ,-1⎟ ⎝ 2 ⎠
1
高等数学——Copyright©2012 by Samw. All rights reserved.
3、 D : x 2 + y 2 ≥ ax , 2 + y 2 ≤ 2 ax ( a > 0) 将 ∫∫ f ( x, y ) dxdy 设 x
二重积分练习题
一、填空
x2 1、设 D : x = 2, y = x, xy = 1, ∫∫ 3 dxdy = y D
2 x x 2 x2 ∫∫ y3 dxdy = ∫1 dx ∫1x y 3 dy D
13 5
.
(2, 2)
(1,1)
1 (2, ) 2
2、设 D : y = x, y = 2 x, y = −1,将 ∫∫ f ( x, y )dxdy 化为累 次积分 =
D1 D2
0
1
x
= ∫ dθ
4 0
π
∫
sec θ
0
f (r cosθ , r sin θ )rdr f (r cosθ , r sin θ )rdr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇
解
x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D
2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分
(1) I sgn( y x 2 )d xd y, D : 1 x 1, 0 y 1 D
(2) I ( x y 2 xy 2) d xd y, 其中D 为圆域
2 2 D
在第一象限部分.
解: (1) 作辅助线 y x 把与D 分成
y
o
D 1x
(2) 积分域如图: 添加辅助线 y x, 将D 分为 D1 , D2 ,
利用对称性 , 得
x y e
D1
x2 y2
d xd y
1 1
D2
xyex
x
2
y
2
y yx o D2 1 x D1 1 y x
dxd y
x d x d y 0 0
x
3. 计算二重积分 (1) D为圆域 (2) D由直线
I ( x x ye
2 D
x2 y2
) d xd y , 其中:
围成 .
x2 y2
解: (1) 利用对称性.
I x d x d y x ye
2 D
D
d xd y
1 ( x 2 y 2 ) d xd y 0 2 D 1 3 1 2 d r d r 0 4 2 0
1 求 x e
D
2 y2
dxdy ,其中 D 是以( 0,0), (1,1),
( 0,1) 为顶点的三角形.
解 e
y2
dy 无法用初等函数表示
积分时必须考虑次序
x
D
2 y2
e
dxdy dy x e
0 0
2
1
y
2 y2
dx
e
0
1
y
2
2 1 1 2 y3 y y 2 dy e dy (1 ). 0 6 e 3 6
偶性.
6
证明
b
a
dx ( x y )
a
x
n 2
1 b n 1 f ( y )dy ( b y ) f ( y )dy . n1 a
b
证
b
a
dx ( x y )n 2 f ( y )dy
a b b a y
x
y x
D
dy ( x y )n 2 f ( y )dx
2 2
6 2 2 x y 2 y r 2 sin
x 3 y 0 1
( x y )dxdy d
2 2 D
6
3
r 2 rdr 15( 3 ). 2 sin 2
4 sin
2
D1 , D2 两部分, 则
I d xd y
D1
1 1 1 x
1 D1 1
y
D2
d xd y
x2 0
o D2
1 x
d x 2 d y d x
1
1
2 dy 3
(2) 提示:
I ( x 2 y 2 2 xy 2) d xd y
2
计算积分 I dy e dx dy e dx .
1 4 1 2 1 2
1 2
y
y x
1
y
y x
y
解 e dx 不能用初等函数表示
y x
先改变积分次序.
原式 I 1dx
2
y x
1
x
2
x
e dy
y x
y x2
1
1 2
3 1 x(e e )dx e e. 8 2
1 n1 b f ( y )dy[ ( x y ) ]y a n1 1 b n1 (b y ) f ( y )dy. a n1
b
a
a
b
7
写出积分 f ( x , y )dxdy 的极坐标二次积分形
D
式,其中积分区域
D {( x , y ) | 1 x y 1 x 2 , 0 x 1}.