数项级数收敛性判别法
级数收敛与发散的判定方法
![级数收敛与发散的判定方法](https://img.taocdn.com/s3/m/a058ec42bfd5b9f3f90f76c66137ee06eff94ed5.png)
级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。
在数学中,判断一个级数是收敛还是发散是一个重要的问题。
下面我将介绍几种常见的方法来判定级数的收敛性或发散性。
一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。
对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。
1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。
2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
二、交错级数收敛判定法交错级数是指级数的每一项交替正负。
对于交错级数,我们可以使用以下方法进行判定。
1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。
三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。
1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。
2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。
四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。
1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。
2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。
总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。
数学中的数列与级数收敛性判定方法
![数学中的数列与级数收敛性判定方法](https://img.taocdn.com/s3/m/896b778edb38376baf1ffc4ffe4733687e21fc1f.png)
数学中的数列与级数收敛性判定方法数学中的数列与级数收敛性判定方法是数学分析中的重要概念,它对于理解和应用各类数学问题具有重要意义。
本文将介绍数学中的数列与级数收敛性判定方法,分别从数列的收敛性判定和级数的收敛性判定两个方面进行论述。
一、数列的收敛性判定方法数列是按照一定规律排列的一组数。
在数列中,如果随着项数的增加,数列中的数值逐渐趋近于某个确定的数,那么我们称这个数列是收敛的。
否则,如果数列不存在极限或者极限为无穷大或无穷小,我们称这个数列是发散的。
下面介绍几种数列的收敛性判定方法。
首先是数列极限的定义。
对于一个数列{an},如果存在一个数L,使得对于任意给定的正数ε,总存在项数N,使得当n>N时,对应的数列的项与L之差的绝对值小于ε,那么我们称L为数列的极限。
这是最基本的数列收敛性判定方法。
其次是数列极限的性质。
如果数列{an}收敛,那么它必然有界,即存在一个正数M,使得对于任意的项数n,都有|an|≤M成立。
这是利用数列极限性质的一种常用收敛性判定方法。
同时,我们还可以通过夹逼定理来判定数列的收敛性。
夹逼定理是利用三个数列夹在一起的方式来判断数列的收敛性。
如果对于数列{an}、{bn}和{cn},当n趋于无穷大时,an≤bn≤cn,并且数列{an}和{cn}都收敛于同一个极限L,那么数列{bn}也收敛于L。
最后,我们还可以通过数列的单调性来判定其收敛性。
单调数列是指数列中的项随着项数的增加而保持单调递增或递减的性质。
如果数列{an}单调递增有上界,那么它必然收敛;如果数列{an}单调递减有下界,那么它也必然收敛。
二、级数的收敛性判定方法级数是将一个数列的各个项按照一定顺序进行求和得到的一类数列。
在级数中,如果求和的结果逐渐趋近于某个确定的数,那么我们称这个级数是收敛的。
否则,如果级数的和不存在或者为无穷大,我们称这个级数是发散的。
接下来介绍几种级数的收敛性判定方法。
首先是级数收敛的定义。
级数收敛的判别技巧
![级数收敛的判别技巧](https://img.taocdn.com/s3/m/f642eb6e0622192e453610661ed9ad51f01d54cf.png)
级数收敛的判别技巧级数是数学中一个重要的概念,它是由一系列数相加而成的。
在数学中,我们经常需要判断一个级数是否收敛,即求出它的和。
本文将介绍几种常用的级数收敛的判别技巧。
一、正项级数的判别法正项级数是指级数的每一项都是非负数的情况。
对于正项级数,我们可以使用以下几种方法来判断其是否收敛。
1. 比较判别法比较判别法是最常用的判别法之一。
它的基本思想是将待判别的级数与一个已知的级数进行比较,通过比较它们的大小关系来判断级数的收敛性。
比较判别法分为两种情况:(1)若存在一个收敛的级数∑an,使得对于所有的n,都有an≤bn,则待判别的级数∑bn也收敛。
(2)若存在一个发散的级数∑an,使得对于所有的n,都有an≥bn,则待判别的级数∑bn也发散。
2. 比值判别法比值判别法是判别正项级数收敛性的常用方法之一。
它的基本思想是通过计算级数相邻两项的比值的极限来判断级数的收敛性。
具体步骤如下:(1)计算级数相邻两项的比值:rn=an+1/an。
(2)求出极限limn→∞rn。
(3)根据极限的大小判断级数的收敛性:- 若0≤limn→∞rn<1,则级数收敛;- 若limn→∞rn>1,则级数发散;- 若limn→∞rn=1,则判别不出级数的收敛性,需要使用其他方法进行判别。
3. 根值判别法根值判别法也是判别正项级数收敛性的常用方法之一。
它的基本思想是通过计算级数项的根号的极限来判断级数的收敛性。
具体步骤如下:(1)计算级数项的根号:rn=(an)^(1/n)。
(2)求出极限limn→∞rn。
(3)根据极限的大小判断级数的收敛性:- 若0≤limn→∞rn<1,则级数收敛;- 若limn→∞rn>1,则级数发散;- 若limn→∞rn=1,则判别不出级数的收敛性,需要使用其他方法进行判别。
二、任意项级数的判别法任意项级数是指级数的每一项都可以是正数、负数或零的情况。
对于任意项级数,我们可以使用以下几种方法来判断其是否收敛。
函数项级数收敛性
![函数项级数收敛性](https://img.taocdn.com/s3/m/5abc624302d8ce2f0066f5335a8102d276a26127.png)
函数项级数收敛性函数项级数是指由函数项按照一定规则排列组成的级数。
在研究级数的收敛性时,我们通常关注的是序列的部分和序列,即部分和序列的极限是否存在。
在本文中,我们将介绍函数项级数的收敛性及其相关概念。
1. 函数项级数的定义考虑一个函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$,其中$\displaystyle a_{n} ( x)$为关于变量$\displaystyle x$的函数。
对于任意固定的$\displaystyle x$,元素$\displaystyle a_{n} ( x)$称为级数的通项。
部分和序列$\displaystyle S_{n} ( x)$定义为$\displaystyle S_{n} ( x) =\sum _{k=1}^{n} a_{k} ( x)$。
2. 函数项级数的收敛性函数项级数的收敛性与序列的收敛性密切相关。
函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystylex$收敛,即当$\displaystyle n$趋于无穷时,部分和序列$\displaystyleS_{n} ( x)$的极限存在,记为$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x) =S( x)$。
如果对于所有$\displaystyle x$都有$\displaystyle S( x) \neq\infty ,S( x) \neq -\infty$,则称级数在$\displaystyle x$上绝对收敛。
3. 收敛性判定准则对于函数项级数的收敛性判定,有以下几个准则:3.1 Cauchy准则函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystyle x$处收敛的充分必要条件是,对于任意正数$\displaystyle \varepsilon$,存在一个正整数$\displaystyle N$,使得当$\displaystyle m,n>N$时,$\displaystyle \left| \sum _{k=n}^{n+m} a_{k} ( x)\right|<\varepsilon$。
级数收敛的比较判别法与根值判别法
![级数收敛的比较判别法与根值判别法](https://img.taocdn.com/s3/m/9d410f40bfd5b9f3f90f76c66137ee06eff94ecd.png)
级数收敛的比较判别法与根值判别法在数学中,级数是由一系列的项相加得到的,判断级数的收敛性是数学分析中的一个重要问题。
为了判断一个级数是否收敛,数学家们发展了多种方法和判别法,其中比较判别法和根值判别法是较为常用和重要的两种方法。
一、比较判别法比较判别法是用来判断正项级数收敛与发散的方法之一。
该方法可以将一个给定级数与一个已知的收敛或发散的级数进行比较,从而得出所要判断的级数的收敛性。
比较判别法分为比较法和比较审敛法两种情况。
1. 比较法比较法又分为大于、小于比较法和极限形式比较法。
(1)大于、小于比较法:当一个级数的每一项都大于(或小于)另一个级数的每一项,并且另一个级数是收敛的,则可以得出原级数也是收敛的结论。
同样,如果另一个级数发散,那么原级数也是发散的。
(2)极限形式比较法:当一个级数a_n和一个已知的级数b_n满足以下条件时,可以利用极限形式比较法。
\lim_{n \to \infty} \frac{a_n}{b_n} = L其中,L是一个常数且0<L<∞。
如果收敛级数\sum b_n收敛,则a_n的级数也收敛;如果收敛级数为无穷大(发散),则a_n的级数也发散。
2. 比较审敛法当一个级数内的每一项都与一个已知收敛的“比较级数”的每一项都取不等号,并且比较级数的部分和是有界的,则原级数也是收敛的;反之,如果比较级数的部分和是无界的,则原级数发散。
比较判别法的基本思想在于将要研究的级数与已知的级数进行比较,通过比较得出原级数的收敛性。
虽然比较法的应用范围较广,但也存在一些局限性,例如比较级数必须满足一定条件,才能得出准确的结论。
二、根值判别法根值判别法是一种判断级数收敛性的重要方法。
它通过计算级数的一般项的n次根的极限来判断级数的收敛性。
根值判别法的基本思路是计算级数的一般项 a_n 的 n 次根:\sqrt[n]{a_n}如果极限\lim_{n \to \infty} \sqrt[n]{a_n} = L满足 L<1,则原级数收敛;如果 L>1 或该极限不存在(L为无穷大),则原级数发散。
数项级数和函数项级数及其收敛性的判定
![数项级数和函数项级数及其收敛性的判定](https://img.taocdn.com/s3/m/b5e18a5602768e9950e73814.png)
学号数项级数和函数项级数及其收敛性的判定学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:姓名:指导教师:2012年5月数项级数和函数项级数及其收敛性的判定摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。
关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法.Several series and Function of series and the judgment of theirconvergenceAbstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method.Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method前 言在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。
10.3数项级数的收敛性判别法(1)
![10.3数项级数的收敛性判别法(1)](https://img.taocdn.com/s3/m/e74154fc9e3143323968933f.png)
1+ n 由比较判别法知,级数∑ un = ∑ 发散. 2 n =1 n =1 1 + n
12
∞
∞
n! 例5 判断级数 ∑ n 的敛散性. n =1 n
但
p ≤ 1, 级数发散 .
21
∞
例12 讨论级数
∑n x
n =1
n −1
( x > 0 ) 的敛散性 .
u n +1 (n + 1) x n = lim =x 解: ∵ lim n − 1 n →∞ u n n →∞ n x
根据定理4可知:
当0 < x < 1 时, 级数收 敛 ; 当 x > 1时, 级数发散 ;
n− N
u N +1
k ( ρ + ε ) 收敛 , 由比较判别法可知 ∑
∑ un 收敛 .
20
(2) 当ρ > 1 或 ρ = ∞ 时,必存在 N ∈ Z + , u N ≠ 0, 当n ≥ N
u n +1 > 1, 从而 时 un u n +1 > u n > u n −1 > ⋯ > u N
(1) 当0 < l <∞时, 取 ε < l , 由定理 2 可知
∑ u n 与 ∑ vn
n =1 n =1
∞
∞
(2) 当l = 0时, 利用 u n < ( l + ε ) vn (n > N ), 由定理2 知 若 ∑ vn 收敛 , 则 ∑ u n 也收敛 ;
高中数学中的数列与级数的收敛性判定方法
![高中数学中的数列与级数的收敛性判定方法](https://img.taocdn.com/s3/m/a90e31536fdb6f1aff00bed5b9f3f90f76c64d2c.png)
高中数学中的数列与级数的收敛性判定方法数列与级数是高中数学中的重要概念,它们在数学和实际问题中具有广泛的应用。
在数学中,我们经常需要判断一个数列或级数是否收敛,以便进一步研究其性质和应用。
本文将介绍几种常见的数列与级数收敛性判定方法。
一、数列的收敛性判定方法1. 有界性判定法数列的有界性是判断其收敛性的基本条件。
如果一个数列有上界和下界,即存在常数M和N,使得对于数列中的所有项an,都有N≤an≤M,那么这个数列就是有界的。
根据数学中的单调有界原理,如果一个数列是单调递增且有上界的,或者是单调递减且有下界的,那么这个数列就是收敛的。
2. 极限定义法数列的极限定义是判断其收敛性的另一种方法。
对于数列{an},如果存在一个常数L,对于任意给定的正数ε,都存在正整数N,使得当n>N时,|an-L|<ε成立,那么这个数列就是收敛的,L就是该数列的极限。
3. 夹逼准则夹逼准则是判断数列收敛性的一种常用方法。
如果数列{an}、{bn}和{cn}满足对于所有的n,an≤bn≤cn,并且lim(an)=lim(cn)=L,那么数列{bn}也收敛于L。
二、级数的收敛性判定方法1. 正项级数的收敛性判定法正项级数是指级数中的每一项都是非负数。
对于正项级数∑an,如果其部分和数列{Sn}有界,即存在常数M,使得对于所有的n,Sn≤M,那么这个正项级数就是收敛的。
这是由于部分和数列是递增的,且有界的,根据数列的收敛性判定方法可知。
2. 比较判别法比较判别法是判断级数收敛性的一种常用方法。
对于两个级数∑an和∑bn,如果存在正数C和正整数N,使得当n>N时,an≤Cbn成立,那么如果级数∑bn收敛,那么级数∑an也收敛;如果级数∑bn发散,那么级数∑an也发散。
3. 部分和数列的单调性判定法对于级数∑an,如果其部分和数列{Sn}是单调递增的,并且有上界,即存在常数M,使得对于所有的n,Sn≤M,那么这个级数就是收敛的。
数项级数收敛性的判别
![数项级数收敛性的判别](https://img.taocdn.com/s3/m/0a873ff68ad63186bceb19e8b8f67c1cfad6ee24.png)
数项级数收敛性的判别一、基本概念数项级数是由一列实数构成的无限级数,形式化表示为:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+...+a_n+...$$其中$a_n$为级数中第$n$个数。
对于数项级数$\sum_{n=1}^{\infty}a_n$,我们关心的问题是其收敛性或发散性。
设数列$\{S_n\}$表示数项级数的前$n$项和,则有:二、基本判别法1.正项级数判别法正项级数指所有项都是非负数的级数。
对于正项级数$\sum_{n=1}^{\infty}a_n$,若存在正整数$p$,使得对于任意$n\ge p$,都有$a_n\ge a_{n+1}$,则数项级数收敛。
该判别法常被称为级数单调有界准则,或称作单调有界原理,其思路为:单调有界必收敛。
当级数中第$p$项后,级数的每一项都小于等于$a_p$,同时又因为级数的每一项都为非负数,所以$\{S_n\}$必单调不降;又由于$a_n$单调减少,$\{S_n\}$最终必定收敛。
2.比较判别法(1)当级数$\sum_{n=1}^{\infty}b_n$收敛时,级数$\sum_{n=1}^{\infty}a_n$也收敛。
比较判别法常被称为比较原理,其思路为:级数$\sum_{n=1}^{\infty}a_n$的上界为级数$\sum_{n=1}^{\infty}b_n$的上界,则当$\sum_{n=1}^{\infty}b_n$收敛时,$\sum_{n=1}^{\infty}a_n$必定收敛;反之,当$\sum_{n=1}^{\infty}a_n$发散时,$\sum_{n=1}^{\infty}b_n$必定发散。
设极限$L=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$存在,则:若$L=1$,则比值判别法无法断定级数的收敛性。
在比值判别法中,我们通常都称级数$\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}$为原级数的比值级数。
高等数学12.2数项级数的收敛性判别法
![高等数学12.2数项级数的收敛性判别法](https://img.taocdn.com/s3/m/26c188dba0116c175f0e4874.png)
讨论级数
1 n1 np
的收敛性, 其中 p 为正常数。
此级数称为 p 级数.
解 当 p =1 时 , p 级数就是调和级数
1 发散.
n1 n
当 p < 1 时 ,因为 1 ≥ 1(n1,2,3,), np n
而调和级数发散,所以由比较审敛法的结论 (2) 可
知,这时 p 级数发散.
的收敛性 .
解 考察级数
n1
n(n1)
1 2
n2 2n
n1
n2 2n
.
利用正项级数比值判别法,
不
难
判
定
级
数 n2
2n
n1
是收敛的,即任意项 n 1 级 1n(n2数 1) n 2n 2
绝对收敛. 因此由定理 5 可知该级数收敛 .
如 果 级 数un 发 散 ,但级数 un 收敛,
单调减小 . 由此可以推得
2n 1
≥
n2
2((n n 1 1)) 21(n1,2,3, ),
即
un≥ u n1(n1,2,3, ).
因交 此错n 级 1(1)n 数 12n n 21收 敛 .
三、绝对收敛与条件收敛
定义3 将级数un 的各项取绝对值 得到 后正项 n1
试判定交错级数
(1)n1
n1
n 2n
的
收
敛
性 .
例 7
试判定交错级数
(1)n1
n1
n 2n
的收敛性 .
解
因为 un
n 2n
,
un1
n1 2n1
级数与收敛性的判断
![级数与收敛性的判断](https://img.taocdn.com/s3/m/18d8a8b5f71fb7360b4c2e3f5727a5e9856a2731.png)
级数与收敛性的判断一. 级数的定义和收敛性判断级数是指由一系列无穷多个数相加而成的表达式,通常形式为 a1 + a2 + a3 + ...,其中ai为序列中的第i个数。
在数学中,我们经常需要判断一个级数是否收敛,即求出级数的和,或者判断级数是否发散,即级数的和是无穷大或不存在。
确定一个级数是否收敛有多种方法,下面将介绍常用的四种方法,它们分别是:比较判别法、比值判别法、根值判别法和积分判别法。
二. 比较判别法比较判别法是最常用的求解级数收敛性的方法之一。
该方法通过将待判断级数与一个收敛的基准级数进行比较,从而判断待判断级数的收敛性。
具体来说,比较判别法可以分为以下两种情况:1. 若存在一个收敛的正项级数∑b_n,则当对于所有n,有0 ≤ a_n ≤ b_n时,级数∑a_n也收敛。
2. 若存在一个发散的正项级数∑b_n,则当对于所有n,有a_n ≥ b_n ≥ 0时,级数∑a_n也发散。
三. 比值判别法比值判别法是另一种常用的级数收敛性判断方法。
通过取待判断级数的相邻项的比值的极限值,可以得出判断结果。
具体来说,比值判别法可以分为以下两种情况:1. 若存在一个正常数L,使得lim(n→∞) |a_(n+1)/a_n| = L,若L < 1,则级数∑a_n收敛;若L > 1,则级数∑a_n发散;若L = 1,则比值判别法无法判断,需要结合其他方法。
2. 若lim(n→∞) |a_(n+1)/a_n| = +∞,则级数∑a_n发散;若lim(n→∞) |a_(n+1)/a_n| = 0,则级数∑a_n收敛。
四. 根值判别法根值判别法是一种用于判断级数收敛性的方法,它采用级数的相邻项的根值的极限来进行判断。
具体来说,根值判别法可以分为以下两种情况:1. 若存在一个正常数L,使得lim(n→∞) (|a_n|^1/n) = L,若L < 1,则级数∑a_n收敛;若L > 1,则级数∑a_n发散;若L = 1,则根值判别法无法判断。
数项级数收敛的判别方法
![数项级数收敛的判别方法](https://img.taocdn.com/s3/m/1b22adeb2dc58bd63186bceb19e8b8f67c1cef2b.png)
数项级数收敛的判别方法数项级数是数学中的一个重要概念,它由一组序列所构成,有无穷多个数相加而成。
判断数项级数是否收敛是一个重要的问题,本文将围绕“数项级数收敛的判别方法”展开讨论。
第一步,先说一下收敛和发散的定义。
对于一个数列(即只有一项的“级数”),如果其极限值存在,则称这个数列是收敛的,否则就是发散的。
对于一个数项级数,如果其部分和的极限值存在,则称该级数是收敛的,反之,则是发散的。
因此,我们要判断一组序列相加后的部分和是否收敛,就需要寻找相应的判别方法。
第二步,几种常用的判别方法。
1. 比较判别法比较判别法是数项级数判别法中最常用的一种。
其基本思想是通过与其它更简单的级数进行比较,来判断该级数的收敛性。
具体做法有两种:(1)比较原则一:若0≤an≤bn,且级数∑bn收敛,则级数∑an也收敛。
(2)比较原则二:若0≤bn≤an,且级数∑bn发散,则级数∑an也发散。
2. 极限判别法极限判别法是另一种常用的判断级数收敛性的方法。
它的基本思想是利用极限的大小关系来判断级数的收敛性。
具体做法如下:若an>0,且limn→∞an/bn=L(L为常数),则(1)若L< ∞,则级数∑an和级数∑bn收敛或发散;(2)若L > 0,∑bn收敛,则∑an收敛;(3)若L = ∞,∑bn发散,则∑an也发散。
3. 交错级数判别法交错级数是一种类似于分数的级数形式,其每一项的符号交替出现。
交错级数判别法的基本思想是,若交错级数满足某些特殊条件,该级数就是收敛的。
具体做法如下:若交错级数∑(-1)nan满足以下条件,则该级数收敛:(1)an > 0;(2)an单调递减;(3)limn→∞an=0。
第三步,应用判别法解决实际问题。
当我们遇到一个分数、一个根号,或者一个三角函数等等一些复杂的级数时,直接用极限或比较原则对其进行处理可能会非常复杂。
这时我们就需要灵活运用各种级数收敛性判别方法,比如利用洛必达法则求解极限,或通过变形将其转化为其他形式更容易处理的级数。
关于函数项级数一致收敛的判别法探讨 -毕业论文
![关于函数项级数一致收敛的判别法探讨 -毕业论文](https://img.taocdn.com/s3/m/1bf9d2a6fad6195f312ba6cf.png)
【标题】关于函数项级数一致收敛的判别法探讨【作者】余成亮【关键词】函数项级数一致收敛判别法【指导老师】陈波涛【专业】数学与应用数学【正文】1 引言一致收敛是函数项级数的一个重要性质,有效地判别函数项级数的一致收敛对进一步研究函数项级数的性质起着重要作用。
判别函数项级数的一致收敛时,通常用到柯西准则、魏尔斯特拉斯判别法、阿贝尔判别法、狄利克雷判别法、莱布尼兹函数项级数一致收敛判别法或者直接根据一致收敛的定义进行判别。
而本文在给出这些判别法的同时并对函数项级数一致收敛的定义、柯西判别法、魏尔斯特拉斯判别法、阿贝尔判别法、莱布尼兹判别法加以补充和推广,从而给判别函数项级数一致收敛提供了便利。
2函数项级数及其一致收敛性判别定理设{u (x)}是定义在数集E上的一个函数列,表达式u (x)+ u (x)+ u (x)+ …,x E (2-1)称为定义在E上的函数项级数,简记为或.称S (x)= ,x E,n=1,2…(2-2)为函数项级数(1)的部分和函数列。
若X E,数项级数u (x )+ u ( x )+ u ( x )+ …(2-3)收敛,即部分和S ( x )= 当n 时极限存在,则称级数(2-1)在点x 收敛,x 称为级数(2-1)的收敛点,若级数(2-3)发散,则称级数(2-1)在点x 发散,若奇数(2-1)在E的某个子集D上每点都收敛,则称级数(2-1)在D上收敛,若D为级数(2-1)全体收敛点的集合,这时则称D为级数(2-1)的收敛域.函数项级数(2-1)的一致收敛性定义如下:2.1函数项级数的一致收敛性定义[1]定义 1设{ S (x)}是函数项级数的部分和函数列,若{ S (x)}在数集D上一致收敛于函数S (x),则称函数项级数在D上一致收敛于函数S (x),或称在D上一致收敛.推论1(必要条件)函数项级数在数集D上一致收敛,则函数列{ }在D上一致收敛于零.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以由前段中有关函数列一致收敛的定理,可推出下列相应的有关函数项级数的定理:2.2一致收敛的柯西准则定理1(一致收敛的柯西准则)函数项级数在数集D上一致收敛的充要条件为:对任给的正数,总存在某正整数N,使得n>N当时,对一切x D和一切正整数P,都有|S (x)-S (x)|<或| u (x)+ u ( x)+ u ( x)| <此定理中当P=1时,得到函数项级数一致收敛的一个必要条件.推论函数项级数在数集D上一致收敛的必要条件是函数列在D上一致收敛于零.设函数项级数在D上的和为,称为函数项级数的余项.定理1是函数项级数的一致收敛判别法,判别函数项级数的一致收敛性除了根据定义或定理1外,有些级数还可根据级数各项的特性来判别.2.3魏尔斯特拉斯判别法定理2(魏尔斯特拉斯判别法) 设函数项级数定义在数集D上,为收敛的正项级数,若对一切x D,有(2-4)则函数项级数在D上一致收敛.证由假设正项级数收敛,根据数项级数的柯西准则,任给正数,存在某正整数N,使得n>N当及任何正整数P,有又由(2-4)式对一切x D有.根据函数项级数一致收敛的柯西准则,级数在D上一致收敛.定理2也称为M判别法或优级数判别法,当级数与级数在区间[a,b]上成立关系式(2-4)时。
函数项级数收敛的判别方法
![函数项级数收敛的判别方法](https://img.taocdn.com/s3/m/eb78f7e93086bceb19e8b8f67c1cfad6195fe9ac.png)
函数项级数收敛的判别方法1.比较判别法比较判别法是根据函数项级数与已知的正项级数进行比较来判定其收敛性。
设函数项级数为∑an(x)和已知的正项级数∑bn(x),若对于所有的n,存在正数M使得,an(x),≤Mbun(x),则函数项级数与正项级数的收敛性同时成立。
比较判别法的关键是寻找一个已知的正项级数,使得函数项级数的绝对值小于等于正项级数的绝对值,并且根据正项级数的收敛性来推断函数项级数的收敛性。
2.比值判别法比值判别法是通过计算函数项级数相邻两项的比值的极限值来判定其收敛性。
设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an+1(x)/an(x), = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,比值判别法不确定。
比值判别法可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。
3.根值判别法根值判别法是通过计算函数项级数项的绝对值的n次方根的极限值来判定其收敛性。
设函数项级数为∑an(x),如果存在正数r,当n趋向于无穷大时,具有lim ,an(x),^(1/n) = r,那么:-若r<1,函数项级数绝对收敛;-若r>1,函数项级数发散;-若r=1,根值判别法不确定。
根值判别法与比值判别法类似,也可以通过计算函数项级数的极限值和已知的收敛级数或发散级数的极限值比较,来判断函数项级数的收敛性。
4.积分判别法积分判别法是通过将函数项级数与一个已知的函数进行积分比较来判定其收敛性。
设函数项级数为∑an(x),如果存在函数f(x),当x大于等于其中一点a时,具有∫[a,+∞) ,an(x),dx = ∑∫[a,+∞)an(x)dx = ∫[a,+∞)f(x)dx,那么:- 若∫[a,+∞)f(x)dx收敛,函数项级数绝对收敛;- 若∫[a,+∞)f(x)dx发散,函数项级数发散。
函数项级数的一致收敛性及非一致收敛性判别法归纳
![函数项级数的一致收敛性及非一致收敛性判别法归纳](https://img.taocdn.com/s3/m/e84650a6a8956bec0875e3a1.png)
函数项级数的一致收敛性与非一致收敛性判别法归纳一 概念引言设函数列{}n f 与函数f 概念在同一数集D 上,假设对任给的正数ε,总存在某一正数N ,使适当N n >时,对一切D x ∈,都有()()ε<-x f x f n 那么称函数列{}n f 在上一致收敛于()x f ,记作()()x f x fn →→()∞→n ,D x ∈ 设()x u n 是概念在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n E x ∈ )1(称为概念在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1, E x ∈, ,2,1=n )2(为函数项级数)1(的部份和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,那么对每一个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.概念1]1[ 设{})(x S n 是函数项级数∑)(x u n 的部份和函数列,假设{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部份和函数列来确信,因此能够依照函数列一致收敛性概念取得等价概念.概念2]1[ 设{})(x S n 是函数项级数∑)(x u n 的部份和函数列,函数列{})(x S n ,和函数)(x S 都是概念在同一数集D 上,假设关于任给的正数ε,总存在某一正整数N ,使适当N n >时,对一切D x ∈,都有ε<-)()(x S x S n ,那么称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.概念3 设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部份和函数列∑==nk n n x u x S 1)()(,假设0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,那么函数项级数∑)(x u n 在区间D 上非一致收敛.例1 试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明 显然∑∞=1n n x 在)1,1(-内收敛于xx-1. 对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xxn nk k1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+ 成立,只要当N n >时,恒有()r r n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依概念,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1. 存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使 ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依概念,∑∞=1n n x 在)1,1(-内不一致收敛.二 函数项级数一致收敛性的判定方式定理1 Cauchy 一致收敛准那么]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使适当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或 ()()()ε<++++++x u x u x u p n n n 21 或()ε<∑++=pn n k kx u 1专门地,当1=p 时,取得函数项级数一致收敛的一个必要条件:推论1 函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D 上一致收敛于0.定理2]2[ 函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3 放大法]3[(){}x S n 是函数项级数()∑x u n 的部份和函数列,和函数)(x S ,都是概念在同一数集D 上,关于任意的n ,存在数列{}n a ()0>n a ,使得关于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,那么称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明 因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使适当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由概念2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要明白)(x S . 定理4 确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是 ()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n证明 充分性 设(){}x S n 是函数项级数()∑x u n 的部份和函数列, )(x S 为和函数,那么有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方式把一致收敛问题转化为求数列极限的问题. 定理5 若()∑x u n 在区间D 上收敛,那么()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明 充分性 假设()∑x u n 在D 上不一致收敛,那么0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此取得{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性 因已知()∑x u n 在D 上一致收敛,因此N ∃>∀,0ε,使适当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,关于{}D x n ⊂∀,那么有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2 设()0≥x u n , 2,1=n ,在[]b a ,上持续,又()x u n ∑在[]b a ,收敛于持续函数()x f ,那么()x u n ∑在[]b a ,一致收敛于()x f .证明 已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,因此[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上持续,既然()ε<x R n ,因此00>∃δ,当()0000,δδ+-∈x x x 时, ()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每一个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}组成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6 M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑概念在数集D 上,∑n M 为收敛的正项级数,假设对一切D x ∈,有 2,1,)(=≤n M x u n x)3(那么函数项级数()x u n ∑在D 上一致收敛.证明 由假设正项级数()x u n ∑收敛,依照函数项级数的Cauchy 准那么,∀0>ε,∃某正整数N ,使适当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1依照函数项级数一致收敛的Cauchy 准那么,级数()x u n ∑在D 上一致收敛.注:假设能用从判定()∑∞=1n n x u 一致收敛,那么()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3 函数项级数∑∑22cos ,sin n nxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin nn nx n n nx ≤≤,而正项级数∑21n 是收敛的. 推论2 设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得关于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,那么函数项级数()∑∞=1n n x u 在区间I 一致收敛证明 已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,那么()n n a k ∑∞=+1ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n pn,当1>p 时收敛,故当n a =p n 1时,有 推论2' 设有函数项级数()∑∞=1n n x u ,假设存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,那么函数项级数()x u n ∑在区间I 一致收敛.例4 证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明 关于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim 2=+++∞→n x n x n n 由的推论2与推论2'得, ∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7 比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,假设N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,那么函数()x u n ∑区间I 绝对一致收敛.证明 已知 ()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准那么知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4 假设有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,那么函数()∑∞=1n n x u 区间I 绝对一致收敛.证明 已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数). 又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3 比较极限法假设有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,假设级数()x v n ∑在区间I 绝对一致收敛,那么函数()∑x u n 在区间I 也绝对一致收敛.证明 由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4 有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,那么函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明 由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知, 函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5 假设函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,那么函数项级数()x b n ∑在区间I 上一致收敛.证明 由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,那么级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5 设函数项级数()∑x u n 概念在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,假设对一切D x ∈,有()()x v x u n n ≥, ,2,1那么函数项级数()∑x u n 在D 上一致收敛.定理9 逼近法[]5假设对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,那么()x u n ∑也在D 上一致收敛于)(x S .证明 设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,因此D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即 +∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;因此+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛概念知, ()x u n n ∑∞=1在D 上也一致收敛于)(x S .定理10 由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,那么[]∑±)()(x v x u nn在D 上也一致收敛证明 由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使 适当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21 ()()ε<++++++x v x v x v p n n n 21)(因此 ()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)( εεε2=+<由函数项级数一致收敛的Cauchy 收敛准那么知,[]∑±)()(x v x u nn在D 上也一致收敛定理11 Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上持续,又()x u n ∑在[]b a ,上收敛于持续函数,那么函数项级数()x u n ∑在[]b a ,一致收敛.利用步骤:⑴判定()0≥x u n 且持续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上持续.Abel 引理定理12 Abel 判别法[]1 证明推论6 设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,那么()()x u x g n∑在D 上一致收敛.证明 因为()x g 在D 上有界,因此,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u pn nk k ε<∑+=,对D x ∈∀成立,此式说明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g p n nk k pn nk k .由Cauchy 准那么知()()x u x g n ∑在D 上一致收敛.定理13 Dirichlet 判别法[]1设(i )()x u n ∑的部份和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调; (ⅲ)在I 上()()∞→→n x v n 0,那么级数和()()x u x v n n ∑在I 上一致收敛.证明 充分性 由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n , 时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,取得 ()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;因此()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++于是由一致收敛的Cauchy 准那么级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,那个地址再也不赘述.例6 假设数列{}n a 单调且收敛于0,那么级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明 由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x xn kx n k 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,因此级数∑nx cos 的部份和函数列在[]απα-2,上一致有界,于是令()()nnna x v nx x u ==,cos ,那么由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14 积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数, ()x u n ∑是概念在数集D 上的正项函数级()()n x f x u n ,=,若是()y x f ,在[)+∞,1上关于y 为单调减函数,假设含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,那么()x u n ∑在数集D 上一致收敛.证明 由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,因此()x u n ∑在数集D 上一致收敛.例7 设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0持续.证明 第一对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,咱们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,而且无穷级数dy e y y ⎰+∞-⋅δδ1收敛,因此含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎬⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得, ()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 持续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也持续,因此()x S 在0x 持续,由0x 在()+∞,0的任意性可知, ()x S 在()+∞,0上持续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者持续作和,后者离散作和,因此它们的一致收敛性概念及判别法都是平行的,而且所表示的函数分析性质(如持续、可微、可积性)也一致,在此不在赘述.由定理14,咱们可利用积分的便利条件判定某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15 函数列(){}x u n 在[]b a ,上持续且单调,级数()∑a u n 和级数()||b u n 收敛,那么级数()x u n ∑在[]b a ,上一致收敛.证明 级数()∑a u n 和()∑b u n 收敛.那么()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上持续且单调,那么()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6 设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且知足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,那么函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明 对0>∀ε,因为b a ,为有限数,因此存在自然数k ,使得()εεk a b k a +≤≤-+1,咱们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时, 对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j j x x u()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u()()εεε+-+≤-=+=∑∑11/1/||i nj j pn j j x x u u()ε12+≤M因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使适当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.定理17 设()x u nn ∑为概念在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每一个()x u n 在上一致可微, ()x u nn ∑/在上一致收敛,记()=x S ()x u nn ∑.定理18 设函数列(){}x u n 在闭区间[]b a ,上持续可微,且存在一点[]b a x ,0∈,使得()x u n n ∑∞=1在点0x处收敛; ()x u n n ∑∞=1/在[]b a ,上一致收敛,那么函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛, ()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.依照拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2 假设函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明 由函数项级数的柯西收敛准那么有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两头取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准那么知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,那么()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,持续,那么()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19 利用内闭一致收敛判别[]7假设函数项级数()x u n ∑在[)b a ,内闭一致收敛,那么()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛. 证明 必要性,充分性用终归法,那个地址再也不赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能取得函数级数在区间一致收敛的.例8 证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛. 证明 ∑<<∀nx sin ,0,πεε的部份和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知, ∑nnx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n nx n ,2,02ππ,那么0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知, ∑∞=1sin n n nx在()π2,0不一致收敛. 推论7 若()x u n ∑在[)+∞,a 内闭一致收敛,那么()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,, ()x u n ∑皆收敛.证明 与定理19类似,略.定理20[]7 设函数级数()x u n ∑在[)b a ,收敛,且知足引理2中必要条件,那么()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明 必要性 用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,那么由定理20知不可;假设()b a x ,0∈,那么存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性 用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,那么由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8 设()x u n n ∑∞=1在[)+∞,a 收敛,且知足引理的必要条件,那么()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明 与定理20的类似,略.推论12[]4 设∑)(x u n 使概念在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D 上有界,假设D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,那么当1>q 时,∑)(x u n 在D 上一致收敛.证明 由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,因此1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n n n n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n s n s ++≥,因此s S O N SOn sn M N x u N x u n O ≤≤)()(,由1>s 时,∑sSO nMN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13 函数列{})(x u n 概念于数集D 上,且)(1x u 在D 上有界,假设+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,那么函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明 不妨设关于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,那么1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,那么当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1因此1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14 函数列{})(x u n 概念于数集D 上,且)(1x u 在D 上有界,假设D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,那么函数项级数在D 上一致收敛.证明 因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε )1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11 判定函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛性. 证明 因为11)(1≤=xx u , 且 11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛. 定理23[]8 (根式判别法)设∑)(x u n 为概念在数集D 上的函数项级数,记n n n x u x q )()(=,假设存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,那么函数项级数∑)(x u n 在D 上一致收敛.证明 由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8 (根式判别法的极限形式)设)(x u n 为概念在数集D 上的函数列,假设nn x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,那么函数项级数∑)(x u n 在D 上一致收敛.证明 由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,因此εε+<+<q x q x u n n )()(,因此n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51' 设()∑x u n 为概念在数集D 上的正项函数项级数,记()n n n x u q =,假设()1sup lim <=∈∞→q x q n Dx n ,那么函数项级数()∑x u n 在D 上一致收敛.证明 由假设()1sup lim <=∈∞→q x q n Dx n ,那么存在正整数N ,使适当N n >时,有()1<≤q x q n ,那么对任意的N n >,D x ∈∀有 ()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12 函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()xnx u q nn n n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n D x n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛. 推论16[]8 有函数项级数()∑x u n ,假设对D x ∈∀,有()1lim <=∞→l x u n n n ,那么函数项级数()∑x u n 在D 上一致收敛.证明 因()1lim <=∞→l x u n n n ,那么1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13 判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明 因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上一致收敛.定理24[]8 (对数判别法)设()x u n 为概念在D 上的正的函数列,假设()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,那么函数项级数()∑x u n 一致收敛;②假设对D x ∈∀,()1<<p x p ,那么函数项级数()∑x u n 不一致收敛.证明 由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln , 即()()()εε-+<<x p n x p n x u n 11,那么当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25 设函数项级数()∑x u n ,()∑x v n 都是概念在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q D x =∈;①当+∞<=21,0q q 时,假设()∑x v n 在D 上一致收敛,那么()∑x u n 在D 上也一致收敛. ②当+∞=>21,0q q 时,假设()∑x u n 在D 上一致收敛,那么()∑x v n 在D 上也一致收敛. ③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛. 证明 由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,那么任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n,取得()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部份可知假设()∑x v n 在D 上一致收敛,那么()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部份可知假设()∑x u n 在D 一致收敛,那么()∑x v n在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5概念4 设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的持续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,那么称这种级数为Lipschitz 型函数项级数.定理26 假设()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,那么①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明 ①因为()x u n 是[]b a ,上的持续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于持续函数()0=x u .因此()()x u x u k k 1+-在[]b a ,持续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,因此()1111≤-∑=+n k k ,故()∑=+-nk k 111一致有界,由Dirichlet 判别法知交织函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14 试证()∑+--211x n n 在区间[]b a ,一致收敛.证明 ⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的持续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17 设函数列(){}x S n 在[]b a ,上收敛于)(x S ,假设()x S n 可写成L 型函数项级数的部份和,那么函数列(){}x S n 在上一致收敛于)(x S .证明 设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k n k k n ∑=+-=111,那么对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15 证明()∑-xnn 11在[)+∞,δ上一致收敛. 证明 因为[)+∞∈∀,δx ,()x xnn 1110≤+≤,01lim =∞→x n n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k211,由Cauchy 准那么证毕.定理27[]9 利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,那么①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1 Cauchy 准那么与M 判别法比较有效一样优先考虑;2 Cauchy 准那么、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对必然的表达式进行有效是我放大.三 非一致收敛性的判别 1 利用非一致收敛的概念概念3,略.例16 讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是不是一致收敛.解 ()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,不管n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2 利用确界原理的逆否命题定理28 假设函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明 它是确界原理的逆否命题,故成立.例17 函数项级数()∑x u n 的部份和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是不是一致收敛.证明 部份和函数()xx x S nn --=11,当1<x 时,()(),11lim x x S x S n n -==∞→又当∞→n 时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数明白时值得用3 利用定理5的逆否命题定理29 设()()x S x u n =∑,假设存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,那么()∑x u n 在D 上不一致收敛.证明 略.注:此定理比较有效.4 利用Cauchy 准那么逆否命题定理30 函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明 它是Cauchy 准那么的逆否命题,故成立. 例18 讨论∑nnxsin 在[]π2,0=D 上的一致收敛性. 解 取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>o ε= 故∑nnxsin 在[]π2,0=D 上非一致收敛. 注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方式,即取1=p 能适用于很多例题.此方式比较有效,优先考虑.推论18 函数列(){}x u n 在上非一致收敛于0,那么函数项级数()∑x u n 在数集D 上非一致收敛.证明 它是推论1的逆否命题,故成立. 例19 设()()()()12sin 1212cos +⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解 取()12+=n n x n ,那么()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,因此(){}x u n 在概念域内非一致收敛于0,那么()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9 假设函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim≠∞→n n n x u ,那么函数项级数()∑x u n 在区间D 上非一致收敛. 例20 讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解 因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛. 5 利用求极值的方式定理31 ()()∑∞+==1n k kn x u x R ,假设()0sup lim ≠∈∞→x R nDx n ,那么()∑x u n 在D 上不一致收敛.例21 证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明 因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,因此()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,因此[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛. 注:极限函数明白时,可考虑用.6 利用一致收敛函数列的一个性质判别[]10引理2 假设持续函数列(){}x f n 在区间D 上一致收敛于()x f ,那么D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim证明 由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .依照持续函数列(){}x f n 在区间D 上一致收敛于()x f ,那么()x f 也必在D 上持续,从而()()o n n n x f x f =∞→lim .定理32 持续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}D x n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 那么函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22 讨论∑+221xn x在()+∞∞-,上一致收敛性. 解 显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上持续,取() ,2,11==n n x n ,那么0lim =∞→n n x .再设()221x k xx u k +=,由定积分概念。
判断收敛和发散的方法
![判断收敛和发散的方法](https://img.taocdn.com/s3/m/68f55b27fd4ffe4733687e21af45b307e871f986.png)
判断收敛和发散的方法
判断数列或级数是否收敛或发散是数学分析中的重要问题。
以下是判断收敛和发散的10种方法:
1. 有界性判别法:如果数列或级数中的每一项都有界,并且该界是常数,那么数列
或级数收敛。
2. 单调性判别法:如果数列单调有序,并且有上(下)界,那么数列或级数收敛。
3. 利用夹逼准则:如果存在两个数列或级数,一个上界另一个下界,并且这两个数
列或级数都收敛于同一个极限,那么要判断的数列或级数也收敛于该极限。
4. 比较判别法:通过比较要判断的数列或级数与一个已经判明收敛或发散的数列或
级数的阶来判断。
5. 极限判别法:如果数列或级数的项无论如何排列,都无法收敛于零,那么该数列
或级数发散。
6. 柯西收敛准则:如果对于任意给定的正数ε,存在一个正整数N,当n和m大于N 时,数列的前n项和后m项之差的绝对值都小于ε,那么数列或级数收敛。
7. 能否写成级数形式:判断数列能否按照一定规律变换成级数来判断收敛性。
8. 重排判别法:如果对于某个收敛级数,将其各项重新排列得到的数列或级数仍然
收敛到同一个极限,那么被判断的数列或级数也收敛到该极限。
9. 转化为广义积分:将数列转化为广义积分,通过判断该广义积分的收敛性来判断
数列或级数的收敛性。
10. 部分和数列的平方或绝对值的收敛性判断:如果部分和数列的平方或绝对值收敛,那么原数列或级数也收敛。
以上是判断收敛和发散的十种常用方法,根据具体情况选用不同的方法进行判断可以
更准确地判断数列或级数的收敛性。
数项级数收敛性的判别
![数项级数收敛性的判别](https://img.taocdn.com/s3/m/3c3660dc49649b6648d747c5.png)
级数收敛一、定义定义1:设有数列 表达式 (1)称为数项级数,可记为 ,其中 称为数项级数(1)的第n 项或一般项。
定义2: 称为级数(1)的第n 个部分和,数列称为它的部分和数列。
定义3:设 是级数(1)的部分和数列,若 则说级数(1)的和是S ,这时也说级数(1)是收敛(于S )的。
记为: 。
若是发散数列,则称级数(1)发散。
余项: 定义4:绝对收敛:若∑∞=1n n u 收敛,则称级数∑∞=1n n u 绝对收敛条件收敛:若∑∞=1n n u 发散,则称级数∑∞=1n n u 条件收敛二、性质定理定理1若级数1n n u ∞=∑与1n n v ∞=∑都收敛,则对任意常数,c d ,级数111()nn n n n n n cudv c u d v ∞∞∞===+=+∑∑∑也收敛.定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性.+++u u u n 21,,,:}{21u u u u n n ∑∞=1n n u u n u u u S n n ++=21}{S n }{S n S S n n =∞→lim S u n n =∑∞=1}{S n S S r n n -=定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和. 三、分类1、等比级数(几何级数):2、--p 级数:)0(11>∑∞=p nn p3、正项级数: 若0≥n u ,则称∑n u 为正项级数4、一般级数:任意 ,则称∑n u 为一般级数 三、等比级数收敛性的判别法等比级数(几何级数) ,1<q 时,级数收敛 1≥q 时,级数发散四、--p 级数收敛性判别法:--p 级数)0(11>∑∞=p nn p(1)当10≤<p 时,级数发散 (2)当1>p 时,级数收敛 例:∑21n 为p-级数,p=2>1,显然此级数是收敛的. 五、正项级数收敛性的判别法(1)比较原则:设∑n u 与∑n v 是两个正项级数,若(1) 当+∞<<10时,两级数同时收敛或同时发散; (2) 当0=l 且级数∑n v 收敛时,级数∑n u 也收敛;+++-q a aq a n 1qq a S n n --=1)1()1(≠q ⎪⎩⎪⎨⎧-=∞→发散q a S n n 1lim +++-q a aq a n 1 +++u u u n 21(3) 当+∞=l 且级数∑n v 发散时,级数∑n u 也发散; 例: 判别级数∑n 1sin 的敛散性解:由于 111s i nl i m =∞→nn n ,根据比较原则,及调和级数∑n1发散,所以级数∑n1sin 也发散.(2)比式判别法(极限形式)若∑n u 为正项级数,且lim q u u nn =+1则 (1)当1<q 时,级数∑n u 也收敛;(2)当1>q 时,或+∞=q 时,级数∑n u 发散;注:当1=q 时,)比式判别法不能对级数的敛散性作出判断,因为它可能是收敛的,也可能是发散的.例如,级数∑21n 与∑n 1,它们的比式极限都是1lim1=+∞→nn n u u 但∑21n 是收敛的,而∑n 1是发散的. (3)根式判别法(极限形式)若∑n u 为正项级数,且1lim =∞→n nn u 则 (1)当1<l 时,级数收敛 (2)当1>l 时,级数发散注:当1=l 时,根式不能对级数的敛散性作出判断例如,级数∑21n 与∑n 1,二者都有1lim =∞n nn u ,但∑21n 是收敛的,而∑n 1是发散的.但∑21n 是收敛的,而∑n 1是发散的. 例:判别级数()∑-+nn212的敛散性解:由于232123lim lim122122==-∞→-∞→m m m m mm u u 612321l i m l i m 212212==+∞→+∞→mm m mm m u u 故用比式判别法无法判定此级数的敛散性,现在用根式判别法来考察这个级数,由于 2123l i ml i m 2222==∞→∞→m mm m m m u 2121lim lim 12121212==++∞→++∞→m m m m m m u 所以21lim =∞→n n n u 由根式判别法知原级数收敛. (4)积分判别法:设f 是[)+∞,1上非负递减函数那么正项级数∑)(n f 与非正常积分⎰+∞1)(dx x f 同时收敛或同时发散; 例:讨论级数∑∞=2)(ln 1n pn n 的敛散性 解:研究非正常积分⎰∞+2)(ln px x dx,由于 ⎰⎰⎰∞+∞+∞+==2ln 22)(ln )(ln )(ln p p p udu x x d x x dx当1>p 时收敛1≤p 时发散,由积分判别法级数∑∞=2)(ln 1n pn n 在1>p 时收敛1≤p 时发散 六、一般级数收敛性的判别法(1)级数∑∞=1n n u 若0lim≠∞→n n u ,则此级数发散. 例:判断级数∑++nnn 2222的敛散性解:由于 1)2(lim 122=+⋅++∞→nx nn ,所以原级数发散(2)(基本判别法)如果正项级数的部分和数列具有上界,则此级数收敛.例:判定正项级数()()()112111n n n a a a a ∞=+++∑的敛散性.分析:本题无法直接使用定义、柯西判别法、达朗贝尔判别法,或比较判别法以及其他的判别法进行判断,因此可选用基本定理进行判断. 解 记()()()12111nn n a u a a a =+++,则()()()()()()()()()121211211111111111nn n n n a u a a a a a a a a a -==-+++++++++级数的前n 项和()()()112111111n n k k n S u a a a ===-<+++∑所以原级数的部分和数列有上界,于是原级数收敛.(3)柯西收敛准则级数∑∞=1n n u 收敛的充要条件:,,0N n ∈∃>∀ε当)(N m n m ∈>时,N p ∈∀有:ε<+⋅⋅⋅+++++m p m m u u u 21例:证明级数∑21n的收敛 证明:由于||21p m m m u u u ++++⋯++=222)(1)2(1)1(1p m m m +⋯++++ <))(1(1)2)(1(1)1(1p m p m m m m m +-++⋯+++++=)()()(pm p m m m m m+--++⋯++-+++-1112111111 =p m m +-11<m1 因此,对任给正数ε ,取]1[ε=N ,使得当m>N 及任意自然数p ,由上式就有||21p m m m u u u ++++⋯++<m1<ε由柯西收敛准则推得级数∑21n 是收敛的. (4)绝对收敛定义法:若级数∑n u 各项绝对值所组成的级数∑n u 收敛,则原级数∑n u 收敛; 例:⋯++⋯++=∑!!2!2n n nnαααα的各项绝对值所组成的级数是⋯++⋯++=∑!||!2||||!||2n n nn αααα应用比式判别法,对于任意实数α都有1||lim||||lim1+=∞→+∞→n u u n nn n α=0 因此,所考察的级数对任何实数α都绝对收敛.(5)莱布尼兹判别法:若交错级数()),2,1,0(11⋅⋅⋅=>-+∑n u u n n n 满足下述两个条件:(1)数列{}n u 单调递减;(2)0lim=∞→n n u 则级数()),2,1,0(11⋅⋅⋅=>-+∑n u u n n n 收敛.例:考察级数∑∞=+-111)1(n n n的敛散性.解:因为∑∑∞=+=-111|1)1(|n n nn 发散,不满足绝对收敛定义,而此级数满足莱布尼茨条件,故收敛.。
数项级数狄利克雷判别法的证明
![数项级数狄利克雷判别法的证明](https://img.taocdn.com/s3/m/7a53dedb50e79b89680203d8ce2f0066f5336436.png)
数项级数狄利克雷判别法的证明数项级数狄利克雷判别法的证明1. 引言在数学领域中,数项级数的收敛性是一个重要而又复杂的问题,而狄利克雷判别法则为我们提供了一种简单而又有效的方法来判定某些特定级数的收敛性。
本文将对数项级数狄利克雷判别法进行全面的评估,并对其进行证明和深入的讨论。
2. 数项级数和狄利克雷判别法介绍让我们回顾一下数项级数和狄利克雷判别法的基本概念。
数项级数是指由一系列数相加所得的无穷级数,通常表示为∑(a_n),其中a_n为级数的第n项。
而狄利克雷判别法则是用来判定由一系列数相加所得的级数是否收敛的方法。
3. 狄利克雷判别法的基本理论接下来,让我们来详细探讨狄利克雷判别法的基本理论。
狄利克雷判别法的主要思想是通过对级数的部分和进行分析,引入一个辅助数列b_n,并结合部分和的特性来判断级数的收敛性。
具体来说,若数列b_n单调趋于0且部分和的序列有界,那么原级数收敛;若数列b_n不单调趋于0,但部分和的序列有界,也能推出级数收敛;若数列b_n单调趋于0但部分和的序列不是有界的,则级数发散。
4. 数项级数狄利克雷判别法的证明现在,让我们来进行数项级数狄利克雷判别法的证明。
我们假设数列a_n和b_n满足以下条件:- a_n单调趋于0- b_n单调有界接下来,我们考虑部分和S_n的特性。
由于b_n单调有界,我们可以得出S_n*b_n的部分和序列有界。
再根据a_n单调趋于0,我们知道a_n的部分和序列收敛。
S_n的部分和序列有界。
根据狄利克雷判别法的基本理论,我们可以得出数项级数∑(a_n)的收敛性。
5. 个人观点和总结我个人对狄利克雷判别法的理解是,它是一种简单而又直观的方法来判断特定级数的收敛性,而且在实际应用中也具有一定的便利性。
通过对狄利克雷判别法的证明,我对其理论基础有了更深入的理解,也更加确信其有效性和适用性。
在本文中,我们全面评估了数项级数狄利克雷判别法,并进行了证明和深入讨论。
希望通过本文的阐述,读者能对狄利克雷判别法有一个更加深刻和全面的理解,为进一步学习和探索数学领域提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
sin 1
因为 lim n
1.而级数
1 是发散
n 1
n1 n
n
的,根据比较审敛法的极限形式知,级数
sin 1 发散.
n1 n
2020/6/10
9
目录
上页
下页
返回
例 6 判别下列级数的敛散性:
(1)
n1
n3 2n3 n
;
(2)
1;
n n1
1 1 n
(3)
n1
1 n
ln
1
1 n
;
n3
(4) n2en . n1
1 n1 n p
:
lim u n 1 n un
1
lim ( n 1) p
n
1 np
1
p1, 级数收敛 ;
但 p1, 级数发散 .
2020/6/10
14
目录
上页
下页
返回
例6
判别级数 12 2
22 22
32 23
L
n2 2n
L
的敛散性.
解:(1)令 un
n2 2n
,则
(n 1)2
lim un1 lim
第七章
第二节 数项级数收敛性判别法
(Interrogate of constant term series)
一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 四、小结与思考练习
2020/6/10
1
目录
上页
下页
返回
一、正项级数及其审敛法
(Interrogate of positive term series)
n
1
1 n
1
发散
,
由比较审敛法可知
p
级数
n
1
n
p
发散 .
2020/6/10
5
目录
上页
下页
返回
2) 若
因为当n 1 x n 时,
故
n1 n1xp
dx
p1 1(n1 1)p1np 11
考 1 虑 强2 p 1 级 1 数 n 22 p 1 ( n1 113 )pp 1 11 n p11 n 的p 1 部 1 分 ( 和n 1 1 )p 1
n 1
n 1
数 N ,使当 n N 时有 un kvn (k 0) ,
(1)如果 vn 收敛,则 un 也收敛;
n 1
n 1
(2)如果 un 发散,则 vn 也发散.
2020/6/10
n 1
3
n 1 目录
上页
下页
返回
例 1 证明级数
1 1 1 L 1 L , (k 0)
2 k 22 k 23 k
1 发散.
n n1
1 1 n
(3)因为 lim
1 n
ln
1
1 n
lim
ln
1
1 n
1
,
n
1
n
1
3
n
n2
而级数
1
3
n n1 2
收敛,所以级数
n1
1 n
ln
1
1 n
收敛.
(4)因为
n2en lim n 1
n4 lim
e n n
0 ,而级数
1
n2
n 1
收敛,
n2
所以级数 n2en 收敛.
n
kn1k1p1(k11)p1
1
1 (n1)p1
n 1
故强级数收敛 , 由比较审敛法知 p 级数收敛 .
2020/6/10
6
目录
上页
下页
返回
例 3 判别级数
1
的敛散性.
n1 (n 1)(n 4)
解
因为 0
1 (n 1)(n 4)
1 n2
,而级数
n 1
1 n2
是
p2 的 p 级数,它是收敛的.所以级数
n 1
2020/6/10
11
目录
上页
下页
返回
说明:判别级数的敛散性,如果已知一些收敛级数和 发散级数,则可以以它们为标准进行比较.
常用于比较的级数有 p 级数、等比级数与调和级数, 因此必须记住它们.
另一方面,由比较审敛法的定理我们知道,它是通过与 某个敛散性已知的级数的比较来判断给定级数的敛散性, 但有时作为比较对象的级数不容易找到,那么能不能从给
解:(1)因为
lim
2n3
n
n3 lim
3n2
1,
n 1
n 2n3 n 2
n2
而
1 收敛,所以级数
n 3 收敛.
n2
n 1
1 n1 2n3 n
(2)因为
2020/6/10
1 1
lim n n n 1
n
lim
1
1 ,又级数
1 发散,
n n n
n1 n
10
目录
上页
下页
返回
所以级数
若 un 0, 则称 u n 为正项级数 .
n 1
定理 1 正项级数 u n 收敛
部分和序列 S n
n 1
(n1,2,)有界 .
证: “
” 若 u n 收敛 , 则 Sn收,敛 故有界.
n 1
“
” un0,∴部分和数列 Sn单调递增,
又已知 Sn有界, 故Sn收敛 , 从而 u n 也收敛.
u n n
n
2n1 n2
lim
n
1 2
n
n
1
2
1 2
1,
2n
根据比值审敛法知,原级数是收敛的.
例 7
判别级数
3n
的敛散性.
n1 n2 2n
提示:解法与例 6 完全类似!
收敛 , 由比较审敛法可知
13
目录
上页
下页
返回
(2) 当1或 时 ,必N 存 Z ,u 在 N 0 ,当nN
时 u n 1 1, 从而
un
un1unun1 uN
因此 n l i m unuN0,所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
n un
例如, p – 级数
1
也是收敛的.
n1 (n 1)(n 4)
2020/6/10
7
目录
上页
下页
返回
定理3 (比较审敛法的极限形式) 设两正项级数
满足
则有
(1) 当 0 < l <∞ 时, 两个级数同时收敛或发散 ; (2) 当 l = 0
(3) 当 l =∞
2020/6/10
8目录上页来自下页返回例 5 判别级数 sin 1 的敛散性. n1 n
定的级数自身直接判别级数的敛散性?
为此,下面我们将给出使用上很方便的比值审敛法和 根值审敛法.
2020/6/10
12
目录
上页
下页
返回
定理4 比值审敛法 ( D’ Alembert 判别法)
设
为正项级数, 且
则
(1) 当 (2) 当
时, 级数收敛 ;
或
时, 级数发散 .
证: (1)
2020/6/10
n 1
2020/6/10
2
目录
上页
下页
返回
定理 2 设 un 和 vn 都是正项级数,且 un vn ,
n 1 n 1
(1) 如果级数 vn 收敛,则级数 un 也收敛;
n 1
n 1
(2) 如果级数 un 发散,则级数 vn 也发散.
n 1
n 1
推论 设 un 和 vn 都是正项级数,且存在自然
2n k
是收敛的.
证
因为 0
1 2n k
1 2n
,而级数
n 1
1 2n
是收敛的.
根据比较审敛法可知所给级数也是收敛的.
2020/6/10
4
目录
上页
下页
返回
例2 讨论 p 级数 121p31pn1p(常数 p > 0)
的敛散性.
解: 1) 若 p1, 因为对一切 nZ ,
1 np
1 n
而调和级数