中考总复习:数与式综合复习--知识讲解(提高)

合集下载

中考数学专题复习资料数与式

中考数学专题复习资料数与式

第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8.整式:单项式及多项式统称为整式。

单项式:只含有数及字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

(完整版)初三数学复习_数与式(知识点讲解),推荐文档

(完整版)初三数学复习_数与式(知识点讲解),推荐文档

初三数学复习 数与式 第一课时 实数的有关概念【知识要点】(一)实数的有关概念 (1)实数的分类当然还可以分为:正实数、零、负实数。

有理数还可以分为:正有理数,零,负有理数 (2)数轴:数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。

(3)绝对值绝对值的代数意义:||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。

(4)相反数、倒数实数的相反数记为-,非零实数的倒数记为,零没有倒数。

a a a 1a 若a 、b 两个数为互为相反数,则a+b=0。

若m 、n 两个数互为倒数,则m·n=1。

(5)三种非负数: ||()a a a a ,,都表示非负数。

20≥“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。

(6)平方根、算术平方根、立方根的概念。

如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.一个正数a 的正的平方根,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧—无限不循环小数—无理数负分数正分数分数负整数零正整数整数有理数实数叫做a 的算术平方根.a(a≥0)的算术平方根记作 .(7)科学计数法、有效数字和近似值的概念。

1.近似数: 一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字: 一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法: 把一个数用 (1≤ <10,n 为整数)的形式记数的方法叫科学记数法.【典型例题:】P2例1、(2012贵州六盘水,5,3分),13,π,cos 45︒,0.32中无理数的个数是( ▲ )A .1 B .2C .3D .4点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.P2例4、(2012·湖北省恩施市,题号16 分值 4)观察下表:根据表中数的排列规律,B+D=_________.例题补充、(2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫ ⎝⎛+121,…这样得到的20个数的积为_________________.第二课时:实数的运算及比较大小【知识要点】一、实数的运算1.加法: 同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法: 减去一个数等于加上这个数的相反数.3.乘法: 几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法: 除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)a n所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数二、实数大小的比较 1.对于数轴上的任意两个点,靠右边的点所表示的数较大. 2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小. 3.对于实数a、b,若a-b>0 a>b; a-b=0 a=b; a-b<0 a<b. 4.对于实数a,b,c,若a>b,b>c,则a>c. 5.无理数的比较大小: 利用平方转化为有理数:如果a>b>0,a2>b2 则a>b ; 或利用倒数转化:如比较与.三、实数运算顺序 加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.四、实数的运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc【典型例题:】P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数是3和-1,则点C所对应的实数是()A. 1+3B. 2+3C. 23-1D. 23+1P4例 4(2012广东汕头,21,7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含有n的代数式表示第n个等式:a n= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.分析:(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.第三课时:整式与因式分解(1):【整式知识梳理】 代数式的分类幂的乘方,底数不变,指数相乘。

2020初三数学复习-数与式(知识点讲解)

2020初三数学复习-数与式(知识点讲解)

初三数学复习数与式一. 本周教学内容:总复习——数与式[知识要点](一)实数的有关概念(1)实数的分类当然还可以分为:正实数、零、负实数。

有理数还可以分为:正有理数,零,负有理数(2)数轴:数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一、一对应的,这种一一对应关系是数学中数形结合的重要基础,我们还可以利用这种一、一对应关系来比较两个实数的大小。

(3)绝对值绝对值的代数意义:||()()()a a aa a a0000绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。

(4)相反数、倒数实数的相反数记为-,非零实数的倒数记为,零没有倒数。

a a a 1a若a 、b 两个数为互为相反数,则a+b=0。

若m 、n 两个数互为倒数,则m ·n=1。

(5)三种非负数:||()a a a a,,都表示非负数。

20“几个非负数的和(积)仍是非负数”与“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。

(6)平方根、算术平方根、立方根的概念。

(7)科学计数法、有效数字和近似值的概念。

—无限不循环小数—无理数负分数正分数分数负整数零正整数整数有理数实数(二)实数的运算实数的六种运算及整数指数幂的运算是初中学习数学的基本能力,也是后续学习的重要基础。

准确的运算有赖于运算法则、运算顺序和运算律的熟练掌握。

(三)和代数式有关的概念及代数式的运算。

(1)代数式的分类(2)各类代数式的概念单项式、多项式、整式、分式、有理式、无理式、根式、二次根式、最简二次根式、同类二次根式。

(3)代数式有意义的条件:分式有意义的条件是分母不为零分式的值为零的条件是分母不为零,分子为零二次根式有意义的条件是被开方数(式)非负,由实际应用中得到的代数式还要符合实际意义。

(4)代数式的运算:整式的加、减、乘、除运算及添括号、去括号法则。

中考总复习之数与式超全知识点及经典例题

中考总复习之数与式超全知识点及经典例题

中考总复习之数与式超全知识点及经典例题中考总复之数与式本部分内容是初中代数部分的基石,是数学研究历程中重要的延伸。

在小学的基础上,引入了平方根、立方根,从将数扩充到了实数范围。

认识了整式、分式、根式,将特殊的数字延伸到了能表示一般规律的代数式范围,其中涉及的代数式的计算,为今后高中研究奠定基础,也是中考综合题复杂运算必需的技能。

在中考试卷中,该部分内容独立考题所占分值较小,多以选择、填空、计算题出现。

然而在综合题型中,这部分内容的应用却处处存在。

实数的分类实数可以按照定义和正负两个方面进行分类。

其中,正负数的分类包括正整数、负整数、有限小数或有理数、正分数、分数、负分数、正无理数、负无理数。

有理数是指任何一个可以写成p/q形式的数,其中p、q是互质的整数。

无理数则包括开不尽的方根、特定结构的无限不循环小数以及特定意义的数,如π、e、一些三角函数等。

实数中的几个概念相反数是指只有符号不同的两个数,它们互为相反数。

一个实数a的相反数是-a,而a和b互为相反数当且仅当a+b=0.倒数是指一个数的倒数是1/a,而a和b互为倒数当且仅当ab=1.需要注意的是,0没有倒数。

绝对值是一个非负数,实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

n次方根是指平方根、立方根和其他次方根。

平方根是指设a≥0,称±a叫a的算术平方根,其中正数的平方根有两个,它们互为相反数。

负数没有平方根。

立方根是指3次方根,即3√a,其中一个正数有一个正的立方根,而负数的立方根是负数。

其他次方根的计算方法与此类似。

单项式的乘积仍然是单项式。

②单项式乘多项式:将多项式中的每一项与单项式相乘,然后将结果相加得到最终结果。

③多项式乘多项式:将每一项都与另一个多项式中的每一项相乘,然后将结果相加得到最终结果。

(完整word版)初三总复习---数与式复习

(完整word版)初三总复习---数与式复习

数与式复习北京第三十九中学商立群 2015.03.05数与式这部分内容是是初中数学的基础,内容包括实数、整式、分式和二次根式,是解方程(组)、不等式(组),解决概率和统计等有关计算问题的基础,还是许多图形问题中有关数量表达的基础,也是中考最直接得分的手段。

数与式这部分内容在2010、2011、2012、2013、2014年的北京市中考题中直接考查这部分知识的题目分别占了29分、34分、26分、26分、26分。

这部分内容的特点是概念多、性质多、运算法则多、技能性强.常见的考题类型,主要以“易”为主,中档问题主要有,配方和12题规律归纳。

但复习中不要忽视学生的代数分析能力和数学思想方法的培养,这些对综合问题的解决起着关键性作用。

主要考点:1.求实数的相反数,绝对值等有关的概念;2.科学计数法;3.分式与二次根式有无意义的条件与分式值为零的条件;4.简单的因式分解(提公因式法,公式法,不超过两次);5.绝对值与平方数及二次根式的非负性;6.找规律及用代数式表示规律的问题。

7.二次多项式的配方变形。

8.实数的运算:含有整数指数幂(0次或负指数次)、特殊三角函数值、二次根式的化简(根号下仅限于数)绝对值在内的综合运算;9化简求值;整式与分式的运算---先化简再求值分式了解分式和最简分式的概念;(新增)会确定分式有意义或使分式的值为零条件(14年B)能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算;能选用恰当方法解决与分式有关的问题二次根式了解二次根式和最简二次根式的概念;(新增)会确定二次根式有意义的条件能根据二次根式的性质对二次根式进行变形;会用二次根式的运算法则进行简单运算(根号下仅限于数)(新增)对比2014年考试说明的变化:(红色为变化的内容,蓝色为新增的内容)对比14年,15年考试说明:A级由24知识点变为12个,B级知识点由22个变为10个,C级知识点由6个变为2个,主要是基本知识进行了整合,内容没有大的变化。

中考总复习:数与式综合复习--知识讲解(提高)

中考总复习:数与式综合复习--知识讲解(提高)

中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a AO (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.把下列各式分解因式: (1)432816m m m aa a +++-+; (2)4182m -+.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】(1)432816m m m a a a +++-+ 22(816)m a a a +=-+22(4)m a a +=-.(2)4182m -+4211(16)(2)(2)(4)22m m m m =--=-+-+. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取分数系数的因式时,要考虑到提取后是否可以进一步分解因式,如果不能进一步分解因式,因式的分数系数可以不提取.举一反三:【变式】分解因式:2212a a b -+-= .B baA 图1-3O 0baA 图1-4O 0B【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··22124 3.a b ab ab ba b a ab b a b a∴+=+=-=-=--- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<, 即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值. 【思路点拨】本题中根据b =355315a a -+-+可以求出a ,b ,再对2b a a b ++-2b a a b +-的被开方数进行配方、化简.【答案与解析】 由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0,22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-++-+-=-+-=-+-⎛⎫=- ⎪⎝⎭= 当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.如图,时钟的钟面上标有1,2,3…12共计12个数,一条直线把钟面分成了两部分,请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是 .【思路点拨】先求每部分数字之和,钟面上的数字之和为78,依题意,三部分之和相等,则每部分之和只能为78÷3=26,进而去分析计算.【答案】3、4、9、10;5、6、7、8.【解析】钟面上的数字之和为78,依题意,三部分之和相等,则每部分之和只能为78÷3=26,而图中钟面上的1、2、11、12之和已经为26,所以所画的这条线只能在图中这条直线的下方,即过4和5,8和9之间画直线(如下图).【总结升华】本题部分学生不知从何处入手,或者漫无目标的尝试去画,这样费时较多,而且不容易达到目标.突破方法:仔细阅读,认真分析,理清题意可减少尝试分割的次数.。

初三数学中考复习专题数与式

初三数学中考复习专题数与式

《数与式》考点1 有理数、实数的概念1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有___个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数 考点2 数轴、倒数、相反数、绝对值1、___________的倒数是211-;0.28的相反数是_________. 2、 如图1,数轴上的点M 所表示的数的相反数为_________ M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A .1个B .2个C .3个D .4个5、 ①数轴上表示-2和-5的两点之间的距离是______②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x考点3 平方根与算术平方根.1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、 9的算术平方根是______3、 38-等于_____ 3图1 ∙-2 -1 a 图2 ∙∙b c4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、 由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、 用小数表示:5107-⨯=_____________考点5 实数大小的比较1、 比较大小:0_____21_____|3|--;π. 2、 比较41,31,21---的大小关系:__________________ 3、 已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、 如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________3、 计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷2、 下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与- 3、 计算:)12)(12()12(2-+-+a a a4、 计算:)()2(42222y x y x-÷-考点8 因式分解 1、 分解因式______2=+mnmn ,______4422=++b ab a 2、 分解因式________12=-x考点9:分式 1、 当x _______时,分式52+-x x 有意义 2、 当x _______时,分式242--x x 的值为零 3、 下列分式是最简分式的是( )A .ab a a +22B .axy 36 C .112+-x x D 112++x x 4、 下列各式是分式的是( )A .a 1 B .3a C .21 D π65、 计算:x x ++-11116、 计算:112---a a a考点10 二次根式1、下列各式是最简二次根式的是( )A .12B .x 3C .32xD .352、 下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、 二次根式43-x 有意义,则x 的取值范围_________4、 计算:3322323--+5、 计算:)0(4522≥-a a a6、 计算:5120-7、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第7题)82得【 】 (A ) 2 (B )4x 4-+ (C )-2 (D )4x 4-达标测试:1、实验中学初三年级12个班中共有团员a 人,则a 12表示的实际意义是 ▲ 2、先化简,再求值:2x 2x 11x 1x -⎛⎫⋅+ ⎪+⎝⎭,其中x=12. 3、已知, P=22x y x y x y---,Q=()2x y 2y(x y)+-+,小敏、小聪两人在x 2,y 1==-的条件下分别计算了P 和Q 的值,小敏说P 的值比Q 大,小聪说Q 的值比P 大,请你判断谁的结论正确,并说明理由。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

初三数学中考专题—数与式(全面、详细、好用)

初三数学中考专题—数与式(全面、详细、好用)

1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。

2019华东师大初中数学中考总复习:数与式综合复习--知识讲解(提高)

2019华东师大初中数学中考总复习:数与式综合复习--知识讲解(提高)

中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a AO (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0B本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··22124 3.a b ab ab ba b a ab b a b a∴+=+=-=-=--- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<, 即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值. 【思路点拨】本题中根据b =355315a a -+-+可以求出a ,b ,再对2b a a b ++-2b a a b +-的被开方数进行配方、化简.【答案与解析】 由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0,22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-++-+-=-+-=-+-⎛⎫=- ⎪⎝⎭= 当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块,黑色瓷砖(4n+6)块(均用含n 的代数式表示);(2)依题意得:n 2+5n+6=1056,整理得:n 2+5n ﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n 的值为30;(3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.。

九年级数学专题复习数与式综合复习

九年级数学专题复习数与式综合复习

总复习数与式综合复习【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点进阶:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点进阶:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点进阶:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点进阶:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点进阶:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点进阶:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点进阶:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点进阶:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点进阶:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点进阶:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点进阶:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点进阶:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解例1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.B ba A 图1-3O 0O 0b B 图1-2a A O (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = .例2.分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y . (2)1﹣m 2﹣n 2+2mn . (3)﹣a+2a 2﹣a 3.举一反三:【变式】分解因式:2212a a b -+-= .类型二、分式的有关运算例3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,…(1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.baA 图1-4O 0B举一反三:【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21例4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷- ⎪--+⎝⎭.举一反三:【变式】计算3213411x x x x x -+----.类型三、二次根式的运算例5.已知举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间例6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值.举一反三:【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值.类型四、数与式的综合运用例7.如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【巩固练习】一、选择题1. 把多项式1-x 2+2xy-y 2分解因式的结果是( )A.(1)(1)x y x y +--+B.(1)(1)x y x y --+-C.(1)(1)x y x y ---+D.(1)(1)x y x y +-++2.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是( ) A .145 B .140 C .146 D .1503.根据下表中的规律,从左到右的空格中应依次填写的数字是( )000110010111001111A .100,011B .011,100C .011,101D .101,1104.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是( ) A .m >n B .m <n C .m =n D .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕的条数是 ( )A .2n -1B .2n +1C .2n -1D .2n+16.如图图案都是同样大小的小正方形按一定的规律组成的,其中第1个图形中有5个小正方形,第2个图形有13个小正方形,第3个图形有25个小正方形,…,按此规律,则第8个图形中小正方形的个数为( )A .181B .145C .100D .887.若非零实数a ,b 满足2244a b ab +=,则ba= .8.已知分式)1)(2(12---x x x ,当x = 时,分式的值为0.9.在实数范围内分解因式4(1)x y -+-2(x+y)= .10. 化简: (1)当x≥0时,= ; (2)当a≤0时,= ;(3)当a≥0,b <0时,= .11.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 11第二行12 12 第三行 13 16 13第四行 14 112 112 14第五行 15 120 130 120 15… …… …根据前五行的规律,可以知道第六行的数依次是: .12.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………依此类推,则a 2012=_______________.13.图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ; (3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n )(m+3n ); (5)若x+y=﹣6,xy=2.75,求x ﹣y 的值.14.阅读下列题目的计算过程:xx x +---12132=)1)(1()1(2)1)(1(3-+---+-x x x x x x (A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D )(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 . (2)错误的原因 .(3)本题目正确的结论为 .15.已知271xx x =-+,求2421x x x ++的值.16. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S =+++,求S 的值 (用含n 的代数式表示,其中n 为正整数).。

中考数学数与式知识点讲解

中考数学数与式知识点讲解

中考数学:数与式知识点讲解数与式是数学中的基本概念,对于中考数学而言,掌握数与式的知识点是非常重要的。

本文将从简单到复杂,逐步讲解数与式的相关内容,帮助同学们更好地理解和掌握这一知识点。

一、数的概念数是数量的表示,它可以用来计数、比较大小和进行运算等。

在数学中,我们常见的数有自然数、整数、有理数和实数等。

这些数的概念是理解数与式的基础。

1.自然数自然数是人们最早接触到的数,包括0和正整数。

自然数的集合记为N={0, 1, 2, 3, …}。

自然数可以用来计数物体的数量。

2.整数整数是自然数的扩展,包括负整数、0和正整数。

整数的集合记为Z={…, -3, -2, -1, 0, 1, 2, 3, …}。

整数可以用来表示欠债、海拔等具有正负关系的事物。

3.有理数有理数是可以表示为两个整数的比值的数。

有理数的集合记为Q。

有理数包括整数和分数。

例如,2、-5、1/3等都是有理数。

有理数可以进行加、减、乘、除等运算。

4.实数实数是可以用来表示现实世界中的量的数。

实数的集合记为R。

实数包括有理数和无理数。

例如,根号2、π等都是实数。

实数可以进行所有的运算。

二、式的概念式是数的集合,用运算符连接起来的表达式。

式可以包含数、变量、运算符和括号等。

理解式的概念对于解决数学问题和进行代数运算非常重要。

1.简单的式简单的式是由数和运算符组成的表达式。

例如,3+4、5-2等都是简单的式。

可以通过运算符的运算规则,计算出式的结果。

2.复杂的式复杂的式是由简单的式经过嵌套和运算符的组合而成的表达式。

例如,(3+4)×5、2(a+3)等都是复杂的式。

在计算复杂的式时,需要按照运算符的优先级和结合性进行计算。

三、数与式的关系数与式是密切相关的,数可以作为式的一部分,而式可以用来表示数的关系。

掌握数与式的关系有助于解决数学问题。

1.数到式数可以用来表示式中的常量。

例如,假设一个矩形的长度是3cm,宽度是2cm,那么它的面积可以表示为3×2=6,其中3和2就是数,6是式。

数与式的中考复习汇总

数与式的中考复习汇总

数与式的中考复习汇总数与式是数学中的基本概念,对于中考来说是非常重要的内容。

下面是数与式的中考复习汇总,供你参考。

一、基本概念1.数与式的概念:数是表示事物数量的抽象概念,式是由数和运算符号组成的算式。

2.数的分类:整数、有理数、无理数、实数。

3.有理数的性质:有理数可表示为有限小数、无限循环小数、无限不循环小数。

4.无理数的概念和性质:无理数不能表示为有限小数或无限循环小数。

5.实数的分类:有理数和无理数的并集即为实数。

6.数的比较:相等、大于、小于、不等于的概念。

二、整数运算1.加法和减法法则:同号相加、异号相减,记号保持与被减数相同。

2.乘法和除法法则:同号得正,异号得负;分数相乘,正负性由分数的正负号决定;除法可以转化为乘法运算。

3.绝对值:一个数与其绝对值的关系。

4.整数的混合运算:根据运算顺序,先乘除后加减。

三、分数运算1.分数的概念:分子和分母的含义及分数的整体含义。

2.分数的比较:分数的大小比较通过通分后比较分子大小。

3.分数的化简和约分:将分数化为最简形式。

4.分数的加法和减法:通分后进行分子的加减运算,记号与被减数一致。

5.分数的乘法和除法:将分子和分母分别相乘或相除。

6.假分数和带分数的相互转化。

7.分数的四则运算:根据运算顺序,先乘除后加减。

四、代数式的运算1.代数式的概念:由运算符号和字母组成的式子。

2.代数式的加法和减法:同类项合并。

3.代数式的乘法:乘法法则及乘法交换律。

4.代数式的除法:除法法则及除法运算的定义。

5.代数式的混合运算:根据运算顺序进行相应的运算。

6.同义式的应用:解方程、证明恒等式等。

7.开平方的应用:判断二次根式是否为整数、化简二次根式。

五、数与式的综合运用1.合理估算:对于结果的大小进行近似计算。

2.适当计算:选择合适的运算方法和顺序计算。

3.合理求解:根据实际问题列出代数式,解方程或计算。

4.应用题:根据题意进行有关运算,解决实际问题。

六、错误分类与分析1.基础错误:对基本概念和运算法则理解不清。

初三数学复习_数与式(知识点讲解)

初三数学复习_数与式(知识点讲解)

千里之行,始于足下。

初三数学复习_数与式(知识点讲解)数与式是初中数学中的一个重要知识点,也是数学学习的基础。

数与式的学习内容包括数的分类和表示,式的概念及运算。

下面将详细介绍数与式的知识点。

一、数的分类和表示数的分类是指根据数的性质和特点将其划分为不同的类别。

常见的数的分类有:自然数、整数、有理数和无理数等。

其中,1. 自然数是指从1开始,没有上限的整数集合。

2. 整数是指自然数、0和自然数的相反数所组成的集合。

3. 有理数是指可以表示为两个整数之商的数。

数的表示有多种方式,常用的表示方法有阿拉伯数字表示法和汉字表示法。

在阿拉伯数字表示法中,数是由10个数字0、1、2、3、4、5、6、7、8、9组成,可以通过位权法进行表示。

在汉字表示法中,一般使用整数个位和数位进行表示。

二、式的概念及运算1. 式是指由数、变量和运算符号组成的一种数学表达式。

式是数与数之间的关系的代数表示,可以用来表示数的运算和关系。

2. 式的运算包括算术运算和代数运算两种。

a. 算术运算包括加法、减法、乘法和除法四种基本运算。

其中,加法和乘法具有交换律和结合律,减法和除法不具有交换律和结合律。

b. 代数运算包括整式的加减和乘除运算,以及方程的运算。

三、数与式的应用第1页/共2页锲而不舍,金石可镂。

数与式在数学学习中是非常重要的基础知识,它们在实际生活中也有广泛的应用。

1. 在数与式的学习中,可以通过数的分类和表示,帮助我们更好地理解数的性质和特点,从而提高解决实际问题的能力。

2. 在数与式的运算中,可以通过代数运算的知识,更好地理解和应用数字运算的规律和方法,例如简化运算、解方程等。

3. 数与式的应用也广泛存在于实际生活中的问题中,例如计算、测量、金融等领域,通过数与式的运算,能够更好地解决实际生活中的各种问题。

综上所述,数与式是初中数学的重要知识点,通过学习数的分类和表示,能够更好地理解数的性质和特点;通过学习式的概念和运算,能够更好地应用数学知识解决实际问题。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

知识清单梳理
知识点一:代数式及相关概念
关键点拨及对应举例
1.代数

(D代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的主
强连接而成的式子,单独的一个数或一个字母也是代数式.
(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做 求代数式的值.
求代数式的值常运用整体代入法计算.
加减法
⑴同分母:分母不变,分子相加减 .即不二=77;
c c c
(2)异分母:先通分,变为同分母的分式,再加减.即a岑-氏子. b d bd
例:―x_ = — 1.x 1 1 x
112a
a 1 a 1 a21.
6.分式的
乘除法
…h、, ac ac/c、小、#a cad
(1)乘法:£ 1=滔;(2)除法:一—=—;
x1
3.基本性

(1)基本性质:(CW0)
B B C B C
(2)由基本性质可推理出变号法则为:
A AAAAA
;.
B BBB BB
由分式的基本性质可将分式进行化简:2.
例:化简:r一」=立.
x 2x1x1
知识点三:
分式的运算
4.分式的
约分和 通分
(i)约分(可化简分式):把分式的分子和分母中的公因式约去,
例:—2(3a-2b-1)=-6a+4b+2.
4.哥运
算法 则
(1)同底数嘉的乘法:aman= amn;
(2)嘉的乘方:(am)n=%;
(3)积的乘方:(ab)n= anbn;
(4)同底数嘉的除法:amnan = am二(ajQ)
其中m,n
都在整数

中考数学总复习《数与式》

中考数学总复习《数与式》
随着x的增大或减小,y值 都减小或增大,即反比例 函数在各自象限内单调递 减。
二次函数
二次函数定义
形如y=ax^2+bx+c(a≠0)的函 数,其中x和y为变量,a、b、c为
常数。
二次函数图像
抛物线,开口方向由a决定,a>0 时开口向上,a<0时开口向下。
二次函数性质
对称轴为x=-b/2a,顶点坐标为(b/2a, c-b^2/4a)。根据判别式 Δ=b^2-4ac的值判断与x轴的交点 个数。
详细描述
一元一次方程在实际生活中有着广泛的应 用,例如购物时计算找零、计算时间、速 度和距离等。
一元二次方程
总结词
高阶方程形式,解法相对复杂
详细描述
一元二次方程的一般形式为 ax^2+bx+c=0,解法相对复杂,需要使 用公式法或者因式分解法进行求解。
总结词
一元二次方程在数学中的重要性
详细描述
一元二次方程在数学中具有重要的地位,它是代数知识体系中的重要 组成部分,也是后续学习一元高次方程、多元方程的基础。
目录
• 数的概念与性质 • 数的运算 • 代数式 • 方程与不等式 • 函数及其图像
01
数的概念与性质
有理数
01 有理数定义
有理数是可以表示为两个整数之比的数,包括整 数和分数。
02 有理数性质
有理数具有封闭性、传递性、稠密性和有序性等 性质。
整数乘法
掌握整数乘法的计算方法,理解乘法的交 换律、结合律和分配律。
整数减法
掌握整数减法的计算方法,理解减法的性 质。
整数除法
掌握整数除法的计算方法,理解除法的性 质。
分数运算
分数加法

初三数学复习_数与式(知识点讲解)

初三数学复习_数与式(知识点讲解)

千里之行,始于足下。

初三数学复习_数与式(学问点讲解)数与式是数学中的重要概念,它们是数学运算的基础。

在初三数学复习中,复习数与式的学问点是格外重要的,下面是关于数与式的学问点的讲解。

一、数的概念数是人们用来计数、比较和度量的工具。

数可以分为整数、分数、小数和无理数等不同的类型。

整数包括正整数、负整数和零,分数是整数的比例形式,小数是分数的小数形式,无理数是不能被表示为分数或小数的数。

二、式的概念式是由数、运算符号和运算符组成的代数表达式。

式可以是简洁的数字、字母或它们的组合,也可以是包含了运算符的简单表达式。

一个式可以表示一个数、一种关系或一个命题。

三、代数式与方程式代数式是由系数、变量和运算符组成的表达式,它可以通过运算得到一个确定的结果。

代数式没有等号,它只是表示一个数或一个关系。

方程式是一个包含等号的代数式,它表示一个等式,左右两边的表达式是相等的。

方程式中一般会包含未知数,求解方程式就是找到未知数的值,使得方程式成立。

四、数与式的四则运算1. 加法:两个数或式相加,结果称为和。

例如:3 + 5 = 8。

2. 减法:一个数或式减去另一个数或式,结果称为差。

例如:8 - 5 = 3。

3. 乘法:两个数或式相乘,结果称为积。

例如:2 × 3 = 6。

4. 除法:一个数或式除以另一个数或式,结果称为商。

例如:6 ÷ 3 = 2。

第1页/共2页锲而不舍,金石可镂。

五、数与式的运算性质1. 交换律:加法和乘法满足交换律,即a + b = b + a,a × b = b ×a。

2. 结合律:加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c)。

3. 安排律:乘法对加法满足安排律,即a × (b + c) = a × b + a ×c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a A O (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··2212 3.a b ab ab b a ab b a ∴=+=-=-=- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<,即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b 355315a a --22b a b a a b a b+++-的值. 【思路点拨】本题中根据b =355315a a --可以求出a ,b ,2b a a b ++2b a a b +-开方数进行配方、化简.【答案与解析】由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0, 22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-+++-=+-=+-⎛=- ⎝=当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块, 黑色瓷砖(4n+6)块(均用含n 的代数式表示);(2)依题意得:n 2+5n+6=1056,整理得:n 2+5n ﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n 的值为30;(3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。

相关文档
最新文档