函数及图象测试题
八年级下册数学第17章 函数及其图象测试题(二)
第17章函数及其图象测试题(二)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若y=mx+m-1是正比例函数,则m的值为()A.0 B.1 C.1-D.2 2. 关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=13时,y=13.对于双曲线2kyx-=,当x>0时,y随x的增大而增大,则k的取值范围为()A.k<2 B.k≤2 C.k>2 D.k≥24. 正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D5. 把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6. 已知函数y=ax-3和y=kx的图象交于点P(2,-1),则关于x,y的二元一次方程组3y axy kx=-⎧⎨=⎩,的解是()A.21xy=-⎧⎨=-⎩,B.21xy=⎧⎨=-⎩,C.21xy=⎧⎨=⎩,D.21xy=-⎧⎨=⎩,7. 若点(-1,m)和(2,n)在直线y=-x+b上,则m,n,b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n8. 设min(x,y)表示x,y中的最小值.例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{3x,-x+4}可以表示为()A.y=()(3141)y x xx x=⎧-+≥⎪⎨⎪⎩,<B.y=()413()1x xx x-+≥⎧⎪⎨⎪⎩<,C.y=3x D.y=-x+49. 如图1,在平面直角坐标系中,点A(m,6),B(3,n)均在反比例函数(0)ky kx=>的图象上,若三角形AOB的面积为8,则k的值为()A.3 B.6 C.9 D.12图1 图210. 如图2,直线142yx=+与x轴,y轴分别交于点A和点B,点C(-4,2),点D为线段OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(-1,0)B.(-2,0)C.(-3,0)D.(-4,0)二、填空题(本大题共6小题,每小题3分,共18分)11. 若点P的坐标是(2a+1,a-4),且P点到两坐标轴的距离相等,则P点的坐标是.12. 若点A(a,2a+3)在第二、四象限两坐标轴夹角的平分线上,则a= .13. 如图3,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集是.图3 图414. 某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元/双.15. 已知关于x的一次函数y=(m-3)x+m+2的图象经过第一、二、四象限,则关于x的一次函数y=(m+2)x-m+3必经过第象限.16. 如图4,三角形OAB的顶点A在双曲线6(0)y xx=>上,顶点B在双曲线4(0)y xx=-<上,AB中点P恰好落在y轴上,则三角形OAB的面积为.三、解答题(本大题共7小题,共52分)17.(6分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.(6分)已知一次函数y=(3-m)x+2m-9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当-1≤x≤2时,求y的取值范围.19.(6分)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.求y关于x的函数表达式.20.(8分)如图5所示,在平面直角坐标系中,直线AC与x轴交于点A,与y轴交于点B(0,52),且与反比例函数10(0)y xx=>的图象交于点C,CD⊥y轴于点D,CD=2.(1)求直线AC的表达式;(2)根据函数图象,直接写出当反比例函数10(0)y xx=>的函数值y≥5时,自变量x的取值范围;(3)设点P是x轴上的点,若三角形PAC的面积等于10,直接写出点P的坐标.售价x(元/双)200 240 250 400销售量y(双)30 25 24 15图521.(8分)如图6,已知A (a ,-2a ),B (-2,a )两点是反比例函数my x=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的表达式; (2)求三角形BAO 的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.图622.(8分)某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)与通电时间x (分)的关系如图7所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数表达式; (2)求出图中a 的值;(3)某天早上7∶20,李老师将放满水后的饮水机电源打开,若他想在8∶00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?图723.(10分)甲、乙两人同时登山,两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图8所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求甲和乙提速后y 和x 之间的函数关系式; (3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?图8附加题(20分,不计入总分)24. 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图9所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?图9(山东于秀坤)第17章 函数及其图象测试题(二)一、1. B 2. C 3. A 4. A 5. D 6. B 7. C 8. A 9. B 10. B二、11. (-9,-9)或(3,-3) 12. -1 13. x<-2 14. 300 15. 一、二、三 16. 5 三、17. (1)P (0,-3). (2)P (-12,-9). (3)P (2,-2).18. 解:(1)因为一次函数y=(3-m )x+2m-9的图象与y 轴的负半轴相交,y 随x 的增大而减小, 所以3−m <0,2m−9<0,解得3<m <4.5.因为m 为整数,所以m=4.(2)由(1)知,m=4,则该一次函数表达式为y=-x-1. 因为-1≤x≤2,所以-3≤-x-1≤0,即y 的取值范围是-3≤y≤0.19. 解:根据题意,设111k y x =-,y 2=k 2x (k 1,k 2≠0). 因为y=y 1+y 2,所以121k y k x x =+-. 因为当x=2时,y 1=4,y=2,所以11242 2.k k k =⎧⎨+=⎩,.所以k 1=4,k 2=-1.所以41y x x =--. 20. 解:(1)因为CD ⊥y 轴于点D ,CD=2,所以点C 的横坐标为2.把x=2代入反比例函数10(0)y x x =>得,1052y ==.所以C (2,5). 设直线AC 的表达式为y=kx+b ,把B (0,52),C (2,5)代入得522 5.b k b ⎧=⎪⎨⎪+=⎩,解得545.2k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线AC 的表达式为5542y x =+. (2)由图象可知,当反比例函数10(0)y x x=>的函数值y ≥5时,自变量x 的取值范围是0<x ≤2. (3)P (-6,0)或(2,0).21. 解:(1)因为A (a ,-2a ),B (-2,a )两点在反比例函数my x=的图象上,所以m=-2a ·a=-2a ,解得a=1,m=-2.所以A (1,-2),B (-2,1),反比例函数的表达式为2y x=-.将点A (1,-2),点B (-2,1)代入y=kx+b 中,得221k b k b +=-⎧⎨-+=⎩,,解得11.k b =-⎧⎨=-⎩,所以一次函数的表达式为y=-x-1.(2)在直线y=-x-1中,令y=0,则-x-1=0,解得x=-1,所以C (-1,0). 所以S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32. (3)x<-2或0<x<1.22. 解:(1)当0≤x ≤8时,设y 与x 之间的函数表达式为y=kx+b (k ≠0).将(0,20),(8,100)代入y=kx+b ,得208100b k b =⎧⎨+=⎩,,解得1020.k b =⎧⎨=⎩,所以当0≤x ≤8时,y 与x 之间的函数表达式为y=10x+20. (2)当8≤x ≤a 时,设y 与x 之间的函数表达式为22(0)k y k x=≠. 将(8,100)代入2k y x =,得2100kx=,解得k 2=800. 所以当8≤x ≤a 时,y 与x 之间的函数表达式为800y x=. 将(a ,20)代入800y x=,解得a=40. (3)依题意,得800x≤40,解得x ≥20. 因为x ≤40,所以20≤x ≤40.所以他应在7∶40~8∶00时间段内接水. 23. 解:(1)10 30(2)设甲的函数关系式为y=kx+b.由题意,得10020300b k b +⎧⎨⎩=,=,解得10=100.k b ⎧⎨⎩=,所以甲的关系式为y=10x+100.设乙提速后的函数关系式为y=mx+n.由于m=30,且图象经过(2,30),所以30=2×30+n ,解得n=-30. 所以乙提速后的关系式为y=30x-30.(3)由题意,得10x+100=30x-30 ,解得x=6.5. 把x=6.5代入y=10x+100,得y=165.所以相遇时乙距A 地的高度为165-30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A 地的高度为135米.24. 解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则b =4,7k 1+b =46,解得k 1=6,b =4.则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为y =2k x(k 2≠0). 由图象知y =2k x 过点(7,46),所以27k =46.所以k 2=322.所以y =322x.此时自变量x 的取值范围是x >7. (2)当y=34时,由y=6x+4,得6x+4=34,x=5.所以撤离的最长时间为7-5=2(小时).所以撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x,得x=80.5. 80.5-7=73.5(小时).所以矿工至少在爆炸后73.5小时才能下井.。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。
高考专题 《函数图像问题》考题归纳及详解
高考专题《函数图像问题》考题归纳及详解一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A. B.C.D.4.函数y=xln|x|的大致图象是()A.B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C. D.10.函数的图象大致为()A. B. C. D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A.. B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.31.函数y=的一段大致图象是()A. B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A. B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A.B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C. D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A. B. C. D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A.. B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y 轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A. B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a ﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d 的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。
函数的图像经典例题
函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。
例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.【答案】(1)g(x)=x-2+.(2)当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).【解析】解:(1)设点P(x,y)是C2上的任意一点,则P(x,y)关于点A(2,1)对称的点为P′(4-x,2-y),代入f(x)=x+,可得2-y=4-x+,即y=x-2+,∴g(x)=x-2+.(2)由消去y得x2-(m+6)x+4m+9=0,Δ=[-(m+6)]2-4(4m+9),∵直线y=m与C2只有一个交点,∴Δ=0,解得m=0或m=4.当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).2.如图,是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()【答案】D【解析】根据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D正确.3.已知函数f(x)=x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(-π,π)C.(lg π,1)D.(π,10)【答案】D【解析】函数f(x)的图象如图所示,结合图象可得x1+x2=-π,x3+x4=π,若f(x)=m有5个不等的实数根,需lg π<lg x5<1,得π<x5<10,又由函数f(x)在[-π,π]上对称,所以x1+x2+x3+x4=0,故x1+x2+x3+x4+x5的取值范围为(π,10).4.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】由于函数的最小正周期为,所以.所以函数.所以将函数向右平移即可得到.故选B.【考点】1.函数的平移.2.函数的诱导公式.7.已知函数f(x)=,若,则a的取值范围是()A.B.C.[-2,1]D.[-2,0]【答案】D【解析】由题意作出的图象(如图)当a>0时直线y=ax过一、三象限(如图),必与y=ln(x+1)相交,所以a≤0当a≤0时,直线y=ax过三、四象限对x>0,|f(x)|=ln(x+1)> ax成立;对x<0,由|f(x)|=x2-2x≥ax a≥x-2,而当x<0时x-2<-2,所以a≥-2综合知-2≤a≤08.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.【答案】[-2,0]【解析】作出函数y=|f(x)|的图象,当|f(x)|≥ax时,必有k≤a≤0,其中k是y=x2-2x(x≤0)在原点处的切线斜率,显然k=-2.所以a的取值范围是[-2,0].9.若函数f(x)=的图象如图,则m的取值范围是________.【答案】(1,2)【解析】∵函数f(x)的定义域为R,∴x2+m恒不等于零,∴m>0.由题图知,当x>0时,f(x)>0,∴2-m>0⇒m<2.又∵在(0,+∞)上函数f(x)在x=x0(x>1)处取得最大值,而f(x)=,∴x=>1⇒m>1.综上,1<m<2.10.若函数满足,且时,,函数,则函数在区间内的零点的个数为____.【答案】9【解析】因为,所以函数是周期为2函数.因为时,,所以作出它的图象,利用函数是周期为2函数,可作出在区间上的图象,如图所示:故函数在区间内的零点的个数为9,故答案为9.【考点】函数的零点;函数的周期性.11.已知函数,则不等式的解集为.【答案】【解析】函数的图象如图,由不等式知,,从而得到不等式的解集为.【考点】函数的图象和性质的综合运用..12.设D={(x,y)|(x-y)(x+y)≤0},记“平面区域D夹在直线y=-1与y=t(t∈[-1,1])之间的部分的面积”为S,则函数S=f(t)的图象的大致形状为()【答案】C【解析】由题意,有二次函数图像可得,答案选C.【考点】函数的图象与图象变化.13.已知函数,若方程有且只有两个不相等的实数根,则实数a的取值范围为()A、 B、C、 D、。
初中数学一次函数的图像专项练习30题(有答案)ok
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
函数的概念及图像培优训练题
函数的概念及图像培优训练题一.选择题1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t B.Q=20﹣0.2t C.t=0.2Q D.t=20﹣0.2Q 2.从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是()v(m/s)25155﹣5t(s)0123 A.v=25t B.v=﹣10t+25C.v=t2+25D.v=5t+103.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()数量x(千克)1234…售价y(元)8+0.416+0.824+1.232+1.6…A.y=8+0.4x B.y=8x+0.4C.y=8.4x D.y=8.4x+0.4 4.甲以每小时18km的速度行驶时,他所走的路程s(km)与时间t(h)之间的关系式可表示为s=18t+6,则下列说法正确的是()A.数18,6 和s,t都是变量B.s是常量,数18,6 和t是变量C.数18,6 是常量,s和t是变量D.t是常量,数18,6 和s是变量5.(2022•惠城区一模)正方形的面积y与它的周长x满足的函数关系是()A.正比例函数B.一次函数C.二次函数D.反比例函数6.(2022春•岚山区期末)函数y=√x+1中自变量x的取值范围是()A.x≥0B.x>﹣1C.x≥﹣1D.x≥17.(2022春•安居区期末)函数y=√2x−1的自变量的取值范围是()A.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠128.(2022•重庆模拟)函数y=√x−1+3中自变量的取值范围是()A.x≠1B.x>1C.x≥1D.x≤19.(2022•无锡模拟)函数y=13−x中自变量x的取值范围是()A.x<0B.x<3C.x≠0D.x≠310.(2021秋•紫金县期末)当x=2时,函数y=2−x+1的值是()A.2B.﹣2C.12D.−1211.(2022春•大足区期末)根据如图所示的程序计算函数y的值,若输入的x的值为﹣1和5时,输出的y的值相等,则b等于()A.4B.﹣4C.﹣2D.212.(2021秋•中原区校级期末)根据以下程序,当输入x=−√2时,则输出结果y=()A.√2+1B.√2−1C.−√2−1D.−√2+1 13.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是()A.y1=x2+2x和y2=﹣x+1B.y1=1x和y2=x+1C.y1=−1x和y2=﹣x﹣1D.y1=x2+2x和y2=﹣x﹣114.(2022春•遂溪县期末)下列四个图象中,不是y是x的函数的是()A.B.C.D.15.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.16.(2022•南京模拟)“六一″儿童节王老师带孩子自驾游去了离家170km的某地,如图是他们离家的距离y(单位:km)与汽车行驶时间x(单位:h)之间的函数图象,当他们离目的地还有20km时,汽车行驶了()A.2h B.2.2h C.2.25h D.2.4h 17.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.18.(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等19.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B →C→A的方向运动,当点P回到点A时运动停止.设运动时间为x(秒),y=PC2,则y 关于x的函数的图象大致为()A.B.C.D.20.(2022春•魏县期末)如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A 出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是()A.B.C.D.21.(2022•郑州二模)如图1,矩形ABCD中,点E沿折线A→B→D从点A匀速运动到点D,连接CE,设点E运动的路程为x,线段CE的长度为y,图2是点E运动时y随x变化的关系图象,当x=3时,点E与点B重合,则点M的纵坐标为(A.6√35B.52C.6√55D.322.(2022•遵义三模)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P 从点B出发,沿折线B﹣A﹣D﹣C方向以a单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则四边形ABCD的面积是()A.75B.80C.85D.9023.(2022春•本溪期末)如图①,在长方形ABCD中,∠B=90°,AB=CD,动点P从点B出发,沿着折线B→A→D→C方向匀速运动到点C停止运动,在整个运动过程中,设点P运动的路程为x,△BCP的面积为y,如果y关于x的关系图象如图②所示,那么线段BC的长为()A.10B.7C.4D.324.弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体的质量x(kg)之间的关系如下:所挂物体的质量x(kg)01234…弹簧长度y(cm)2022242628…下列说法不正确的是()A.x与y都是变量,且x是自变量B.所挂物体质量为4kg时,弹簧长度为28cmC.弹簧不挂物体时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加2cm25.(2022春•泾阳县期中)某文具店开展促销活动,销售总价y与卖出笔记本数量x的关系如下表:数量x(件)12345…814202632…销售总价y(元)当卖出笔记本的数量为7件时,销售总价为()A.44元B.38元C.48元D.34元26.(2022春•青岛期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃27.某科研小组在网上获取了声音在空气中传播的速度与空气温度之间的关系的一些数据(如表),下列说法中错误的是()温度(℃)﹣2﹣100102030声速(m/s)318324330336342348A.当空气温度为20℃时,5s内声音可以传播1740mB.温度每升高10℃,声速增加6m/sC.在这个变化过程中,自变量是温度,因变量是声速D.温度越高,声速越快28.如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()所挂物体重量12345 x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm二.填空题29.(2022春•澄海区期末)某种书籍每本定价20元,如果一次购买30本以上,超过30本的部分打八折,则付款金额y与购书数量x(x>30)之间的函数关系为.30.(2022春•温江区校级期末)王大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为18米,要围成的菜园是如图所示的长方形ABCD,设BC边的长为x米,AB边的长为y米,则y与x的关系式是.Array 31.(2022秋•东营月考)观察下列图形及表格:梯形个数123456……n周长l5811141720……则周长l与梯形个数n之间的关系式为.32.函数S=√3−t中,自变量t的取值范围是.中,自变量x的取值范围是.33.(2022•乳山市模拟)在函数y=√x+4中,自变量x的取值范围是.34.(2022•虞城县三模)在函数y=2x2x+535.(2022•顺德区校级三模)若函数y=1[(x2﹣100x+196)+|x2﹣100x+196|],当自变量x2分别取1,2,……,100时,对应的函数值的和是.36.(2022•和平区校级开学)变量x与y之间的关系式是y=35x+20,当自变量x=2时,因变量y的值是.37.(2022春•青龙县期中)在函数式y=x+2中,当x=﹣3时,y=.x−138.(2022春•大东区期末)李华放学回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若李华骑车的速度始终不变,从出发开始计时,李华离家的距离s(m)与时间t(min)的对应关系如图所示,则文具店与李华家的距离为m.39.小明和小英一起去上学.小明觉得要迟到了,就跑步上学,一会跑累了,便走着到学校;小英开始走着,后来也跑了起来,直到在校门口赶上了小明.问:如图四幅图象中,第幅描述了小明的行为,第幅描述了小英的行为.40.(2022春•郫都区期中)某复印店复印收费y(元)与复印页数x(页)的函数图象如图所示,根据图中的信息可以知道,复印超过100页的部分,每页收费多少元?.41.(2022春•栾城区期末)如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q →M方向运动至点M处停止,设点R运动的路程为x,三角形MNR的面积为y,如果y 随x变化的图象如图2所示,则三角形MNR的最大的面积是.42.(2022春•永川区期末)如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒3cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D→E→G,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=15cm,则图2中a的值为.43.已知动点P以每秒2cm的速度沿图1的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图2中的图象所示.其中AB=6cm,a=,当t=时,△ABP的面积是18cm2.44.某商店出售一种梨,其售价y(元)与梨的质量x(千克)之间的关系如表:质量x(千克)1234……售价y(元) 3.6+0.27.2+0.210.8+0.214.4+0.2……其中售价栏中的0.2是塑料袋的价格.售价y与质量x之间的关系式为.45.(2022春•惠民县期末)已知,弹簧原长10cm,弹簧挂上物体后会伸长,在弹性限度内,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表中关系:x/kg0123456y/cm1010.51111.51212.513如果弹簧的长度是15cm,那么所挂的重物是kg.46.(2022春•太原期末)2022年5月15日,由中科院自主研发的“极目一号”型浮空艇,在海拔4270米的中科院珠峰站附近发放场地升空,创造了海拔9032米的大气科学观测世界纪录.下表表示某日珠峰附近一测量点海拔高度h(米)与相应高度处气温t(℃)的关系,根据表格数据,当时该测量点海拔8270米处的气温是.海拔高度h/米4270527062707270…气温t/℃﹣15﹣21﹣27﹣33…47.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x(x≥3)时,车费y(元)与路程x(千米)之间的关系式为:.48.(2022秋•城阳区期中)我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分收3%的所得税,如某人的月收入为3860元,则他应缴纳个人工资、薪金所得税为:(3860﹣3500)×3%=10.8元,如果某人本月缴纳个人工资、薪金所得税33元.那么此人本月工资、薪金收入是元.三.解答题49.如图,长为25米,宽为12米的长方形地面上,修筑宽度均为m米的两条互相垂直的小路(图中阴影部分),其余部分作草地,如果将两条小路铺上地砖,选用地砖的价格是45元/平方米.(1)写出买地砖需要的费用y(元)与m(米)之间的关系式.(2)计算当m=2时,买地砖需要的费用.50.(2022秋•南海区月考)如图,长方形ABCD中,AB=4,BC=8,点P在AB上运动,设PB=x,图中阴影部分的面积为y.(1)求阴影部分的面积y与x之间的函数解析式并直接写出自变量x的取值范围;(2)当阴影部分的面积等于20,请求出此时PB的值?51.某班“数学兴趣小组”对函数y=xx−1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是;(2)下表是y与x的几组对应数值:x…﹣3﹣2﹣1−12014123454234…y (3)42312130−13﹣1﹣3m23243…①写出m的值为;②在平面直角坐标系中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)当xx−1>x时,直接写出x的取值范围为.(4)结合函数的图象,写出该函数的一条性质:.52.某公交车每月的支出费用为5000元,票价为2元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元.①请写出y与x之间的关系式,并列表表示当x的值分别是500,1000,1500,2000,2500,3000,3500,4000时y的值;②当每月乘客量达到多少人以上时,该公交车才不会亏损?53.如图①,等腰直角三角形ABC的直角边AC与正方形DEFG的边DG都在直线l上(点C与点D重合),且它们都在直线l同侧,AC=DG=6,现等腰直角三角形ABC以每秒1个单位的速度从左到右沿直线l运动,当点A运动到与点G重合时运动结束.设运动时间为t(s),△ABC与正方形DEFG重叠部分的面积为S.(1)请直接写出s与t之间的函数关系式及自变量的取值范围.(2)当s=10时,求t的值.54.小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?55.人的大脑所能记忆的内容是有限的,随着时间的推移,所能记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现记忆遗忘规律,他根据自己得到的数据描绘了一条曲线(如图所示),其中纵轴表示学习的记忆保持量,横轴表示时间,观察图象并回答下列问题:(1)上述变化过程中自变量是,因变量是;(2)根据图象,在以下那个时间段内遗忘的速度最快.(填写相应序号);①0~2h,②2~4h,③4~6h,④6~8h.(3)有研究表明,如及时复习,一天后记忆量能保持98%,根据上述遗忘曲线规律制定两条暑假学习计划.。
三角函数的图象和性质测试题
三角函数的图象和性质测试题一、选择题 1.下列区间中,使函数sin y x =为增函数的是( ) A .[0,]π B .3[,]22ππC .[,]22ππ-D .[,2]ππ2、已知α为第三象限的角,则2α在( )A .第一、二象限 B.第一、三象限 C .第二、三象限 D.第二、四象限 3. sin 330︒等于( )A .2-B .12-C .12D 24.时间经过2小时,时针转过的角是( )A .6πrad B. 3πrad C .3π-rad D .32π-rad5.已知2πθπ<<,3sin()25πθ+=-,则tan(π-θ)的值为( )A .34B .43C .34- D .43-6.已知角α 的终边过点P (-4,3),则ααcos sin 2+的值为( )A .54-B .53 C .52 D .27.设函数f(x)=sin(2x-2π),x ∈R,则f(x)是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数8.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对9. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .)32sin(π-=x y B .)62sin(π-=x y C .)62sin(π+=x y D .)62sin(π+=x y10. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为( )A. 21-B 23-C21 D23二、填空题(每小题3分,共计24分)11.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 . 12.函数2sin 2-=x y 的定义域是 ________________13、函数sin 1y a x =+的最大值是3,则它的最小值______________________ 14.cos()417cos(523ππ-)与-,其大小为15、已知α为第二象限角,化简)23(sin 1)23sin()cos()5sin(212αππαπααπ+-----+=16、对于函数f(x)=sin(2x+6π),下列命题:①函数图象关于直线x=-12π对称; ②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到;④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变)而得到 其中正确的命题是________________ 三、解答题16、已知角α终边上一点P (-4,3),求)29sin()11sin()sin()2cos(απαπαπαπ+---+的值17、已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()f α(2)若31cos()25πα-=,求()f α的值18.已知tan α=-2.求:(1)求2cos()cos()2sin()3sin()2παπαπαπα+----+ (2)2sin 2α-sin αcos α+cos 2α19、函数)sin(ϕω+=x A y 在一个周期内的图象如下 (1)该函数的解析式(2)说明函数图象可由x y sin =经过怎样的变换得到。
初三函数测试题目及答案
初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。
答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。
答案:013. 函数y=1/x的图象在x=2处的斜率是________。
答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。
答案:115. 函数y=2x^2-4x+1的顶点坐标是________。
答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。
答案:顶点坐标为(1, 1)。
初二函数测试题及答案
初二函数测试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是一次函数?A. y = 3x + 2B. y = 2x^2 + 3C. y = -x + 1D. y = 52. 函数y = 2x - 3的斜率是多少?A. 2B. -3C. -2D. 33. 如果函数f(x) = 4x + 5,那么f(-2)的值是多少?A. 3B. 7C. -3D. 114. 函数y = 3x + 1与x轴的交点坐标是什么?A. (0, 1)B. (-1/3, 0)C. (1/3, 0)D. (0, 0)5. 函数y = kx的图象经过第二、四象限时,k的取值范围是?A. k > 0B. k < 0C. k = 0D. k ≠ 0二、填空题(每题2分,共20分)6. 一次函数y = 5x + 7的截距为______。
7. 如果直线y = -4x + 6与y轴相交,那么交点的坐标是______。
8. 函数y = 2x的图象与x轴相交于点(1, 0),那么x的值是______。
9. 函数y = 3x - 2的斜率是______。
10. 如果函数f(x) = ax + b,且f(0) = 2,f(1) = 5,那么a和b的值分别是______。
三、解答题(每题10分,共30分)11. 已知函数y = kx + b,其中k ≠ 0,当x = 1时,y = 0;当x = 0时,y = -1。
求k和b的值。
12. 某工厂生产一种产品,每件产品的成本是c元,销售价格是p元。
如果工厂每天生产n件产品,那么每天的总收入是多少?如果工厂每天的总成本是C元,总收入是R元,利润是P元,写出利润P与生产数量n的关系式。
13. 某直线的方程为y = 2x - 6,求该直线与x轴和y轴的交点坐标。
四、综合题(每题15分,共30分)14. 已知一次函数y = 2x + 3,若该函数的图象向下平移4个单位,求平移后的函数解析式。
初二数学函数及其图像试题答案及解析
初二数学函数及其图像试题答案及解析1.如图,小手盖住的点的坐标可能为A B C D【答案】A【解析】解:小手盖住的点在第三象限,故选A。
2.已知正比例函数和反比例函数的图象交于点A(m,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.【答案】(1)反比例函数的解析式为y=;(2)-1<x<0或x>1;(3)四边形OABC是菱形.证明见解析.【解析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.试题解析:(1)设反比例函数的解析式为y=(k>0),∵A(m,-2)在y=2x上,∴-2=2m,∴m=-1,∴A(-1,-2),又∵点A在y=上,∴k=2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为-1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴OA=,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC=,∴OC=OA,∴四边形OABC是菱形.【考点】反比例函数综合题.3.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移4.如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1与y2的大小.【答案】(1)(1,2);y=;(2)当0<x<1时,;当x=1时,;当x>1时,;【解析】首先将点A的坐标代入一次函数解析式得出点A的坐标,将点A的坐标代入反比例函数解析式得出反比例函数的解析式;根据函数图象进行比较大小.试题解析:(1)将点A(m,2)代入一次函数可得:2=m+1 解得:m=1 ∴A(1,2),将A(1,2)代入反比例函数解析式可得:k=2 则反比例函数的解析式为:(2)根据函数图象可得:当0<x<1时,;当x=1时,;当x>1时,.【考点】反比例函数与一次函数.5.一次函数y=2x﹣4的图象与两坐标轴交点的距离是()A.B.C.D.【答案】B【解析】令y=2x﹣4=0,则x=2,令x=0,则y=-4,∴一次函数y=2x﹣4的图象与坐标轴交于A、B两点的坐标是A(0,﹣4),B(2,0),∴OA=4,OB=2,∴AB=,故选:B【考点】一次函数图象上点的坐标特征.6.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.7.(10分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,(1)求直线y=kx+b的表达式;(2)求不等式>kx+b>-2的解集.【答案】(1)y=x-1;(2)-1<x<2【解析】(1)由于直线y=kx+b经过点A(2,1),和B(-1,-2)两点,利用待定系数法求出函数解析式;(2)再组成不等式方程组解答.试题解析:(1)直线y=kx+b经过a(2,1),B(-1,-2)得方程组:解得:k=1,b=-1,∴y=x-1,(2)不等式x>kx+b>-2可化为不等式组:解得:-1<x<2.【考点】一次函数,不等式组8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.请写出一个图像经过第一、三象限的正比例函数的解析式____________________.【答案】y=2x(答案不唯一,只要k>0即可).【解析】根据正比例函数的性质可得只要k>0即可.【考点】正比例函数的性质.10.(10分)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图像回答下列问题:(1)汽车行驶__________h后加油,中途加油__________L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?【答案】(1)2,190;(2)y=-20x+100;(3)该车从出发到现在已经跑了1120km,用时14h.【解析】(1)观察图象可知,汽车行驶2h后加油,所加油量为250-(100-25×1.6)=190L;(2)根据题意可得大巴车每公里油耗为0.25L;大巴车以速度为80km/h行驶x小时的油耗为0.25×80xL,所以加油前油箱剩余油量y与行驶时间x的函数解析式为y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,所以加油前和加油后的函数解析式的k值相同,加油后的解析式经过(2,250),可求得加油后y与x的函数关系式,把y=10代入求得大巴车油箱中剩余油量为10L时行驶的时间,再根据路程=速度×时间即可求得大巴车所跑的最远路程.试题解析:(1)2,190;(2)y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b,把k=-20代入,得到y="-20x+b"再把(2,250)代入,得b=290所以y="-20x+290"当y=10时,x=14,所以14×80=1120因此该车从出发到现在已经跑了1120km,用时14h.【考点】一次函数的应用.11.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.12.(9分)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y是x的一次函数,下表列出两套符合条件的课桌椅的高度.(1)请确定课桌高度与椅子高度的函数关系式;(2)现有一张高80cm的课桌和一张高为43cm的椅子,它们是否配套?为什么?【答案】y=x+32;不配套.【解析】本题利用待定系数法求出一次函数的解析式;求x=43代入函数解析式求出y的值,看求出的y值是否等于80,若相等则说明配套,否则不配套.试题解析:(1)设一次函数的解析式为y=kx+b,把点(42,74)(38,70)代入,得到,解得:,∴函数解析式为:y=x+32,(2)当x=43时,y=43+32=75≠80,∴它们不能配套.【考点】一次函数的应用13.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积v时,气体的密度也随之改变.与v在一定范围内满足,图象如图所示,该气体的质量m为 kg.【答案】7.【解析】由图象可知,的图象经过(5,1.4),代入即可得m=7.【考点】反比例函数的应用.14.(本题满分8分)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.【答案】(1);(2)当α、β满足关系式时,函数关系式成立,理由见解析.【解析】(1)根据已知条件证明△ADB∽△EAC即可得,代入x、y得值即可得y与x之间的函数关系式;(2)要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又因∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.试题解析:(l)在△ABC中,AB="AC" =1,∠BAC=300,∴∠ABC=∠ACB=750,∴∠ABD=∠ACE=1050,1分∵∠DAE=1050.∴∠DAB+∠CAE=750,又∠DAB+∠ADB=∠ABC=750,∴∠CAE=∠ADB∴△ADB∽△EAC∴即;(2)当α、β满足关系式时,函数关系式成立理由如下:要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.【考点】相似三角形的综合题.15.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【答案】B.【解析】∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.【考点】反比例函数图象上点的坐标特征.16.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.17.在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F.(1)若n=2,求△PEF的面积;(2)若PF=2,求点P的坐标.【答案】(1);(2)P(﹣,)或P(,).【解析】(1)已知直线y1=+a和直线y2=﹣+b的交点为E(3,3),代入即可得a、b的值,点P(m,n)在直线y1=x+a上且n=2,即可求得m的值,所以可得点P的坐标,根据已知条件可得点F的坐标,根据三角形的面积公式即可得△PEF的面积;(2)已知点P在y1=x+2,点F在y2=,可设(m,),F(m,),根据PF=|()﹣()|=2即可得m的值,再求点P的坐标即可.试题解析:(1)解:∵直线y1=+a和直线y2=﹣+b的交点为E(3,3)∴3=×3+a,3=﹣×3+b,∴a=2,b=,得直线y1=和直线y2=,如图所示,又∵n=2,∴2=,m=0,∴P(0,2),过点P(0,2)作x轴的垂线,交y2=直线于点F,F(0,),∴PF=,∴,(2)解:由(1)知,点P在y1=x+2,点F在y2=,∵PF⊥x轴,可设P(m,),F(m,),∴PF=|()﹣()|=2,∴m=﹣或m=,∴P(﹣,)或P(,).【考点】一次函数的综合题.18.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.【答案】m=5,n=3;5.【解析】先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.试题解析:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.【考点】两条直线相交或平行问题;二元一次方程组的解.19.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则▱ABCD的面积为()A.3B.5C.7D.9【答案】B【解析】连结OA、OB,如图,AB交y轴于E,根据反比例函数k的几何意义得到S△OAE=1,S△OBE =,则S△OAB=,然后根据平行四边形的面积公式求解.连结OA、OB,如图,AB交y轴于E,∵AB∥x轴,∴S△OAE =×|2|=1,S△OBE=×|﹣3|=,∴S△OAB=,∵四边形ABCD为平行四边形,∴▱ABCD的面积=2S△OAB=5.【考点】反比例函数系数k的几何意义20.要使y=(m-2)是关于x的一次函数,则m= .【解析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.根据一次函数的定义可得:m﹣2≠0,=1,由=1,解得:m=0或2,又m﹣2≠0,m≠2,∴m=0.【考点】一次函数的定义21.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是.【答案】﹣1.【解析】∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1.【考点】一次函数图象上点的坐标特征.22.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C.D.【答案】A【解析】根据一次函数图象上点的坐标特点,直线y=﹣x+3与x轴、y轴的交点坐标分别为(2,0),(0,3),故可求出三角形的面积.当x=0时,y=3,即与y轴交点是(0,3),当y=0时,x=2,即与x轴的交点是(2,0),所以与x轴、y轴所围成的三角形的面积为×2×3=3.【考点】一次函数图象上点的坐标特征23.如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=(x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F.若OB=2,CF=6,.(1)求点A的坐标;(2)求一次函数和反比例函数的表达式.【答案】(1)(-2,0);(2)y=-x-2、y=-.【解析】利用,OE=CF=6,可计算出OA=2,于是得到A点坐标为(﹣2,0);由于B 点坐标为(0,﹣2),则可利用待定系数法求出一次函数解析式为y1=﹣x﹣2,再利用一次函数解析式确定C点坐标为(﹣6,4),根据反比例函数图象上点的坐标特征计算出k=﹣24,所以反比例函数解析式为y2=﹣.试题解析:(1)∵,而OE=CF=6,∴OA=2,∴A点坐标为(﹣2,0);(2)B点坐标为(0,﹣2),把A(﹣2,0)B(0,﹣2)代入y1=mx+n得,解得:,∴一次函数解析式为y1=﹣x﹣2;把x=﹣6代入y1=﹣x﹣2得y=6﹣2=4,∴C点坐标为(﹣6,4),∴k=﹣6×4=﹣24,∴反比例函数解析式为y2=﹣.【考点】反比例函数与一次函数的交点问题24.已知点(a,1)在函数y=3x+4的图象上,则a= .【答案】-1.【解析】把(a,1)代入y=3x+4得3a+4=1,解得a=﹣1.故答案为:﹣1.【考点】一次函数图象上点的坐标特征.25.直线y=x+3与x轴,y轴所围成的三角形的面积为.【答案】3.【解析】当x=0时,y=x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,x+3=0,解得x=﹣2,则直线与x轴的交点坐标为(﹣2,0),所以直线y=x+3与x轴,y轴所围成的三角形的面积=×3×2=3.故答案为:3.【考点】一次函数图象上点的坐标特征.26.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【答案】(1)(6,0);(2)4.【解析】(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.【考点】两条直线相交或平行问题.27.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的().A.B.C.D.【答案】B.【解析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,即B图形满足题意.故选:B.【考点】函数的图象.28.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是 .【答案】(2,0),(0,4).【解析】令y=0,得x=2,令x=0,得y=4;所以,图象与x轴交点坐标是(2,0),图象与y轴交点坐标是(0,4).【考点】一次函数图象上点的坐标特征.29.在直角坐标系中,直线与坐标轴围成的三角形的面积为 .【答案】【解析】先求出直线与x轴,y轴的交点为(,0)(0,-2),根据面积公式计算即可得出三角形的面积【考点】一次函数30.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .【答案】15.【解析】由图象可得出:进水速度为:20÷4=5(升/分钟),出水速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分钟),(a﹣4)×(5﹣3.75)+20=(24﹣a)×3.75,解得:a=15.故答案为:15.【考点】一次函数的应用.31.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=3x+2.【解析】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为:y=3x+2.【考点】一次函数图象与几何变换.32.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【答案】(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)方案一【解析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.试题解析:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.【考点】一次函数的应用.33.已知反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,试写出一个符合条件的整数k= .【答案】﹣1(答案不唯一).【解析】∵反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,∴k<0,∴k可以为﹣1.故答案为:﹣1(答案不唯一).【考点】反比例函数的性质.34.已知一次函数中,随着的增大而减小,则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】已知一次函数y=kx-3,y随x的增大而减小可得k<0,b=-3<0,即可得此函数的图象经过二、三、四象限,不经过第一象限.故答案选A.【考点】一次函数的性质;一次函数的图象与系数的关系.35.(本题满分8分)已知一次函数(1)为何值时,随的增大而减小?(2)为何值时,它的图象经过原点?【答案】k>4;k=-4【解析】对于一次函数y=kx+b,y随x的增大而减小,则k>0;当图象经过原点,则b=0且k≠0.试题解析:(1)∵一次函数y=(4﹣k)x﹣2k2+32,y随x的增大而减小,∴4﹣k<0 ∴k>4;(2)∵一次函数y=(4﹣k)x﹣2k2+32,它的图象经过原点∴﹣2k2+32=0 解得:k=±4∵4﹣k≠0∴k=﹣4.【考点】一次函数的性质36.已知函数y=k x+b和y=k x+b图像如图所示,直线y与直线 y交于A点(0,3)(1)求函数y和y的函数关系式(2)求三角形ABC的面积(3)已知点D在x轴上,且满足三角形ACD是等腰三角形,直接写出D点坐标【答案】(1)y=—3x+3,y=—x+3;(2)3;(3)(0,0)(—3,0)(3—3,0)(3+3,0)【解析】(1)根据图像可知B、C点的坐标,代入函数解析式分别求出解析式;(2)根据图像可知三角形的底为BC,高为AO,然后由三角形的面积公式可求解;(3)由图像可知,当AC=CD1,AC=CD2,AC=CD3,AD4=CD4时,分别写出点的坐标.试题解析:【考点】由图像,根据勾股定理AC=,当AC=CD1时,D1为(-3,0);当AC=CD2时,D2为(3+2);当AC=CD3时,D3为(3-2);当AD4=CD4时,D4为(0,0).【考点】勾股定理,等腰三角形,一次函数的图像与性质37.若直线经过二、三、四象限,则m的取值范围是()A.B.m>0C.D.m<0【答案】D.【解析】试题分析∵直线经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0.故选D.【考点】一次函数图象与系数的关系.38.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.39.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)乙车休息的时间为;(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)求行驶多长时间两车相距100km.【答案】(1)y=-80x+400;(2)0.5小时;(3)y=100x,y乙=80x;(4)x=1或x=3.125.【解析】(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,利用待定系数法解答即可;(2)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;(3)根据待定系数法,可得休息前,休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)分类讨论,0≤x≤2.5,y甲减y乙等于100千米,2.5≤x≤5时,y乙减y甲等于100千米即可.试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,可得:,解得:.所以函数解析式为:y=-80x+400;(2)把y=200代入y=-80x+400中,可得:200=-80x+400,解得:x=2.5,所以乙车休息的时间为:2.5-2=0.5小时;(3)设休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=kx,∴200=2k,∴k=100,∴休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=100x,设休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x;(4)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于100千米,即400-80x-100x=100,解得 x=1;2.5≤x≤5时,y乙减y甲等于100千米,即2.5≤x≤5时,80x-(-80x+400)=100,解得x=3.125,综上所述:x=1或x=3.125.【考点】一次函数的应用.40.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.41.已知过点(-2,4)的直线()不经过第三象限.设,则s的取值范围是.【答案】-4≤s﹤4.【解析】由题意得m<0且n≥0,把(﹣2,4)代入y=mx+n得﹣2m+n=4,则n=2m+4,所以2m+4≥0,解得m≥﹣2,所以m的取值范围为﹣2≤m<0,因为s=2m+n=2m+2m+4=4m+4,所以﹣4≤s<4.故答案为:﹣4≤s<4.【考点】一次函数图象与系数的关系.42.已知y-3与4x-2成正比例,且当x=1时,y=5.(1)求与的函数关系式;(2)求当时的函数值.【答案】(1)y=4x+1;(2)函数值-7.【解析】(1)由正比例函数的定义设出函数解析式,再把当x=1时,y=5代入求出k的值;(2)把x=﹣2代入(1)中的解析式进行计算即可.试题解析:(1)设y﹣3=k(4x﹣2)(k≠0),把x=1,y=5代入,得:5﹣3=k(4×1﹣2),解得k=1,则y与x之间的函数关系式是y=4x+1;(2)由(1)知,y=4x+1.当x=﹣2时,y=4×(﹣2)+1=﹣7.即当x=﹣2时的函数值是7.【考点】待定系数法求一次函数解析式.43.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x (年)之间的函数关系式:.【答案】y=5x+100.【解析】由题意得,树苗x年后长高5xcm,1米=100cm,所以树苗的高度y(cm)与时间x (年)之间的函数关系式是y=5x+100.【考点】列一次函数关系式.44.表示函数的方法一般有、、.【答案】列表法;关系式法;图象法.【解析】根据函数的定义,可得答案.表示函数的方法一般有列表法、关系式法、图象法.故答案为:列表法、关系式法、图象法.【考点】函数的表示方法.45.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.【答案】y=20-2x;5<x<10.【解析】试题解析:∵2x+y=20∴y=20-2x,即x<10,∵两边之和大于第三边∴x>5,综上可得5<x<10.【考点】根据实际问题列一次函数关系式.46.杨佳明周日骑车从家里出发,去图书馆看书,(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第分钟,并求出她在骑行30分钟时的路程是.【答案】(1)杨佳明在图书馆看书的时间为20min;(2)杨佳明在图书馆看书的时间为20min;(3)20-30;2km.【解析】(1)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(2)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(3)根据图中提供的信息即可得到结论.试题解析:(1)如图1,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(2)如图2,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(3)当她离家最远时,时间是在第20-30分钟,并求出她在骑行30分钟时的路程是2km.【考点】一次函数的应用.47.直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B.【解析】试题解析:由于k=-1<0,b=1>0,故函数过一、二、四象限,故选B.【考点】一次函数图象与系数的关系.48.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.【答案】(﹣,﹣).【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).【考点】一次函数综合题.49.(2015秋•常熟市校级月考)如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 km/min;(2)汽车在中途停了 min;(3)当16≤t≤30时,s与t的函数关系式:.【答案】(1)km/min;(2)7min.(3),7,S=2t﹣20.【解析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20,故答案为:,7,S=2t﹣20.【考点】一次函数的应用.50.若有一条直线与直线y=2x平行,且过点A(-1,2),则该直线解析式为_____________.【答案】y=2x+4【解析】根据两直线平行,可知k=2,设该直线的解析式为y=2x+b,把A(-1,2)代入可得2×(-1)+b=2,解得b=4,因此可得该一次函数的解析式为y=2x+4.【考点】一次函数的解析式51.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.(1)求A、B两点的坐标;(2)求直线AE的解析式;(3)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.【答案】(1)A(0,3),B(-1,0);(2)AE:y=-x+3;(3)(-3,4)(-4,1)(-2,2)。
初二数学函数及其图像试题答案及解析
初二数学函数及其图像试题答案及解析1.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为,瓶中水位的高度为,下列图象中最符合故事情景的是:【答案】D【解析】观察瓶子形状,下边较细,中间最粗,上面最细,乌鸦向瓶中放石子的过程中,水位不断上升,由于瓶子粗细不同,所以水位上升也不是均匀的,等到水位上升到一定程度时,乌鸦开始喝水,水位开始下降,据此,选D2.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)10时和13时,他分别离家多远?(2)他到达离家最远的地方是什么时间?离家多远?(3)他由离家最远的地方返回时的平均速度是多少?【答案】(1)10时和13时,分别离家15千米和30千米;(2分)(2)到达离家最远的时间是12时(或12-13),离家30千米;(2分)(3)共用了2时,因此平均速度为15千米/时.(3分)【解析】(1)根据图象可以直接看出纵坐标表示离家的距离,从横坐标中找到时间点,可直接得到答案;(2)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(3)根据返回时所走路程和使用时间即可求出返回时的平均速度.3.如图,已知函数和的图象交于点P,则根据图象可得,关于的二元一次方程组的解是【答案】.【解析】函数和的图象交点P的坐标是二元一次方程组的解,所以二元一次方程组的解为.【考点】一次函数与二元一次方程组方程组的关系.4.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.5.(本小题满分7分)甲、乙两人沿同一路线登山,图中线段、折线分别是甲、乙两人登山的路程(米)与登山时间(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1);(2)分钟,200米.【解析】(1)由图像可知甲登山的路程(米)与登山时间(分)之间的函数是正比例函数,设正比例函数解析式为y=kx,将点(30,600)代入求k,即得其函数解析式,自变量的取值范围可以看图像得出;(2)所求第一个问题为AB与OC交点的横坐标,第二个问题为AB与OC交点的纵坐标.先求AB的解析式,然后和OC的解析式组成方程组求解.试题解析:(1)设甲登山的路程与登山时间之间的函数解析式为.∵点在函数的图象上,∴.解得.∴.(2)设乙在段登山的路程与登山时间之间的函数解析式为,依题意,得,解得∴.设点为与的交点,∴,解得∴乙出发后分钟追上甲,此时乙所走的路程是米.【考点】1.一次函数的实际应用;2.一次函数与二元一次方程组的关系.6.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)【答案】=【解析】令PM与QB的交点为C,根据反比例函数的性质可知矩形AOMP和矩形QBON的面积均为,然后可知矩形PCBA的面积等于矩形QNMC的面积,由PB、QM为对角线,因此△ABP的面积等于矩形PCBA的面积的一半,△QMN的面积等于矩形QNMC的面积的一半,因此△ABP的面积等于△QMN的面积,即填“=”.【考点】反比例函数的图像与性质,矩形的面积,矩形的性质7.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.8.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x≥ax+4的解集为().A.B.C.D.【答案】A.【解析】利用图像比较大小,以交点A为界,看A的横坐标,大于等于1时,函数y=3x高于等于y=ax+4,因此x≥1时,不等式3x≥ax+4,故选A.【考点】利用图像比较一次函数大小.9.已知一次函数y=(k+2)x-k,函数y的值随自变量x的值的增大而增大,则k的取值范围是为.【答案】k>-2.【解析】因为函数y的值随自变量x的值的增大而增大,所以k+2>0,所以k>-2.【考点】一次函数性质.10.)冷冻一个0℃的物体.使它每分钟下降2℃,物体的温度T(单位℃)与冷冻时间t(单位:分)的函数关系式是.【答案】T=﹣2t.【解析】由题意可知,它每分下降2℃,即可得t分钟下降2t℃,所以T=0+(﹣2t)=﹣2t.【考点】列函数关系式.11.将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为()A.y=﹣6x+1B.y=﹣2x﹣3C.y=﹣2x+5D.y=2x﹣3【答案】B【解析】一次函数的平移法则为“左加右减,上加下减”,直接根据平移规律求解即可.根据平移法则可得直线l的解析式为y=﹣2x+1﹣4,即y=﹣2x﹣3.【考点】一次函数图象与几何变换.12.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是()【答案】C.【解析】分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.【考点】1.反比例函数的图象;2.一次函数的图象.13.若反比例函数的图象经过点A(2,﹣1),则k= ,该函数的图象还经过点B(-2,).【答案】﹣2,1.【解析】∵k=xy,过(2,﹣1)点,∴k=2×(﹣1)=﹣2.∵B点的横坐标为﹣2.∴y==1.【考点】1.待定系数法求反比例函数解析式;2.反比例函数图象上点的坐标特征.14.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.15.下列各式中,y随x的变化关系式是正比例函数的是()A.y="2x"B.y=C.y=x﹣1D.y=x2﹣1【答案】A.【解析】形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.【考点】正比例函数的定义.16.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>0【答案】A【解析】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.根据题意可得:m-3<0,-m>0,解得:m<0.【考点】一次函数图象与系数的关系17.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)【答案】>【解析】根据一次函数y=kx+b的增减性:当k>0时,y随x的增大而增大,当k<0时,y随x 的增大而减小。
函数图象的变换测试题(含解析)
函函函函函函函函函函一、单选题(本大题共11小题,共55分)1. 为了得到函数y =sin(2x −π3)+1的图象,可将函数y =sin2x 的图象( ) A. 向右平移π6个单位长度,再向上平移1个单位长度 B. 向右平移π3个单位长度,再向下平移1个单位长度 C. 向左平移π6个单位长度,再向下平移1个单位长度 D. 向左平移π3个单位长度,再向上平移1个单位长度2. 若函数y =sin(ωx +π3)的图象向右平移π6个单位长度后与函数y =cosωx 的图象重合,则ω的值可能为( )A. −1B. −2C. 1D. 23. 为了得到函数y =sin(3x −π6)的图象,需将函数y =sin(x −π6)的图象上所有点的( ) A. 纵坐标变为原来的3倍,横坐标不变 B. 横坐标变为原来的3倍,纵坐标不变 C. 横坐标变为原来的13,纵坐标不变D. 纵坐标变为原来的13,横坐标不变4. 函数y =sin2x 的图象可由函数y =cos(2x +π6)的图象( ) A. 向左平移π12个单位长度得到 B. 向右平移π6个单位长度得到 C. 向左平移π4个单位长度得到D. 向右平移π3个单位长度得到5. 将函数y =sin(4x −π3)图象上的横坐标进行怎样的变换,得到y =sin(2x −π3)的图象( ) A. 伸长了2倍B. 伸长了12倍C. 缩短了12倍D. 缩短了2倍6. 把函数y =sin(2x −π4)的图象向左平移π8个单位长度,所得到的图象对应的函数是( ) A. 奇函数B. 偶函数C. 既是奇函数也是偶函数D. 非奇非偶函数7. 已知函数f(x)=sin(x +π3).给出下列结论:①f(x)的最小正周期为2π; ②f(π2)是f(x)的最大值;③把函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象. 其中所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③8. 把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像,则f(x)=( )A. sin(x 2−7π12)B. sin(x 2+π12)C. sin(2x −7π12)D. sin(2x +π12)9. 为了得到函数y =sin (2x −π3)的图象,只需把函数y =sin (2x +π6)的图象( ) A. 向左平移π4个单位长度 B. 向右平移π4个单位长度 C. 向左平移π2个单位长度D. 向右平移π2个单位长度10. 先把函数f(x)=sin (x −π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g(x)的图象,当x ∈(π4,3π4)时,函数g(x)的值域为( )A. (−√32,1]B. (−12,1]C. (−√32,√32)D. [−1,0)11. 要得到函数y =2cos(x2+π6)sin(π3−x2)−1的图象,需将y =12sinx +√32cosx 的图象( ) A. 向左平移π4个单位长度 B. 向右平移π4个单位长度 C. 向左平移π2个单位长度D. 向右平移π2个单位长度二、多选题(本大题共2小题,共10分)12. (多选)下列四种变换方式,其中能将y =sinx 的图象变为y =sin(2x +π4)的图象的是( ) A. 向左平移π4个单位长度,再将横坐标缩短为原来的12 B. 横坐标缩短为原来的12,再向左平移π8个单位长度 C. 横坐标缩短为原来的12,再向左平移π4个单位长度 D. 向左平移π8个单位长度,再将横坐标缩短为原来的1213. 将函数y =cos (2x +π3)的图象向左平移π4个单位长度得到函数f(x)图象,则( )A. y =sin (2x +π3)是函数f(x)的一个解析式 B. 直线x =7π12是函数f(x)图象的一条对称轴 C. 函数f(x)是周期为π的奇函数D. 函数f(x)的递减区间为[kπ−5π12,kπ+π12](k ∈Z)三、填空题(本大题共4小题,共20分)14. 函数y =sin(2x −π4)图象上所有点的横坐标保持不变,将纵坐标 (填“伸长”或“缩短”)为原来的 倍,将会得到函数y =3sin(2x −π4)的图象.15. 函数y =sin(2x +π3)的图象可由y =cos(2x +π4)的图象 得到.16. 函数y =cos(2x +φ)(−π≤φ<π)的图象向右平移π2个单位后,与函数y =sin(2x +π3)的图象重合,则φ= .17. 若函数f(x)=32sin2x −3√32cos2x 的图象为C ,则下列结论中正确的序号是 .①图象C 关于直线x =11π12对称; ②图象C 关于点(2π3,0)对称;③函数f(x)在区间(−π12,5π12)内不是单调的函数;④由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C . 四、解答题(本大题共1小题,共12分)18. (本小题12分)把函数y =f(x)的图象上的各点向右平移π6个单位长度,然后把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23,所得图象的解析式是y = 2sin(12x +π3),求f(x)的解析式.答案和解析1.解:∵y =sin(2x −π3)+1=sin2(x −π6)+1,∴把y =sin2x 的图象上所有的点向右平移π6个单位长度,再向上平移1个单位长度 即可得到函数y =sin(2x −π3)+1的图象.故选A .2.解:函数y =sin(ωx +π3)的图象向右平移π6个单位后,可得函数y =sin [ω(x −π6)+π3]的图象,再根据所得函数的图象与函数y =cosωx 的图象重合,∴π3−ω⋅π6=2kπ+π2,k ∈Z , ∴当k =0时,ω=−1.故选A .3.解:将函数y =sin(x −π6)的图象横坐标变为原来的13,纵坐标不变即可得到函数y =sin(3x −π6)的图象.故选C .4.解:由sin2x =cos(2x −π2)=cos[2(x −π3)+π6],所以函数y =sin2x 的图象可由函数y =cos(2x +π6)的图象向右平移π3个长度单位,故选D . 5.解:将函数y =sin(4x −π3)图象上的横坐标伸长为原来的2倍即可得到y =sin(2x −π3)的图象.故选A .6.解:把函数y =sin(2x −π4)的图象向左平移π8个单位长度,得到y =sin[2(x +π8)−π4]=sin2x 为奇函数,故选A .7.解:因为f(x)=sin(x +π3),①由周期公式可得,f(x)的最小正周期T =2π,故①正确; ②f(π2)=sin(π2+π3)=sin 5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象,故③正确.故选:B .8.解:∵把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像,∴把函数y =sin(x −π4)的图像,向左平移π3个单位长度,得到y =sin(x +π3−π4)=sin(x +π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变,可得f(x)=sin(12x +π12)的图像.故选:B .9.解:y =sin (2x +π6)=sin 2(x +π12),y =sin (2x −π3)=sin 2(x −π6),所以将y =sin (2x +π6)的图象向右平移π4个单位长度得到y =sin (2x −π3)的图象.故选B . 10.解:把函数f(x)=sin(x −π6)的图象上各点的横坐标变为原来的12倍(纵坐标不变),可得函数y =sin(2x −π6)的图象;再把新得到的图象向右平移π3个单位,得到y =g(x)=sin[2(x −π3)−π6]=sin(2x −5π6)的图象.当x ∈(π4,3π4)时,2x −5π6∈(−π3,2π3), 故当2x −5π6趋于−π3时,g(x)的最小值趋于−√32,当2x −5π6=π2时,g(x)取得最大值为1,故选:A .11.解:y =2cos(x 2+π6)sin(π3−x 2)−1=2cos(x 2+π6)sin[π2−(π6+x 2)]−1=2cos(x 2+π6)cos(π6+x2)−1=cos(x +π3),又y =12sinx +√32cosx = sin(x +π3)向左平移π2个单位长度y =sin(x +π3+π2)=cos(x +π3),故选C .12.解:将y =sinx 的图象先向左平移π4个单位长度,再将横坐标缩短为原来的12或先横坐标缩短为原来的12,再向左平移π8个单位长度都可以得到y =sin(2x +π4)的图象.故选AB13.解:由题意,函数y =cos (2x +π3)的图象向左平移π4个单位长度得到函数f(x)=cos[2(x +π4)+π3]=cos(2x +5π6),于是下面对各选项进行分析: 对A ,因为y =cos(2x +5π6)=−sin(2x +π3),x ∈R ,故A 不正确;对B ,因为f(x)=cos(2x +5π6),根据余弦函数图像性质可知,其对称轴为2x +5π6=kπ,k ∈Z ,即x =kπ2−5π12,k ∈Z ,取k =2,可知x =7π12是函数f (x )图象的一条对称轴,故B 正确;对C ,因为f(x)=cos(2x +5π6),其最小正周期为T =2π2=π,又f(0)=cos(5π6)=−√32≠0,可知C 不正确;对D ,因为f(x)=cos(2x +5π6),根据余弦函数图像性质可知,令2kπ⩽2x +5π6⩽2kπ+π, k ∈Z ,即得单调递减区间为x ∈[kπ−5π12,kπ+π12](k ∈Z),故D 正确.故选BD .14. 解:A =3>1,故函数y = sin(2x −π4)图象上所有点的横坐标保持不变,将纵坐标伸长为原来的3倍即可得到函数y =3sin(2x −π4)的图象.15.解:y =cos(2x +π4)=sin(2x +π4+π2)=sin(2x +3π4), 将函数y =sin(2x +3π4)的图象向右平移5π24个单位长度可得函数y =sin(2x +π3)的图象.16.解:将y =cos (2x +φ)的图象向右平移π2个单位长度后,得到y =cos [2(x −π2)+φ]的图象,化简得y =−cos (2x +φ),又可变形为y =sin (2x +φ−π2).由题意可知φ−π2=π3+2kπ(k ∈Z ),所以φ=5π6+2kπ(k ∈Z ),结合−π≤φ<π,知φ=5π6.故答案为5π6.17.解:f(x)=32sin2x −3√32cos2x =3sin(2x −π3),因为当x =11π12时,f(x)=3sin(2×11π12−π3)=3sin3π2=−3,所以直线x =11π12是图象C 的对称轴,故①正确;因为当x =2π3时,f(x)=3sin(2×2π3−π3)=0,所以函数图象C 关于点(2π3,0)对称,故②正确;令−π2≤2x −π3≤π2,解得x ∈[−π12,5π12],所以函数的一个增区间是[−π12,5π12],因此f(x)在区间(−π12,5π12)上是增函数,故③不正确; 由y =3sin2x 的图象向右平移π3个单位,得到的图象对应的函数表达式为 y =3sin2(x −π3)=3sin(2x −2π3),故④不正确.故答案为:①②. 18.解:y =2sin(12x +π3)的图象的纵坐标伸长为原来的32,得到y = 3sin(12x +π3);再将其横坐标缩短到原来的12,得到y =3sin(x +π3);再将其图象上的各点向左平移π6个单位长度,得到y =3sin(x +π2)=3cosx ,故f(x)=3cosx.。
八年级数学函数及图象测试题
图17.12第17章创新能力测试题(时间:120分钟满分120分)一、填空题(每小题3分,共30分)1.一次函数y=ax+b图象如图所示,则其a、b的符号为_______.2.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是.3.图17.13所示的是某城市冬季某一天的气温随时间变化图,这一天的温差为____℃;当t________范围内,气温逐渐升高.4.以点p(0,-1)为圆心,3为半径画圆,分别交y轴的正半轴、负半轴于点A、B,则A点坐标为______,B点坐标为_______.5.如果水的流速是a米/分(a为定量),D(米)之间的函数关系是,其中自变量是,常量是.6.已知点M(3,-2)与点N(x,y)在同一条平行于y轴的直线上,且N到x轴的距离等于4,那么点N的坐标是.7.点P是反比例函数2yx=-第二象限上的一点,PD⊥x轴于点D,则△POD的面积为-___________.8.点P(2a-1,3+a),若p点在x轴的上方、y轴的左侧,则a的取值范围是____.9.当x≥3时,函数y=2x+5的最小值为____.10.已知一次函数y1=–2x–3和y2=x,当x_________时,y1>y2.二、选择题(每小题3分,共24分)11.平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是()A.(2,﹣3) B.(﹣2,3) C(﹣2,﹣3) D.(3,2)12.已知正比例函数y=(3k—1)x,若y随x的增大而增大,则kA .k<0 B.k> 0 C.k <31D.k>3113.某人骑车外出,所行的路程S(km)与时间t(h)的函数关系如图17.14所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②、③ B.①、③ C.①、④ D.②、④14.已知函数y=–xk的图象过点(-2,3),那么下列各点在函数y=kx-2的图象上的是时)图17.11(A ) (B ) (C ) (D )图17.16 ( )A .(4,1)B .(21,-1) C .(-23,-11) D .(-3,-21) 15.已知一次函数y =k 1x +b ,y 随x 的增大而减小,且b >0;反比例函数y =xk 2中的k 2与k 1值相等,则它们在同一坐标系中的图象只可能是( )16.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就利用体温计收集到的数据如下:请你根据上述数据分析判断,水银柱的长度(mm )与体温计的读数t (℃)()之间存在的函数关系是( ) A. l t =-110662B. l t =11370C. l t =-63072D. l t=39552 17.函数y =x x x --+-123的自变量x 的取值范围是 ( )A .–2<x ≤1B .x >–2C .–2≤x≤1D .x >–2且x ≠3 18.(重庆市)某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱, 若每小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,那么这个函数图象只能是( )三、解答题(第19、20、21每题12分,第22、23每题15分,共66分) 19.已知一次函数y=(4m+1)x -(m+1).(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,直线与y 轴的交点在x 轴下方? (3)m 为何值时,直线位于第二、三、四象限?20.已知y +m 与x +n (m, n 为常数)成正比例,判断y 与x 成什么函数关系; 若x=3时,y=5;x=5时,y=11,求出y 与x 之间的函数关系式.21.如图17.17表示一艘轮船与一艘快艇沿相同路线从甲港到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象(A) (B) (C) (D) 图17.15和一次函数图象).根据图象解答下列问题: (1)请分别求出表示轮船和快艇行驶过程的 函数解析式(不需写出自变量取值范围); (2)轮船和快艇在途中(不包括起点和终 点)行驶的速度分别是多少? (3)问快艇出发多长时间赶上轮船?22.(潍坊市,2004)(本小题满分10分)系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?23.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A 县10辆,调往B 县8辆.已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式; (2)若要让总运费不超过900元,问共有几种调运方案; (3)求出总运费最低的调运方案,最低运费是多少?第17章 综合能力测试答案1.a <0,b <0(点拨:其图象分布在二、三、四象限,从而a <0,b <0.) 2.C (点拨:蓄水池的横断面是由“上大下小”的两个长方形构成.)3.12,–2≤t ≤14(点拨:4时气温最低(-2℃);14时的气温最高(10℃).) 4.A 点坐标为(0,2),B 点坐标为(0,-4). 5.Q=41a πD 2,自变量是D ,常量是41a π. 6.(3,4)或(3,–4)(点拨:MN ∥y 轴,则这两点的横坐标相等,N 到x 轴的距离为4,N 的纵坐标为±4.)7.1(点拨:设点P 为(x 1, y 1),则S △POD =DP OD 21=1121y x =1.) 8.–3<a <21(点拨:点P 在第四象限,则由3+a >0,且2a -1<0.) 9.11(点拨:函数y=2x+5的y 随x 的增大而增大,当x ≥3时,y 最小值=11.) 10.x<–1(点拨:因为y 1>y 2,则–2x –3>x .或直接利用函数的图象求解.) 11.A (关于x 轴对称的两个点的的横坐标相等,纵坐标相反.)12.D (点拨:正比例函数y=(3k —1)x 的y 随x 的增大而增大,则3k —1>0.)13.A(点拨:1到5小时每小时所行的路程大小关系是:S 1>S 2>S 3>S 4=S 5=…=0,所以它们的速度关系是υ1>υ2>υ3>υ4=υ5=…=0.所以②、③正确.)14.C(点拨:先求出k=6,再确定只有点(-23,-11)满足解析式y =6x -2.) 15.C (点拨:图C 中,k 1= k 2<0,函数y =k 1x +b 中y 随x 的增大而减小,函数y =xk 2的图象分布在二、四象限.)16.C (点拨:设其函数关系式为l=6t-2307,当t 为35、36,l 分别为56.5、62.5.) 17.A (点拨:函数y =x x x --+-123中x+2≥0, 2+x ≠0, 且1–x ≥0.) 18.A (点拨:当时间0≤t ≤3时,只生产不装箱,故未装箱的产品数量随时间的增加而增多,当t >3时,生产量小于销售量,故未装箱的数量随时间的增加而逐步减少,故可同时排除B 、C 、D ). 19.(1) m <-41 (2) m >-1时;(3)-1<m <-41. 20.y+m 与x + n 成正比例,则y+m=k (x +n) (k ≠0),整理得y=kx +kn -m . 因为k ≠0, m, n 为常数,所以y 是x 的一次函数.⎩⎨⎧=-+=-+)2(115)1(53 m kn k m kn k ,(2)-(1)得2k=6, k=3,把k=3代入 (1)得kn -m=-4,即y=3x -4.21.(1)轮船行驶过程的函数解析式y=20x ,快艇行驶过程的函数解析式为y=40x -80;(2)轮船速度是208160=(千米/时),快艇速度404160=(千米/时);(3)设快艇出发x 小时赶上轮船,则20(x+2)=40x -80,解得:x=2.22.(1)设y 与x 之间的函数关系式为y=kx+b,当x=0时y=22;当x=100时y=21.5,所以y=﹣0.005x+22,经检验,表中余下的三组数值均满足关系式y=﹣0.005x+22;(2) 解不等式组18≤﹣0.005x+22≤20,得400≤x ≤800.故该植物适宜种植在海拔为400~800米的山区 .23.(1)设从乙仓库调往A 县农用车x 辆,则y=30x+50(6-x )+40(10-x )+80(2+x ).即y=20x+860.(2)因为总运费不能超过900,令20x+860≤900,得x ≤2,由于x 为非负整数,x 的取值可为0,1,2,则共有三种调运方案.(3)当x=0时,y 最小值=860(元),即能得出总运费最低的调运方案与最低运费.。
2021年华师大版八年级数学下册18章 函数及其图像 测试题及答案
1函数及其图像测试题--10一、填空题:1.点M (-2,3)在坐标平面内的第 象限.2.点P (1,2)关于y 轴对称点的坐标是 .3.函数x y 23-=中,自变量x 的取值范围是 .4.直线32+-=x y 中,函数值y 随x 的增大而 .5.反比例函数x ky =的图象经过点(2,-5),则k = .6.直线x y 2-=向上平移3个单位,得到的直线是 . .已知反比例函数xm 12-的图象在第二、四象限,那么m 的取值范围是 . 8.直线2+-=x y 不经过第 象限.9.已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间的关系成 比例.10.已知y 与(2x +1)成反比例,且当1=x 时,2=y ,那么当1-=x 时,=y .11.已知a 是整数,点A(2a+1,2+a)在第二象限,则a =12.点A(1,m)在函数y=2x 的图象上,则关于x 轴的对称点的坐标是13.若一个三角形面积为1,一边长为x ,这边上的高为y ,则y 关于x 的函数关系式为14.盛满10千克水的水箱,每小时流出0.5千克的水,写出水箱中的剩余水量y(千克)与时间t(时)之间的函数关系是 ,自变量t 的取值范围是15.无论m 为何实数,直线y=x+m 与y=-x+4的交点不可能在第 象限.16.已知函数y=mx+2x -2,要使函数值y 随自变量x 的增大而增大,则m 取值范围是17.已知直线y=2x+1,则它与y 轴的交点坐标是 ,若另一直线y=kx+b 与已知直线y=2x+1关于y 轴对称,则k= ,b= 18.如果一次函数y=(k-1)x+b-2的函数图象不经过第一象限,则k 的范围是 , b 的范围是 19.若点M (1+a ,2b-1)在第三象限内,则点N (a-1,1-2b )点在第 象限.20.当m = 时,函数3)2(32+-=-m xm y 是一次函数.21.已知m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m =22.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式: 23.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k = ,b =24.当b 时,一次函数3)1(--=x b y 与反比例函数xb y 3+=有交点.二、选择题:1.在平面直角坐标系中,点(-1,-2)所在的象限是.( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限2.若点P(1-m,m)在第二象限,则下列关系正确的是( )A 、0<m<1 B 、m<0 C 、m>0 D 、m>13.点M (-2,3)关于原点对称,则的点的坐标是.( )A.(2,3) B.(-2,3) C.(-2,-3) D.(2,-3)4.如果点A (-3,3a -6)在第三象限,那么a 的取值范围是( ) A.2≤aB. 2≥aC.2<aD.2>a5.下列各点中,在反比例函数xy 10-=图象上的点是( ) A.(1,10) B.(-1,-10) C.(2,5) D.(-2,5)26.在函数xx y 32+=中,自变量x 的取值范围( ) A.2-≥x 且0≠x B. 2≤x 且0≠x C.0≠x D. 2-≤x7.已知直线12+=x y 和b x y +=3的交点在第三象限,则b 的取值范围是………………( )A.1>bB. 23>b C.231<<b D. 1<b 8.关于函数x y 2-=,下列叙述正确是( )A.函数图象经过点(1,2) B.函数图象经过第二、四象限C.y 随x 的增大而减小 D.不论x 取何值,总有0<y9.已知点A (-2,1y )、B (-1,2y )、C (3,3y )都在反比例函数xy 2=的图象上,则( )A.321y y y << B. 123y y y << C 213y y y << D. 312y y y <<10.双曲线xy 3=与直线m x y +=有一交点为(3,n ),则n m +的值为( )A. 1B.-2C.-1D.311.若函数y= m x+2x -2,要使函数值y 随自变量x 的增大而增大,则m 的取值范围是( )A 、m ≥-2 B 、m>-2 C 、m ≤-2 D 、m<-212.已知正比例函数y= (m -1) x 的图象上两点A(x1, y1),B(x2, y2),当x1 < x2时,有y1>y2,那么m 的取值范围是………………………………………( )A 、m<1 B 、m>1 C 、m <2 D 、m> 0 13.一次函数y=x -2的图象不经过…( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 14.已知直线y= k x+b 经过一、二、四象限,则有…( )A 、k<0, b <0 B 、k<0, b>0 C 、k>0, b>0 D 、k>0, b<0 15.已知函数y=-x +m 与y=mx -4的图象的交点在x 轴的负半轴上,那么m 的值为( A 、-2 B 、2 C 、±4 D 、±2 16.已知一次函数y=x+2与y=-2+ x ,下面说法正确的是………………………………( )A 、两直线交于点(1,0)B 、两直线之间的距离为4个单位C 、两直线与x 轴的夹角都是30°D 、两条已知直线与直线y= x 都平行 17.直线b kx y +=1过第一、二、四象限,则直线k bx y -=2不经过……………………( )A 、第一象限B 、第二象限C 、、第三象限D 、第四象限18.既在直线y=-3x-2上,又在直线y=2x+8上的点是( )A 、(-2,4) B 、(-2,-4) C 、(2,4) D 、(2,-4) 19.直线y=-x -2与y=x+3的交点在( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 20.已知点P (9,-2)关于原点对称的点是Q ,Q 关于y 轴对称的点是R ,则点R 的坐标是( )A 、(2,-9)B 、(-9,2)C 、(9,2)D 、(-9,-2)21.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路回,若横轴表示时间t ,纵轴表示与山脚的距离h ,则下面四个图中反映全程h 与t 的关系图是……………….( )三、解答题: A B C Dth0 th 0th 0th 031.已知一次函数的图象经过点A (2,1),B (-1,-3) (1)求此一次函数的解析式;(2)求此一次函数的图象与x 轴、y 轴的交点坐标; (3)求此一次函数的图象与两坐标轴所围成的三角形面积.2.、已知正比例函数y=k1x 的图象与一次函数y=k ²x -9的图象交于P(3,-6). (1)求k1 、k2的值;(2)如果一次函数与x 轴交于点A ,求点A 的坐标.3.已知关于x 的一次函数2)73(-+-=a x a y 的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.4.已知直线y=2x+1和y=3x+b 的交点在第三象限,求常数b 的取值范围.5.已知2y -3与3x +1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a.6.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x 轴负半轴、y 轴负半轴分别交于点C 、点D ,使DB=DC.求直线CD 的函数解析式.7.如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于A (-2,1)、B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB ∆的面积.8.下图是某汽车行驶的路程S (km )与时间t (min )的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在途中停留了多长时间? (3)当3016≤≤t 时,求S 与t 的函数关系式.o ABxyt(min)o916301240S(km)4xy 140 0120 100 120 140 801609.小华准备将平时的零用钱节约一些储存起来,他已存有62元,从现在起每个月存12元;小华的同学小丽以前没有存过零用钱,听到小华在存零用钱,表示从现在起每个月存20元,争取超过小华. (1)试写出小华的存款总数1y 与从现在开始的月数x 之间的函数关系式以及小丽存款数2y 与月数x 之间的函数关系式;(2)从第几个月开始小丽的存款数可以超过小华?10.如图表示甲乙两船沿相同路线从A 港出发到B 港行驶过程中路程随时间变化的图象,根据图象解答下列问题: (1)请分别求出表示甲船和乙船行驶过程的函数解析式. (2)问乙船出发多长时间赶上甲船?11.某商店试销一种成本单价为100元/件的运动服,规定试销时的销售单价不低于成本单价,不高于180元/件,经市场调查,发现销售量y (件)与销售单价x (元)之间的关系满足一次数y=kx+b (k ≠0),其图象如图. (1)根据图象,求一次函数的解析式;(2)当销售单价x 在什么范围内取值时,销售量y 不低于80件.。
专题01 一次函数的概念与图像(真题测试)(解析版)
专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。
八年级数学下册《函数的图象》练习题及答案(人教版)
八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。
(完整word版)三角函数图像与性质试题及配套答案
xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin |x |C .y=-sin |x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A 。
)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( )。
A 。
,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6。
要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C 。
向左平移8π个单位 D.向右平移8π个单位7。
设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3 B 。
13C 。
1D 。
1- 8。
A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23-D 。
2110.函数2cos 1y x =+的定义域是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初四练习题函数及图象
一、 填空题:
1、在直角坐标系中,点(0,3)在 轴上。
它到原点的距离是 。
2、已知点P (a 、b )在x 轴上,则a 为 ,b 0。
3、已知点P (—2,3),那么点P 所在的象限为第 象限。
4、如果点M ()1,93a a --是第三象限的整数点,那么M 的坐标是 。
5、在直角坐标系内,已知A (4,6(),,21-x B y ),若不重合两点A、B所在直线平行y轴,则 。
6、已知M(-x,-y),点M关于X轴的对称点的坐标为 。
7、已知A(4,n),B(m,-2)若A,B关于x轴对称,则m= ,n= ;若A、B关于y轴对称,则m= ,n= ;若A,B关于原点轴对称,则m= ,n= ;若n=2m,且AB=10,则m= 。
8、函数x
x y 275
++=
的自变量x的取值范围是 ;函数x y -=3的自变量x
的取值范围是 ,函数x
y 112+=
中,自变量x 的取值范围是 。
9、车轮半径是40cm ,车前进的距离S (cm )与车轮所转周数x 之间的函数关系是 ,X 的取值范围是 。
10、将2
1
++=
y y x ()2-≠y 改写成用x 的代数式表示y 的形式是 ;其中x 的取值范围是 。
11、函数x y 54=
的图象上经过 的一条 。
函数3
31-=x y 的图象是通过第 象限;函数y=kx+b 中,k>0, b<0,那么这个函数的图象不经过第 象限。
12、若正比例函数()8
62
12---=m m
x m y 的图象经过第一、三象限,则m= 。
13、一次函数b x y +=2的图象经过点(1,—3),则它与y 轴的交点的坐标是 。
14、函数b kx y +=的截距是4,且过点(2,3),它的函数表达式是 ,图象经过第 象限。
15、已知y 与x 成正比例,若y 随x 的增大而减小,且其图象过A (3,—a0和B (a ,—1)两点,那么y 与x 之间大函数关系式是 。
16、直线3
4
32--
=y 与坐标轴所围成的三角形大面积是 。
17、一个关于x 的二次函数,当x=2时,取值最小值—7,则这个函数的图象开口一定 18、抛物线()2222
+--=x y 的对称轴是 ,函数的顶点坐标是 ,函数的最大值是 ,与y 轴的交点坐标是 。
19、抛物线2
2x x y --=的顶点坐标是 ,与x 轴的交点坐标是 。
20、函数()232
-+=x y 的图象是由函数2
2
1x y =
的图象向 平移3个单位,再向 平移2个单位得到的。
21、已知抛物线()16122
++-=x k x y 的顶点在x 轴上,则k 的值是 。
22、若双曲线x k
y =
,当k >0时,它的两个分支分别位于第 象限内。
23、反比例函数x
k
y =图象经过点(2,3),那么k 等于 。
24、如果反比例函数6
322
-+=m m
mx y 的图象在第二、四象限,那么m=
25、已知反比例的图象与第一、三象限的角分线的两个交点的距离为2,则这个函数的解析式为 。
二、 选择题
1、已知点P (x ,y ),当ab>0,则点A 在第 象限。
2、已知点(3x —2,2—x )在第四象限,则x 的取值范围是( ) A 、x >2 B 、x>
32 C 、32<x<2 D 、x<3
2
3、当点P(a,b)在第二、四象限两坐标轴的角平分线上,则a与b的关系是( ) A、x=y B、x=—y C、y x = D、y x ≠
4、已知点A(3,—2),则点A关于原点O的对称点的坐标是( )
A、(2,3) B、(—3,—2) C、(3,—2) D、(—3,2)
5、已知P(-3,a),Q(b,2 )是关于x轴的对称点,则a与b的值为( ) A3,2==
b a B、3,2=-=b a C、3,2-=-=b a D、3,3-==b a
6、已知点P在第三象限,且到x轴的距离为3,到y轴的距离为7,则点P的坐标为( ) A、(-3,-7) B、(-7,-3) C、(3,7) D、(7,3) 7、到点P(0,3)的距离为5,且位于x轴上的点坐标是( ) A、(0,8) B、(-5,0) C、(0,4),(0,-4) D、(4,0),(-4,0)
8、一次函数b kx y +=中,y随x的增大而减小,且kb •>0,那么这个函数的图象通过( ) A、第一、二、三象限 B、第一、二、四象限 C、第二、三、四象限 D、第一、三、四象限
9、函数m x y --
=31
的图象与y 轴大交点位于x 轴上方,则m 的取值范围是( ) A 、m>31- B 、m<3
1
- C 、m<0 D 、m>0
10、已知直线,1+=kx y 经过点(—1,2),则k 的值是( ) A 、—1 B 、1 C 、—2 D 、2
11、一次函数b kx y +=的图象如图所示,那么( )
A 、k<0,b>0
B 、k<0,b<0
C 、k>0,b<0
D 、k>0,b>0
12、一次函数111b x k y +=和222b x k y +=的图象交于y 轴上的同一点,则必有( ) A 、21k k = B 、11b k = C 、12b k = D 、21b b =
13、一次函数b ax y +=1和a bx y +=2,它们在同一坐标中的大致图象是( )
14、二次函数32
+==bx x y 的图象大顶点的横坐标是1,则b 的值是( ) A 、b=3 B 、b=2 C 、b= —3 D 、b= —2 15、如图、表示二次函数c bx ax y ++=2
的图象,则( ) A 、c b a ++<0 B 、c b a ++=0 C 、c b a ++>0 D 、c b a ++的符号不能确定
16、函数()()0332
≠+++=m m x m x y 大图象可能是(如图)中的
( )
17、已知函数x
k
y =
的图象经过点(—1,1),则函数3+=kx y 的图象是( )
18、在同一平面直角坐标系中,表示()0,0≠>=
+=b a x
ab
y b ax y 与的图象如图所示应是( )
19、在同一坐标系里,函数()0,02
≠≠=+=c a x
a
y c ax y 与的图象可能是如图中的( )
三、 解答题
1、 矩形的边长为4与6,一个顶点与原点重合,以一边与x 轴重合,矩形的另一个顶点在
第四象限内,求矩形四个顶点的坐标。
2、 等腰三角形ABC 的周长为16cm ,底边BC 的长为 ycm ,腰AB 长为xcm ,写出y 与x
的函数关系式,并求x ,y 的取值范围。
3、 已知a 和
b 1
的算术平方根成正比例,并且当b=4时a=6,求a=1时b 的值。
4、 如图,一次函数的图象经过A ,B 两点,求直线AB 的函数关系式。
5、 直线73-=x y 平行移动,使它经过一条直线105+=x y 与x 轴的交点A ,求新直线
的函数解析式。
6、 汽车行使前,油箱中有油65公升,如果每百千米耗油15公升,那么油箱中的余油是y
(公升)与它行使的距离x (百千米)之间的好说话关系式是什么?作出这个函数的图象(为保证汽车安全,油箱中存油至少5公升)。
7、 直线03=++c y ax 经过点(0,2
3
-),并且它和直线0843=++y x 的交点在y 轴上,求:a 、c 的值。
8、 有两条直线,5::2211+=+=cx y l b ax y l 和 学生甲解出它们的交点为(3,—2),
学生乙因把c 抄错而解出它们的交点为()4
1,43,试写出这两条直线的函数表达式。
9、 如图:一次函数b kx y +=的图象经过A ,B 两点,与x 舟交于点C ,点A 的横坐标为
2,求;(1)这个一次函数的解析式;(2)AOC ∆的面积。
10、一个二次函数的图象经过点(—1,—5),(3,—5)和(2,5),求这个二次函数的表达式。
11、二次函数的图象顶点是(1,4),且当x=2时y=1,求这个二次函数的解析式。
12、已知二次函数的图象经过(—1,1)、(2,0)两点,且与x 轴仅有一个交点,求: (1) 二次函数的解析式。
(2)此函数的对称轴及最值。
13、在平面坐标系内有三点A (—4,5)、B 、(1,m )C 、(2
7
,
1-),已知一次函数11-=kx y 的图象和二次函数c bx ax y ++=2
2的图象交于点A ,B ,且点C 在二次函数的图象上。
(1) 求这两个函数的解析式,并画出它们的图象; (2) 求二次函数的图象与x 轴的两交点之间的距离。
14、已知对称轴平行于y 轴的抛物线,经过直线x
y x y 3
2-
=+-=与双曲线的交点,又经过两条直线512+-=-=x y x y 与的交点,求抛物线的解析式,并写出它的顶点坐标和对称轴。