高考概率知识点及例题(供参考)
概率论(仅供参考)
前言由于汤老师不给力,下面由刘老师来为你们划重点 内部使用,仅供参考,不承当任何后果。
参考: 课本 课件第一章该章概型和公式比较多,每个都配上了一个例题便于理解第一节重点:德·摩根律公式交换律:A ∪B=B ∪A ,AB=BA 结合律(A ∪B)∪C=A ∪(B ∪C )(A∩B)∩C=A∩(B∩C )分配律:A∩(B ∪C) = (A∩B)∪( A∩C )A ∪(B∩C) = (A ∪B)∩(A ∪C ) 德·摩根律A B AB A B A B ==第二节频率性质1. 样本任意一事件概率不小于0(非负性)2. 样本事件概率和为1(规范性)3. 如果AB 互斥 ()()()n n n f A B f A f B =+4. 如果AB 不排斥 ()()()()n n n n f A B f A f B f A B =+-⋂5. ()1().P A P A =-第三节 古典概型性质1. 样本空间中样本点有限,既事件有限2. 样本点概率等可能发生3. ()==k A P A n 中所含的基本事件数基本事件总数例题排列组合问题(要是考应该不会太难)几何概型求法:1.求出状态方程2.根据定义域画图3.求概率=阴影面积/总面积第四节条件概型公式:()()()() (|).()()()()AB AB P AB P A BB B P BμμμΩμμμΩ===条件概率满足概率的一切性质既非法性,规范性,可加性例题11()()()()n ni i i i i P B P BA P A P B A ====∑∑例题 书 p251()(|)(|)()(|)i i i ni ii P A P B A P A B P A P B A ==∑第五节独立性如果AB事件独立P AB P A P B()()()若多事件相互独立,理论仍然成立贝努利概型既服从二项分布模型抽取n次的组合次数第二章重点章节,几大分布都是后几章的基础第二节 离散型随机变量及其分布律1. 两点分布、0﹣1分布既随机变量 X 只可能取0或1两个值,事件执行一次只有两种情况,例如抛硬币 记为 X~b (1,p ) p 表示事件的概率,样本点个数为1, 并且1-p 表示相反事件概率 2. 二项分布(应用于上章的贝努利概型)与0-1分布类似,事件执行n 次,记为 X~b (n ,p ) p 表示事件的概率 样本点个数为n 3. 泊松分布{}e ,0,1,2,,!kP X k k k λλ-===⋅⋅⋅记为 X~π(λ),如果出题,应该会标明是泊松分布,或者给出明确的λ二项分布X~b (n ,p )当n 充分大,p 充分小时,对于任意固定的非负整数k ,与泊松分布概率近视相等,并且λ=nb (数学期望相等) 4. 几何分布既抽取问题中可放回情况,该分布具有无记忆性-1{}(1),1,2,k P X k p p k ==-=5. 超几何分布既抽取问题不放回情况12{},0,1,2,k n k N N nNC C P X k k C-===第三节 随机变量及其分布随机变量分布(感觉这个知识点必考,虽然不知道会是什么题) 求事件概率公式,p511. 已知分布函数求分布律,并求事件概率(习题2第一题)根据公式000{}(0)(0)P X x F x F x ==+--求出各个点的概率,并画出分布表,求事件概率可以不会套公式,可以直接看表。
高考概率大题及答案
高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。
已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。
现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。
2.一批产品某种型号有20%的不合格品。
现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。
首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。
而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。
因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。
假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。
因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。
3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。
现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考概率知识点及题型
高考概率知识点及题型在高考中,概率是数学必考的一个重要知识点。
概率是用来描述事件发生的可能性或不可能性的一种数学工具。
掌握概率知识不仅对高考有很大帮助,也有助于我们在日常生活中做出理性判断。
下面将介绍一些常见的高考概率知识点和题型。
一、基本概念1. 事件与样本空间:事件是指某个结果的集合,样本空间是指一个随机试验所有结果的集合。
例如,掷一枚硬币的样本空间为{正面,反面},而事件可以是“出现正面”的情况。
2. 概率:概率是一个事件发生的可能性,用一个介于0和1之间的数来表示。
如果事件发生的可能性越大,概率就越接近1;反之,越接近0。
概率的计算可以通过计数或几何概率的方法来进行。
3. 相互排斥事件与互斥事件:相互排斥事件是指两个事件不可能同时发生,而互斥事件是指两个事件不能共同发生,但可以各自发生。
4. 独立事件与非独立事件:独立事件是指一个事件的发生不受其他事件的影响,而非独立事件则相反。
二、概率题型1. 确定事件的概率:这种题型要求根据题目的描述,确定某个事件发生的概率。
例如,“一枚骰子掷出的点数为奇数”的概率是多少?2. 计算组合事件的概率:这种题型要求根据事件的组合情况,计算事件发生的概率。
例如,“从1-10中选择两个不同的数,组成一个两位数”的概率是多少?3. 逆向概率题:这种题型要求根据已知的概率和相关信息,推断出可能的事件。
例如,“已知某一件商品的次品率为0.05,现从该批商品中随机抽取1件,抽到次品的概率是多少?”4. 条件概率题:这种题型要求根据给定的条件,计算某个事件发生的概率。
例如,“某班级男生人数为30人,女生人数为40人。
从中随机抽取一人,抽到男生且抽到女生的概率是多少?”5. 互斥事件概率题:这种题型要求根据已知的概率和条件,计算两个互斥事件中至少一个发生的概率。
例如,“已知学生中40%选择A专业,30%选择B专业,那么至少选择一个专业的概率是多少?”6. 解决问题的概率题:这种题型主要考察学生运用概率知识解决实际问题的能力。
高中概率练习题及讲解讲解
高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。
答案:首先计算总球数为8个,红球数为5个。
根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。
2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。
答案:首先列出所有可能的结果:正正、正反、反正、反反。
其中正正和正反、反正是至少出现一次正面的情况。
根据概率公式,P(至少一次正面) = 3/4。
3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。
答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。
然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。
根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。
二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。
今天工厂生产了200个零件,求至少有10个次品的概率。
答案:首先确定次品数为10、11、...、20。
使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。
计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。
2. 题目:一个盒子里有10个球,编号为1到10。
随机抽取3个球,求抽取的球的编号之和大于15的概率。
答案:列出所有可能的抽取组合,计算和大于15的组合数。
然后根据概率公式计算概率。
3. 题目:一个班级有50名学生,其中男生30名,女生20名。
随机选取5名学生,求选取的学生中恰好有3名男生的概率。
答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。
三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。
高中概率问题练习题及讲解
高中概率问题练习题及讲解1. 掷骰子问题- 题目:一个均匀的六面骰子被掷两次,求两次掷出的点数之和为7的概率。
- 解析:首先确定所有可能的结果总数,即6*6=36种。
然后找出两次掷骰子点数和为7的组合,它们是(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1),共6种。
因此,所求概率为6/36,简化后为1/6。
2. 抽卡片问题- 题目:从一副没有大小王的52张扑克牌中随机抽取一张,求抽到黑桃A的概率。
- 解析:一副标准扑克牌中有13张黑桃,其中只有1张是黑桃A。
因此,抽到黑桃A的概率为1/52。
3. 独立事件问题- 题目:如果一个事件A发生的概率是0.3,另一个事件B发生的概率是0.5,且A和B是相互独立的,求A和B同时发生的概率。
- 解析:独立事件同时发生的概率等于各自发生概率的乘积。
因此,A和B同时发生的概率为0.3*0.5=0.15。
4. 互斥事件问题- 题目:如果事件A和事件B是互斥的,且它们发生的概率分别为0.4和0.3,求至少有一个事件发生的概率。
- 解析:互斥事件至少有一个发生的概率等于它们各自发生概率的和,减去它们同时发生的概率(如果有的话)。
由于A和B互斥,它们不可能同时发生,所以同时发生的概率为0。
因此,至少有一个事件发生的概率为0.4+0.3=0.7。
5. 条件概率问题- 题目:已知事件A发生的概率为0.5,事件B在A发生条件下发生的概率为0.7,求事件B发生的概率。
- 解析:事件B发生的总概率等于事件A发生且B发生的概率加上事件A不发生且B发生的概率。
由于A和B在A发生条件下是相关的,我们只能计算A发生且B发生的概率,即0.5*0.7=0.35。
事件A不发生且B发生的概率需要额外信息才能计算。
6. 全概率公式问题- 题目:如果事件A1、A2、A3是两两互斥的事件,它们发生的概率分别为p1、p2、p3,且它们的并集概率为1,求事件B在这些条件下发生的概率,已知B在A1、A2、A3条件下发生的概率分别为p(B|A1)、p(B|A2)、p(B|A3)。
高考数学概率大题知识点
高考数学概率大题知识点数学作为高考中的一门重要科目,概率题目一直是考生头疼的难点。
在高考中,概率问题不仅考察了考生对基本概念的理解,还要求考生具备一定的运算能力和解题思维。
为了帮助考生能够更好地应对概率大题,下面我将结合实际例题,详细讲解一些常见的概率知识点。
首先我们来看一个简单的例题:某班级有40名学生,其中有15名男生、25名女生。
如果从这个班级中随机选出1名学生,求被选中的学生是男生的概率是多少?解题思路:首先,我们先计算男生与学生总数之间的比值:15/40 = 3/8。
这个比值就是男生被选中的概率。
因此,问题的答案是3/8。
接下来,让我们来看一个稍微复杂一点的题目:某商场有3个入口,A、B、C。
已知这3个入口分别有30%、40%、30%的顾客选择进入。
现在我们随机选择了一个顾客,求这个顾客选择进入A入口的概率是多少?解题思路:根据题目信息,我们可以得出,选择进入A入口的顾客占总人数的30%。
所以,这个顾客选择进入A入口的概率是30%。
概率问题中还涉及到“与”、“或”两种关系。
下面我们来看一个带有“与”关系的例题:已知事件A发生的概率是1/3,事件B发生的概率是1/4,求A 和B同时发生的概率是多少?解题思路:两个事件同时发生,意味着A事件与B事件的交集。
根据概率公式:P(A并B) = P(A) × P(B),我们可以得出P(A并B) = (1/3) ×(1/4) = 1/12。
所以,A和B同时发生的概率是1/12。
除了“与”关系,概率问题中还涉及到“或”关系。
下面我们来看一个带有“或”关系的例题:某班级有50名学生,其中20名学生学习数学,30名学生学习英语,已知其中10名学生既学习数学又学习英语。
现在我们从这个班级中随机选出1名学生,求这名学生学习数学或学习英语的概率是多少?解题思路:这个问题实际上是在求事件A或事件B发生的概率。
根据概率公式:P(A或B) = P(A) + P(B) - P(A并B),我们可以得出P(A或B) = P(学习数学) + P(学习英语) - P(既学习数学又学习英语)。
数学高考概率大题知识点
数学高考概率大题知识点高中数学概率大题是高考中的一个重要考点,考察学生对概率知识的理解和应用能力。
本文将从概率的基本概念、条件概率、独立事件和排列组合等方面,介绍一些常见的概率大题知识点。
概率是研究随机事件发生可能性的数学分支。
在概率论中,试验是指对某个随机现象的观察或操作,事件是试验的某个结果。
概率是描述试验结果的可能性的比例。
在高考中,我们经常会遇到各种概率大题,如计算事件发生的概率、根据条件概率求解问题等。
一、概率的基本概念1. 样本空间和事件:样本空间是指试验可能结果的集合,用Ω表示。
而事件是样本空间Ω的子集,表示我们感兴趣的一些结果。
2. 事件的概率:事件A(记作P(A))的概率是指事件A发生的可能性。
在概率的计算中,我们常常使用频率和古典概率公式来计算概率。
3. 频率概率:频率概率是通过多次重复试验,统计实验结果出现的频率得出的概率。
频率概率计算方法是通过进行大量实验,统计某个事件发生的次数与总实验次数的比值。
4. 古典概率:古典概率基于事件发生的可能性相等的假设。
在一个有限的样本空间Ω中,古典概率P(A)等于事件A中有利的结果数除以样本空间Ω中总的结果数。
二、条件概率条件概率是指在某个条件下,事件发生的概率。
在计算条件概率时,我们需要考虑给定事件已经发生的前提下,另一个事件发生的概率。
条件概率的计算方法是通过使用条件概率公式来计算。
三、独立事件在概率论中,如果两个事件A和B的概率满足P(A|B) = P(A)和P(B|A) = P(B),则我们称事件A和B是独立事件。
独立事件是指当一个事件的发生与其他事件无关时的情况。
在许多概率大题中,我们需要判断事件之间是否是独立事件,以便进行正确的计算。
四、排列组合排列和组合是高中数学中的一个重要内容,也是概率大题中常见的题型。
排列是指从n个元素中取出m个元素进行有序排列的方式的总数。
组合是指从n个元素中取出m个元素进行无序排列的方式的总数。
在概率大题中,我们需要运用排列组合的知识,计算符合要求的事件发生的概率。
高考《概率与统计初步》知识点和高考题、配套练习题(很全面)
专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。
② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
② 理解样本数据标准差的意义和作用,会计算数据标准差。
③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。
④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。
①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
②假设检验了解假设检验的基本思想、方法及其简单应用。
③回归分析了解回归的基本思想、方法及其简单应用。
2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
② 了解两个互斥事件的概率加法公式。
(2)古典概型① 理解古典概型及其概率计算公式。
② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。
高考概率知识点及答案
高考概率知识点及答案概率是数学中一个有趣而重要的概念,它可以帮助我们了解事物发展的趋势和规律。
在高考数学中,也会涉及到一些与概率有关的知识点。
在本文中,我们将分享一些高考概率的知识点,并给出相应的答案。
1. 相对频率和概率的关系相对频率是指某个事件发生的次数与总试验次数的比值。
概率则是对相对频率的一种理论上的估计。
简单来说,相对频率是通过实验得到的结果,而概率则是通过理论计算得到的结果。
例如,如果我们投掷一枚硬币,出现正面的次数为50次,总投掷次数为100次,那么正面出现的相对频率为0.5。
根据概率的定义,我们可以推断出正面朝上的概率为0.5。
2. 互斥事件和对立事件互斥事件是指两个事件不能同时发生的情况,常常用符号“∪”表示。
对立事件是指两个事件只能发生一个的情况,常常用符号“∩”表示。
例如,抛掷一枚硬币,出现正面和出现反面就是两个互斥事件。
而生男孩和生女孩则是两个对立事件,因为一个家庭同时不可能同时生男孩和女孩。
3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率可以通过公式P(A|B) = P(A∩B)/P(B)计算得出。
其中,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
通过条件概率,我们可以解决一些实际问题,例如生男孩的概率在一个家庭已经有两个孩子的条件下是多少。
4. 独立事件独立事件是指两个事件之间的发生没有相互影响的情况。
如果事件A和事件B是独立事件,那么它们的概率的乘积等于它们分别的概率的乘积,即P(A∩B) = P(A) * P(B)。
例如,抛掷一枚硬币和掷一个骰子,出现正面和出现一个偶数是独立事件。
5. 事件的并、交和余事件的并是指两个事件至少有一个发生的情况,用符号“∪”表示。
事件的交是指两个事件同时发生的情况,用符号“∩”表示。
事件的余是指某个事件不发生的情况,用符号“¬”或“C”表示。
高考概率知识点及例题
概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=An n A n f 。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质1、事件的关系与运算(1)包含。
对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作(B A或A B)。
不可能事件记作。
(2)相等。
若B A A B且,则称事件A与事件B相等,记作A=B。
(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。
(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。
(5)事件A与事件B互斥:A B为不可能事件,即=A B,即事件A与事件B在任何一次试验中并不会同时发生。
高考概率经典解答题及答案
高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。
因此抽到红桃的概率为13/52,即1/4。
:扑克牌中一共有52张牌,其中红桃有13张。
因此抽到红桃的概率为13/52,即1/4。
2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。
抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。
:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。
抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。
因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。
3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。
共有36种不同的点数组合。
:投掷两次骰子,每次投掷的点数都有6种可能结果。
共有36种不同的点数组合。
其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。
因此,两次投掷的点数之和为7的概率为6/36,即1/6。
以上是一些经典的高考概率题目及其答案,希望对您有帮助。
高中数学概率知识点及例题自己整理
1.事件的关系:⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ⊆; ⑵事件A 与事件B 相等:若A B B A ⊆⊆,,则事件A 与B 相等,记作;⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ⋃(或B A +); ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ⋂(或AB ) ; ⑸事件A 与事件B 互斥:若B A ⋂为不可能事件(φ=⋂B A ),则事件A 与互斥; ⑹对立事件:B A ⋂为不可能事件,B A ⋃为必然事件,则A 与B 互为对立事件。
2.概率公式:⑴互斥事件(有一个发生)概率公式:P()(A)(B); ⑵古典概型:基本事件的总数包含的基本事件的个数A A P =)(;⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P =)( ;3. 随机变量的分布列 ⑴随机变量的分布列:①随机变量分布列的性质:≥01,2,…; p 12+…=1; ②离散型随机变量:期望:= x 1p 1 + x 2p 2 + … + + … ;方差:=⋅⋅⋅+-+⋅⋅⋅+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2)(;)(=++=+; ③两点分布:X 0 1 期望:=p ;方差:=p(1).P 1-p p①超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P nNk n MN k M ====-- 其中,N M N n ≤≤,。
称分布列X 0 1 … mP nN n MN M C C C 00-- n N n M N M C C C 11-- … n Nm n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。
高考概率知识点总结大全
高考概率知识点总结大全例11 (2008高考江苏2)一个骰子连续投2次,点数和为4的概率 .点数和为4,即()()()1,3,2,2,3,1,基本事件的总数是36,故这个概率是31369=. 4、现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组 成一个小组.(1)求1A 被选中的概率;(2)求1B 和1C 不全被选中的概率. 解析:(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间3×3×2=18由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}因而61()183P M ==. (2)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件, 由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 7、某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23. (1)求比赛三局甲获胜的概率;(3)设甲比赛的次数为X ,求X 的数学期望.解析:记甲n 局获胜的概率为n P ,3,4,5n =,(1)比赛三局甲获胜的概率是:333328()327P C ==; (2)比赛四局甲获胜的概率是:2343218()()3327P C ==; 比赛五局甲获胜的概率是:232542116()()3381P C ==; 甲获胜的概率是:3456481P P P ++=. (3)记乙n 局获胜的概率为'n P ,3,4,5n =.333311'()327P C ==,2343122'()()3327P C ==;23254128'()()3381P C ==;1882168107()3()4()5()27272727818127E X =⨯++⨯++⨯+=. 9、甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率是:甲中7环和八环概率都是0.1,九环是0.45;乙中7环0.1,八环0.15,十环是0.35,回答下列问题.(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;(2)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及E ξ.(1)甲运动员击中10环的概率是:10.10.10.450.35---=设事件A 表示“甲运动员射击一次,恰好命中9环以上”(含9环,下同),则()0.350.450.8P A =+=.甲运动员射击3次,均未击中9环以上的概率为 ()300030.810.80.008P C =⨯-=·.所以甲运动员射击3次,至少1次击中9环以上的概率010.992P P =-=.(2)记“乙运动员射击1次,击中9环以上”为事件B ,则()10.10.150.75P B =--=.因为ξ表示2次射击击中9环以上的次数,所以ξ的可能取值是0,1,2.因为()20.80.750.6P ξ==⨯=; ()()()10.810.7510.80.750.35P ξ==⨯-+-⨯=;()()()010.810.750.05P ξ==-⨯-=. 所以ξ的分布列是所以00.0510.3520.6 1.55E ξ=⨯+⨯+⨯=.。
高考数学基础夯实:概率问题全部知识点全方位细致总结
高考概率问题专项:基础知识要点一、概率.1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nmP(A)=.3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P (A )P (A )P (A )A A P (A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件. ③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅. 推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+二、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. 互斥对立⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q 5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξn Nk n M N k M-≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn ba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P (ηkn k k n nk n k kn=+-+=+==--,即η~)(ba an B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.三、数学期望与方差.则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)4. 方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称 +-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .四、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ图像的函数)(x f 叫做ξ的密度函数,由于“(-∞∈x 是必然事件,故密度曲线与x 2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ. 4.⑴“3σ”原则. 假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。
高二文科概率知识点及例题
高二文科概率知识点及例题概率是数学中的一个重要分支,它在我们日常生活和学习中都有着广泛的应用。
作为高二文科生,了解和掌握概率的基本知识点对于我们提高数学素养和解决实际问题都具有重要的意义。
本文将介绍高二文科概率的基本知识点及提供一些例题来帮助大家更好地理解。
知识点一:基本概率公式概率可以用来描述某件事情发生的可能性大小。
在概率的计算中,我们通常使用基本概率公式来计算事件发生的概率。
基本概率公式如下:P(A) = 事件A发生的可能性 / 总的可能性知识点二:独立事件和相关事件在概率的计算中,事件之间可以分为两种情况:独立事件和相关事件。
独立事件是指两个事件之间相互独立,一个事件的发生不会影响另一个事件的发生。
相关事件是指两个事件之间存在某种联系,一个事件的发生会影响另一个事件的发生。
知识点三:加法法则加法法则是概率计算中常用的一种方法,它用于计算两个事件联合发生的概率。
加法法则可以分为两种情况:互斥事件和非互斥事件。
互斥事件是指两个事件不能同时发生,而非互斥事件是指两个事件可以同时发生。
知识点四:乘法法则乘法法则是概率计算中另一种常用的方法,它用于计算两个事件同时发生的概率。
乘法法则适用于独立事件和相关事件的计算。
下面是一些例题来帮助大家更好地理解概率的运用:例题一:某班有30名学生,其中15名男生,15名女生。
从中随机选取一名学生,求选中的学生是男生的概率。
解析:题目中给出了总人数30人,其中男生15人,女生15人。
我们需要计算选中学生是男生的概率。
根据基本概率公式,男生被选中的可能性为15/30,即1/2。
因此,选中学生是男生的概率为1/2。
例题二:从一副扑克牌中随机抽取一张牌,求抽到红心的概率。
解析:一副扑克牌共有52张牌,其中红心有13张。
我们需要计算抽到红心的概率。
根据基本概率公式,抽到红心的可能性为13/52,即1/4。
因此,抽到红心的概率为1/4。
例题三:甲、乙两个学生参加一次数学竞赛。
2023高考数学概率知识点练习及答案
2023高考数学概率知识点练习及答案高考数学概率知识点练习及答案一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是( )A. 1/2B.2C. -1D.1答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P==.3.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,则n的所有可能值为( )A.3B.4C.2和5D.3和4答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.4.记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为( )A. 3/4B.1/2C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+π2有零点,需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b[-π,π],建立平面直角坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为________.答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y2≤2的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x∈[-1,1],都有f(x)≥0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)≥0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且m≠n,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足m≠n的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率.命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且m≠n)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x 的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为“方程x2+2ax+b2=0有实根”.当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件“在该样本中任取2辆轿车,其中至少有1辆标准型轿车”,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=×(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4”,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.。
高考数学必修三 概率(一)
概率(一)【知识要点】1.随机事件,必然事件,不可能事件2.事件A 的概率3.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=nm . 4.互斥事件:不可能同时发生的两个事件叫互斥事件,P (A +B )=P (A )+P (B )(A 、B 互斥),5.对立事件:其中必有一个发生的互斥事件叫对立事件, P (A +A )=P (A )+P (A )=1.6.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫相互独立事件., 当A 和B 是相互独立事件时,事件A ·B 满足乘法公式P (A ·B )=P (A )·P (B )7.独立重复实验:如果在一次试验中某事件发生的概率为p ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k . 【典型例题】1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( ) A.95 B.94 C.2111 D.2110 2.(2004年江苏,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A.2165 B.21625 C.21631 D.21691 3.从一批羽毛球产品中任取一个,质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)g 范围内的概率是( )A.0.62B.0.38C.0.7D.0.684.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个白球,都是红球B.至少有1个白球,至多有1个红球C.恰有1个白球,恰有2个白球D.至多有1个白球,都是红球5.一批产品共10件,其中有两件次品,现随机地抽取5件,则所取5件中至多有一件次品的概率为( ) A.141 B.97 C.21 D.926.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为( )A.60%B.30%C.10%D.50%7.(2004年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2) 8.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )A.0B.1C.2D.39.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D.95 10.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.11.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________. 12.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.13.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.14.用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.15.把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:(1)无空盒的概率;(2)恰有一个空盒的概率.16.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中,(1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少?17. 今有标号为1,2,3,4,5的五封信,另有同样标号的五个信封.现将五封信任意地装入五个信封,每个信封装入一封信,试求至少有两封信配对的概率.18.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.【课堂训练及作业】1.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( ) A. 51 B.52 C.103 D.107 2.(2004年湖北模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题(不能抽相同的题),则甲抽到判断题,乙抽到选择题的概率是( ) A.256 B.2521 C.338 D.3325 3.(2004年全国Ⅰ,理11)从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ) A.12513 B.12516 C.12518 D.12519 4.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.425.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________.6.有3人,每人都以相同的概率被分配到4个房间中的一间,则至少有2人分配到同一房间的概率是________.7.从编号为1,2,3,4,5,6,7,8,9,10的十个球中,任取5个球,则这5个球编号之和为奇数的概率是________.8.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________9.袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:(1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A n n A nf 。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质1、事件的关系与运算(1)包含。
对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作(或A B)。
⊇⊆B A不可能事件记作∅。
(2)相等。
若B A A B且,则称事件A与事件B相等,记作A=B。
⊇⊇(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。
(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。
(5)事件A与事件B互斥:A B为不可能事件,即=A B∅,即事件A与事件B在任何一次试验中并不会同时发生。
(6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。
2、概率的几个基本性质(1)0()1≤≤.P A(2)必然事件的概率为1.()1P E=.(3)不可能事件的概率为0. ()0P F=.(4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。
(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1P A B=.3.2 古典概型3.2.1 古典概型1、基本事件:基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间的和。
2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
具有这两个特点的概率模型称为古典概型。
3、公式:()=A P A 包含的基本事件的个数基本事件的总数3.2.2 (整数值)随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数?——书上例题。
3.3 几何概型3.3.1 几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。
2、几何概型中,事件A 发生的概率计算公式:3.3.2 均匀随机数的产生常用的是[]0,1上的均匀随机数,可以用计算器来产生0~1之间的均匀随机数。
本章知识小结(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
重难点的归纳:重点:1、了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义.2、理解古典概型及其概率计算公式.3、关于几何概型的概率计算4、体会随机模拟中的统计思想:用样本估计总体.难点:1、理解频率与概率的关系.2、设计和运用模拟方法近似计算概率.3、把求未知量的问题转化为几何概型求概率的问题.(二)高考概率概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.以下归纳9个常见考点:解析概率与统计试题是高考的必考内容。
它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。
下面对其常见题型和考点进行解析。
考点1考查等可能事件概率计算。
在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。
如果事件A包含的结果有m个,那么()m。
这就是等可能事件P An的判断方法及其概率的计n算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例1(2004 天津)从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点 2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。
不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。
用概率的乘法公式P(AB)=P(A)P(B)计算。
高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。
例2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率。
考点 3 考查对立事件概率计算。
必有一个发生的两个互斥事件A、B叫做互为对立事件。
用概率的减法公式P(A)=1-P(A)计算其概率。
高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。
例3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为122和5。
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;考点 4 考查独立重复试验概率计算。
若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。
若在1次试验中事件A发生的概率为P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=n ()(1)k k n knP A C p p-=-。
高考结合实际应用问题考查n次独立重复试验中某事件恰好发生k次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。
例4.(2005 湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。
假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。
从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。
(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)考点5考查随机变量概率分布与期望计算。
解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。
以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。
例5.(2005 湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率。
考点6考查随机变量概率分布列与其他知识点结合1、考查随机变量概率分布列与函数结合。
例 6.(2005 湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。
(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率。
2、考查随机变量概率分布列与数列结合。
例7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。
已知甲乙两人射击一次击中的概率均为7,且第一次由甲开始射击。
(1)求前4次射击中,甲恰好射击3次的概率。
(2)若第n次由甲射击的概率为an ,求数列{an}的通项公式;求lim an,并说明极n→∞限值的实际意义。
3、考查随机变量概率分布列与线形规划结合。
例8(2005 辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概P(甲)、P(乙);(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元。