小船渡河专题训练(含答案详解)复习课程
小船渡河(答案)
第 1 页,共 1 页小船渡河(参考答案)一、知识清单1. 【答案】二、选择题2. 【答案】 B【解析】 水流速度和船速的合速度方向沿虚线方向,水流速度变大,船速也应变大,河宽不变,过河时间变短,B 项正确。
3. 【答案】C4. 【答案】B【解析】设水流速度为v 1,船在静水中的速度为v 2,船沿AB 方向航行时,运动的分解如图所示,当v 2与AB 垂直时,v 2最小,v 2min =v 1sin 37°=2.4 m/s ,答案项B 正确。
5. 【答案】A【解析】当沿AD 轨迹运动时,则加速度方向与船在静水中的速度方向相反,因此船相对于水做匀减速直线运动,故A 正确;船相对于水的初速度大小均相同,方向垂直于岸边,因运动的性质不同,则渡河时间也不同,故B 错误;沿AB 轨迹,做匀速直线运动,则渡河所用的时间大于沿AC 轨迹运动渡河时间,故C 错误;沿AC 轨迹,船是匀加速运动,则船到达对岸的速度最大,故D 错误。
6. 【答案】 A【解析】 当船的速度与河岸垂直时,渡河时间最短,t =d v 船=3004s =75 s ,故A 正确;船在沿河岸方向上做变速运动,在垂直于河岸方向上做匀速直线运动,两运动的合运动是曲线运动,故B 错误;要使船以最短时间渡河,船在行驶过程中,船头必须始终与河岸垂直,故C 错误;要使船以最短时间渡河,船在航行中与河岸垂直,根据速度的合成可知,船在河水中的最大速度是5 m/s ,故D 错误.7. 【答案】 D【解析】 由于船的速度大小相等,且与河岸的夹角相同,所以船速在垂直于河岸方向上的分速度大小相同,渡河的时间由船垂直河岸的速度的大小决定,故船到达对岸的时间相等;船的位移决定于平行河岸方向的速度大小,结合题意知s 1>s 2.8. 【答案】 C【解析】 设水流的速度为v 水,学生在静水中的速度为v 人,从题意可知v 人>v 水,令OA =OB =L ,对甲同学有t 甲=L v 人+v 水+L v 人-v 水,对乙同学来说,要想垂直到达B 点且沿原路线返回,其速度方向要指向上游,由题意知乙同学来回时间相等,即t 乙=2L v 2人-v 2水,因为t 2甲-t 2乙>0,所以t 甲>t 乙,C 正确. 9. 【答案】C10.【答案】 B【解析】 设大河宽度为d ,小船在静水中的速度为v 0,则去程渡河所用时间t 1=d v 0,回程渡河所用时间t 2=d v 20-v2.由题知t 1t 2=k ,联立以上各式得v 0=v 1-k 2,选项B 正确,选项A 、C 、D 错误.。
2020年高一物理理科下学期小船过河习题专题训练含答案
小船过河习题一、夯实基础1.小船以一定的速率垂直河岸向对岸划去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是( )A.水速小时,位移小,时间也小B.水速大时,位移大,时间也大C.水速大时,位移大,但时间不变D.位移、时间大小与水速大小无关2.(多选)已知河水自西向东流动,流速为,1υ小船在静水中的速度为,2υ且2υ>1υ,用小箭头表示船头的指向及小船在不同时刻的位置,虚线表示小船过河的路径,则下图中可能的是()3.如图所示,河宽200 m,一条小船要将货物从A点运送到河对岸的B点,已知AB连线与河岸的夹角θ=30°,河水的流速v水=5 m/s,小船在静水中的速度至少是()A.2.5 m/sB.3.0 m/sC.5.0 m/sD.4.0 m/s4.船在静水中的速度为4 m/s,河岸笔直,河宽50 m,适当调整船的行驶方向,使该船运动到河对岸时航程最短,设最短航程为L,下列说法中正确的是()A.当水流速度为2 m/s时,L为60 mB.当水流速度为6 m/s时,L为50 mC.当水流速度为6 m/s时,L为75 mD.当水流速度为2 m/s时,L为150 m5. 某小船在静水中的速度为4.0 m/s,要渡过宽度为120 m、水流速度为5.0 m/s的河流。
下列说法正确的是()A.因为船速小于水速,所以船不能渡过此河B.若船渡河过程中水流速度变小,则渡河时间将变长C.若船渡河所用的时间为30 s,则渡河位移为120 mD.船渡河的最小位移为150 m6.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对水的速度为v,其航线恰好垂直于河岸,现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是( )A.减小α角,增大船速v B.增大α角,增大船速vC.减小α角,保持船速v不变 D.增大α角,保持船速v不变7.(多选)一快艇从离岸边100 m远的河流中央向岸边行驶。
2019-2020年高中物理人教必修二微专题讲义5.3 小船渡河问题(解析版)
小专题3 小船渡河问题【知识清单】1.合运动与分运动的关键特征(i)等时性合运动与分运动是同时发生的,所用时间相等,可由任一分运动或合运动求解小船运动的时间。
(ii)等效性合运动的效果与几个分运动叠加后后的共同效果完全相同。
(iii)独立性一个物体同时参与几个分运动,各个分运动相互独立,任一分运动不受其它分运动的影响。
2.小船渡河问题的处理方法设小船在静止水中的匀速运动的速度是v1,均匀流动的河水的速度是v2 , 河宽为d。
又设v1与河岸的夹角为θ( 0≤θ≤1800),合速度v与河岸夹角为ϕ。
(i)分解法如图1 ,沿平行于河岸与垂直于河岸的方向上建立直角坐标系,将v1分解为v1x=v1cosθ和v1y =v1sinθ ,则v x= v1x +v2 =v1cosθ+ v2、v y=v1y = v1sinθ。
①合速度2122122)sin()cos(θθvvvvvvyx++=+=211cossintanvvvvvxy+==θθϕ②合位移212211)sin()cos(sinsinθθθϕvvvvdds++==③渡河时间θsin1vdvst==图1(ii )合成法如图2,通常用于图示中能出现直角三角形的特殊情况下。
3.小船的运动速度与轨迹当小船在静水中航行的速度、水流的速度恒定时,小船的运动速度恒定,运动轨迹是一直线。
当小船相对静水的速度变化时、水流的速度随时间或空间变化时,小船的速度是变化的,任一时刻的速度由该瞬时水流速度与小船相对静水的航速决定,运动轨迹一般为曲线。
4.极值问题 (i )最短时间由θsin 1v dt =可以看出,小船渡河的时间取决于河的宽度、小船相对于静水航行的速度大小及方向,与水流的速度大小无关。
如图 2中甲所示,当 2πθ= 时,即船头指向与河岸垂直,渡河时间最短:1min v d t =(ii )最短航程①若v 1>v 2 由1)sin cos (sin )sin ()cos (212122121221++=++=θθθθθv v v d v v v v ds可知当 v 1cosθ+v 2=0 时s min =d ,此时2arccos12ππθ>-=v v ,船头指向上游,如图2中乙所示。
高三物理小船渡河问题分析试题答案及解析
高三物理小船渡河问题分析试题答案及解析1.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船()A.沿AD轨迹运动时,船相对于水做匀减速直线运动B.沿三条不同路径渡河的时间相同C.沿AB轨迹渡河所用的时间最短D.沿AC轨迹船到达对岸的速度最小【答案】 A【解析】做曲线运动的物体所受合外力的方向指向轨迹曲线的凹侧,即加速度指向曲线凹侧,由图可知,船沿AB、AC、AD轨迹运动时,小船相对于水分别做匀速、匀加速、匀减速直线运动,故选项A正确;船渡河时的时间取决于垂直河岸方向的速度,即小船相对于水的速度,因此小船相对于水做匀加速直线运动时的时间最短,做匀减速直线运动时的时间最长,故选项B、C错误;船到达对岸的速度为沿河岸方向与垂直河岸方向速度的矢量和,在沿河岸方向船的速度始终等于水流速度,不变,因此垂直河岸方向的速度越小,合速度越小,因此当船沿AD轨迹运动时到达对岸的速度最小,故选项D错误。
【考点】本题主要考查了运动的合成与分解的应用问题。
2.船在静水中的速度为3.0 m/s,它要渡过宽度为30 m的河,河水的流速为2.0 m/s,则下列说法中正确的是A.船不能渡过河B.船渡河的速度一定为5.0 m/sC.船不能垂直到达对岸D.船到达对岸所需的最短时间为10 s【答案】D【解析】设船的速度为v1,河宽为d,河水的速度为v2,船头垂直河岸渡河时时间最短,最短时间为t=,D正确,A错误;船头方向不同,船渡河的速度不同,B错误;根据运动的合成与分解,船速可以平衡河水的速度,所以船可以垂直到达对岸,C错误。
【考点】本题考查船渡河问题。
3.小船横渡一条两岸平行的河流,船本身提供的速度大小、方向都不变,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( )A.水流速度保持不变B.越接近B岸水流速度越小C.越接近B岸水流速度越大D.由于水流速度的变化,将导致小船过河的时间变短【答案】 B【解析】由于船本身提供的速度大小、方向都不变,因此船在渡河过程中,沿垂直于河岸方向的分速度不变,以及由船本身提供的速度在沿水流方向的分速度也不变,通过小车渡河轨迹的弯曲方向可知,船在渡河过程中沿水流方向的分速度在逐渐减小,因此越接近B岸水流速度越小,故选项A、C错误;选项B正确;小船整个渡河运动的时间取决于沿垂直于河岸方向的分速度,因此,水流速度的变化,不会影响小船渡河的时间,故选项D错误。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
小船过河专题练习有答案
小船过河专题练习一、单项选择1、一只小船在静水中的速度为4m/s,它要渡过一条宽为40m的河,河水流速为3m/s。
下列说法中正确的是()A.小船过河的位移不可能为40 mB.小船过河的最短时间为10 sC.若河水流速改变,船过河的最短时间将改变D.小船在河中实际速度可能为8m/s【答案】B【解析】【来源】四川省泸州市2018-2019学年高一下学期期末物理试题【详解】A、根据平行四边形定则,由于船在静水中的速度大于水流速,则合速度可能垂直于河岸,即船可能垂直到达对岸,则最短航程为40m,A错误;BC、当静水速与河岸垂直时,过河的时间最短,渡河的最短时间与水流速度无关,最短渡河时间为40s10s4cdtv===,B正确,C错误;D、若船的速度方向与河水流速方向相同时,船的实际速度最大,大小为7m/s,不可能为8m/s,D错误。
【点睛】解决本题的关键知道合运动与合运动具有等时性,各分运动具有独立性,互不干扰,注意时间最短与位移最短求解方法区别,及理解水流速度与船在静水的速度大小,决定了最短位移的求解。
2、如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸。
现水流速度稍有减小,为保持航线不变,且准时到达对岸,下列措施中可行的是()A.增大α角,增大v B.减小α角,减小vC.减小α角,保持v不变D.增大α角,保持v不变【答案】B【解析】【来源】广西壮族自治区北海市2018-2019学年高一下学期期中物理试题【详解】由题意可知,船相对水的速度为v,其航线恰好垂直于河岸,当水流速度稍有减小,为保持航线不变,且准时到达对岸,则如图所示,可知减小α角,减小v,故选项B正确,A、C、D错误;3、小船过河时,船头偏向下游与水流方向成α角,船相对静水的速度为v,现水流速度稍有增大,为保持航线不变,且在同样的时间到达对岸,下列措施可行的是()A.增大α角,增大船速vB.增大α角,减小船速vC.减小α角,增大船速vD.减小α角,保持船速v不变【答案】B【解析】【来源】吉林省白山市2018-2019学年高一下学期期末物理试题【详解】因为保持航线不变,且在同样的时间到达对岸,则合速度方向不变且大小不变,由图可得当水流速度稍有增大时,可减小船速v,同时增大 角,故选项B正确,A、C、D错误。
小船渡河、牵连速度专题训练(附答案)
小船渡河模型1.小船要横渡一条宽400m 的小河,河水流速是3m/s ,船在静水中的速度是5m/s ,(已知sin53°=0.8,cos53°=0.6)求:(1)要使船到达对岸的时间最短,船头应指向何处?最短时间是多少? (2)要使船航程最短,船头应指向何处?最短航程为多少?渡河时间又是多少?2.汽艇在宽为400 m 、水流速度为2 m/s 的河中横渡河面,已知它在静水中的速度为4 m/s .求: (1)如果要在最短时间内过河,船头应取什么航向?最短时间为多少?(2)若水流速度为4 m/s ,船在静水中的速度为2 m/s ,求出船能过河的最短航程?3.小船匀速横渡一条河流,水流速度的大小1v ,船在静水中的速度大小2v ,第一次船头垂直对岸方向航行时,在出发后020s t =到达对岸下游60m 处;第二次船头保持与河岸成53θ=︒角向上游航行时,小船恰好经过时间t 1能垂直河岸到达正对岸,已知sin53︒=0.8,cos53︒=0.6,求: (1)求船在静水中的速度大小v 2; (2)求第二次过河的时间t 1;(3)若上游大暴雨,导致水流速度增大到10m/s 时,求小船到达河对岸的最短位移x 及所用时间时间t 2。
4.一条宽度为L 的河,水流速度v 水恒定,(1)若船在静水中的速度为v 船,那么,保持发动机输出功率不变,怎样渡河时间最短?最短时间? (2)若船在静水中速度v v >船水,怎样渡河位移最小?最小位移?(3)如图,某同学偶然发现在水流速度恒定的河流中,某渡河游艇的航迹好像是一条抛物线,又发现游艇船头指向对岸,该同学猜测该游艇可能在垂直河岸方向做匀加速运动,请你分析论证该同学的猜想。
参考答案1.【详解】(1)船头始终垂直河岸航行时,在垂直于河岸方向的速度最大,到达对岸时间最短,且最短时间1400s 80s 5d t v ===船 (2)由于船速大于水速度,船能到达正对岸时航程最短,此时设船与河岸夹角为θ,则3cos 5v v θ==水船 可得 θ=53°船头与上游河岸夹角为53°最短航程为河宽400m4m/s v ==合过河时间 2=100s dt v =合2.【详解】(1)由合运动与分运动具有等时性及分运动的独立性知,在船速一定的情况下,船头应垂直指向对岸开渡河时间最短.则:t =1dv =100 s (其中d 为河宽).(2)由于河水的流速大于船速,故小船不可能垂直于河岸过河,如图,设船从A 点开始渡河,按题意作出速度矢量三角形,若要航程最短,只需船的合速度v ′方向与AB 间的夹角α最小,由于v 1′的大小恒定,所以当v ′与圆周相切,即v 1′⊥v ′时航程最短.由相似三角形关系知最短航程为'2'1X 800m v d v ==.3.【详解】(1)第二次到达正对岸,有 21cos v v α= 第一次航行时,有 10s v t = 解得 25m/s v =(2)第一次过河时,河宽为 20100m d v t == 第二次过河时间为 1225s sin dt v α==(3)由于船速小于水速,所以船无法到达正对岸,设船头与上游河岸的夹角为β ,则当211cos 2v v β==' 时,小船到达对岸的位移最小,所用的时间为12sin d t v β==最小位移为 200m sin dx β==4.(1)如图所示设船头斜向上游与河岸成任意角θ,这时船速在垂直与河岸方向的速度分量为2sin v v θ=船渡河所用时间为 2sin L Lt v v θ==船 由此可知L 、v 船一定时,t 随sin θ增大而减小;当θ=90°时,sin θ=1(最大),所以船头与河岸垂直时,渡河时间最小为 min =Lt v 船(2))如图所示,渡河的最小位移即河的宽度为使船能直达对岸,船头应指向河的上游,并与河岸成一定角度θ,根据三角函数关系有cos v v θ=水船因为0≤cos θ≤1,所以只有在v 船>v 水时,船才有可能垂直河岸渡河,此时渡河最短位移为L ; (3)由题可知水流速度不变,而游艇的运动轨迹是曲线,故游艇的速度发生变化,根据运动轨迹可知,游艇的加速度沿y 轴正方向,与游艇的初速度方向相同,故游艇沿y 轴方向做匀加速直线运动。
高三物理小船渡河问题分析试题答案及解析
高三物理小船渡河问题分析试题答案及解析1.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 ( )A.减小α角,增大船速vB.增大α角,增大船速vC.减小α角,保持船速v不变D.增大α角,保持船速v不变【答案】B【解析】据题意,设船速为v1和水速为v2,当水速v2增加后,要使航线保持不变,即合运动的方向不变,要准时到达,则据:可知水速v1也要增加,再据可知当水速增加后,要保持时间不变,则需要使水速与合运动方向的夹角θ变大,故B选项正确。
【考点】本题考查小船渡河问题。
2.如右图所示,一条小船位于200 m宽的河正中A点处,从这里向下游处有一危险的急流区,当时水流速度为4 m/s,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为:A.B.C.D.【答案】C【解析】小船在河水中运动时,运动速度合成如下图所示,当小船在静水中的速度与合速度垂直时,小船在静水中的速度最小,最小速度为,所以正确选项为C。
【考点】本题考查了小船渡河模型的应用。
3.一条河宽100m,船在静水中的速度为4m/s,水流速度是5m/s,则()A.该船能垂直河岸横渡到对岸B.当船头垂直河岸横渡时,过河所用的时间最短C.当船头垂直河岸横渡时,船的位移最小,是100mD.该船渡到对岸时,船对岸的位移可能小于100m【答案】BD【解析】据题意,由于船速为v1=4m/s,而水速为v2=5m/s,船速小于水速,则无论船头指向哪里,都不可能使船垂直驶向对岸,A选项错误;据t=L/v1cosθ,要使t最小需要使θ最大,即使船头与河岸垂直,B选项正确;要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则有合速度为v=3m/s;渡河时间为,则船的合位移为vt’=125m,所以C选项错误;船沿对岸的位移为:(v2-v14/5)t’=75m,所以D选项正确。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
高中物理基本模型之:小船渡河问题
高中物理《小船渡河问题》专题训练与解析例1.游泳运动员以恒定的速率垂直于河岸渡河,当水速突然变大时,对运动员渡河时间和经历的路程产生的影响是()A.路程变大,时间延长B.路程变大,时间缩短C.路程变大,时间不变D.路程和时间均不变【答案】C【解析】运动员渡河可以看成是两个运动的合运动:垂直河岸的运动和沿河岸的运动运动员以恒定的速率垂直河岸渡河,在垂直河岸方向的分速度恒定由分运动的独立性原理可知,渡河时间不变①但由于水速变大,沿河岸方向的运动速度变大又因为时间不变,所以沿河岸方向的分位移变大,故总的路程变大②[来源:学科网]例2.如图所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为()A.v sinαB.vsinαC.v cosαD.vcosα【答案】C【解析】把人的速度v沿着绳方向和垂直于绳方向分解,如图所示:几何关系:v1=v cosα,所以船的速度大小为v cosα例3.无风时气球匀速竖直上升,速度大小为3m/s.现吹水平方向的风,使气球获4m/s的水平速度,气球经一定时间到达某一高度h,则有风后()A.气球实际速度的大小为7m/sB.气球的运动轨迹是曲线C.若气球获5m/s的水平速度,气球到达高度h的路程变长D.若气球获5m/s的水平速度,气球到达高度h的时间变短【答案】C【解析】有风时,气球实际速度的大小v=32+42m/s=5m/s①气球沿合速度方向做匀速直线运动,轨迹为直线②水平速度增大,但气球飞行的时间不变,水平方向的位移增大,竖直方向的位移不变,合位移增大,故气球到达高度h的路程变长③例4.如图所示,船从A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4m/s ,则船从A 点开出的最小速度为(取sin37°=0.6,cos37°=0.8)()A .2m/sB .2.4m/sC .3m/sD .3.5m/s 【答案】B【解析】当船头方向与合速度方向即与直线AB 垂直时,船的速度最小此时有v 船=v 水sin37°=2.4m/s例5.(多选)一条河宽100m ,船在静水中的速度为4m/s ,水流速度是5m/s ,则()A .该船能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,且为100mD .该船渡到对岸时,船沿岸方向的位移可能小于100m【答案】BD【解析】由题意可知,由于船速为v 1=4m/s ,水速为v 2=5m/s即船速小于水速,则无论船头指向哪个方向,都不可能使船垂直驶向对岸①根据t=L /v 1cos θ知,要使t 最小只需要使cos θ最大,即使船头与河岸垂直②要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则合速度为v==-22船水v v 3m/s 渡河时间为t=L 35v 1=1253s 所以船的合位移为x=vt=125m③船沿岸方向的位移为(v 2-45v 1)t=75m ④例6.如图所示,一艘小船要从O 点渡过一条两岸平行、宽度为d=100m 的河流,已知河水流速为v 1=4m/s ,小船在静水中的速度为v 2=2m/s ,B 点距正对岸的A 点x 0=173m .下面关于该船渡河的判断,其中正确的是()A .小船过河的最短航程为100mB .小船过河的最短时间为25sC .小船可以在对岸A 、B 两点间任意一点靠岸D .小船过河的最短航程为200m【答案】D【解析】由于v 2<v 1,即船的速度小于水流的速度因此不能横渡到对岸,即m100=>d x ①当船头垂直河岸渡河时,有最短时间s 50s 21002min ===v d t ②如图所示,当船的速度方向与河岸成θ'时有最短航程由几何关系,得sin α=v 船v 水=0.5最短航程为L=d sin α=v 水v 船d=200m ③又02222224m m 100200x x L x >≈-=-= 因此小船不能在AB 区域内渡河到对岸④例7.一快艇从离岸边100m 远的河中向岸边行驶.已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,则()A .快艇的运动轨迹一定为直线B .快艇的运动轨迹可能为曲线,也可能为直线C .快艇最快到达岸边所用的时间为20sD .快艇最快到达岸边经过的位移为100m【答案】C【解析】由图象可知,快艇在流水中的运动是由一个匀加速直线运动和一个匀速运动合成的,其所受合力方向一定和其速度方向不在一条直线上,所以快艇一定做曲线运动①快艇要最快到达岸边,船头应直指河岸,但实际的运动方向却是偏向下游,位移大于100m②设渡河时间为t ,根据运动学公式,得x=21at 2,解得t=20s ③例8.在一次漂流探险中,探险者驾驶摩托艇想上岸休息,江岸是平直的,江水沿江向下流速为v ,摩托艇在静水中航速为u ,探险者离岸最近点O 的距离为d .如果探险者想在最短的时间内靠岸,则摩托艇登陆的地点离O 的距离为多少?【答案】v ud 【解析】如果探险者想在最短的时间内靠岸,摩托艇的前端应垂直于河岸,即u 垂直于河岸,如图所示:探险者运动的时间为t=du所以摩托艇登陆的地点离O 的距离为x=vt=v ud 例9.质量为m=2kg 的物体在光滑的水平面上运动,在水平面上建立Oxy 坐标系,t=0时,物体位于坐标系的原点O .物体在x 轴和y 轴方向的分速度v x 、v y 随时间t 变化图线如图甲、乙所示.已知sin53°=0.8,cos53°=0.6.求:(1)t=3.0s 时物体受到的合力;(2)t=8.0s 时的物体速度;(3)t=8.0s 时物体的位置坐标.【答案】(1)1.0N ,方向沿y 轴正方向(2)5.0m/s ,方向与x 轴正向夹角为53°(3)(24m,16m)【解析】(1)由题图可知,物体在x 轴方向做匀速直线运动,在y 轴方向做初速度为零的匀加速直线运动加速度为a=0.5m/s 2所以在t=3.0s 时,物体受合力F=ma=1.0N ,方向沿y 轴正方向(2)由题图可知:当t=8.0s 时,v x =3.0m/s ,v y =4.0m/s物体的速度大小为v=5.0m/s速度方向与x 轴正向夹角设为α,则tan α=34,解得α=53°(3)t=8.0s 时,物体的位置坐标为x=v x t=24my=21at 2=16m 故此时的位置坐标为(24m,16m)例10.小船在200m 宽的河中横渡,水流速度为3m/s ,船在静水中的航速为4m/s ,求:(1)当小船的船头始终正对对岸行驶时,它将在何时、何处到达对岸?(2)要使小船到达河的正对岸,应如何行驶?多长时间能到达对岸?【答案】(1)50s ,250m (2)船头应指向河流的上游与河岸成43arccos =α航行,航行时间约为75.60s 【解析】(1)当小船的船头始终正对对岸行驶时,有最短时间,如图所示:s 50s 4200===船v d t m m5m 342222=+=+=⇒水船v v v 小船的位移为m250m 505=⨯==m vt x (2由题意知:43arccos 43cos =⇒==αα船水v v 所以船头应指向河流的上游与河岸成43arccos=α航行又47sin =α 行驶时间为75.60s s 77200sin ≈==α船v d t 乙所示,若要以最短时间渡河,则()A .船渡河的最短时间是60sB .船在行驶过程中,船头始终与河岸垂直C .船在河水中航行的轨迹是一条直线D .船在河水中的最大速度是5m/s【答案】BD【解析】若要以最短的时间渡河,则船头必须始终垂直指向河对岸①渡河的最短时间为s 100s 3300===船v d t m ②由于水流的速度大小变化,而船的速度又恒定,因此船的运动轨迹为曲线③由图甲可知:船在河流的中间位置时的速度最大根据合速度与分速度的关系,得船实际的最大速度为5m/s m/s 342222=+=+=船水实v v v ④。
(完整word版)高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为2水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高考物理计算题复习《小船渡河问题》(解析版)
《小船渡河问题》一、计算题1.河宽d=60m,水流速度v1=3m/s,小船在静水中的速度v2=6m/s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?(3)若水流速度变为v3=10m/s,要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2.如图所示,一条小船位于d=200m宽的河正中A点处,从这里向下游100√3m处有一危险区,当时水流速度为V1=4m/s,(1)若小船在静水中速度为V2=5m/s,小船到岸的最短时间是多少?(2)若小船在静水中速度为V2=5m/s,小船以最短的位移到岸,小船船头与河岸夹角及所用时间?(3)为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是?3.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s.(1)若要小船过河的时间最短,则船头应该指向哪里?过河的最短时间是多少⋅来表示),小船需用多长时间到达对岸?(sin300=0.5,sin370=0.6,sin450=0.707)4.河宽d=100m,水流速度v1=3m/s,船在静水中的速度是v2=4m/s,求:(1)欲使船渡河时间最短,最短时间是多少?(2)欲使船航行距离最短,渡河时间多长?5.一小船从河岸的A点出发渡河,小船船头保持与河岸垂直方向航行,经过10min到达河对岸B点下游120m的C处,如图所示。
如果小船保持原来的速率逆水斜向上游与河岸成α角方向航行,则经过12.5min恰好到达正对岸的B处。
求:(1)水流速度;(2)河的宽度。
6.如图所示,河宽d=120m,设船在静水中的速度为v1,河水的流速为v2,小船从A点出发,在渡河时,若出发时船头指向河正对岸的B点,经过8min小船到达B点下游的C点处;若出发时小船保持原来的速度逆水向上与河岸成α角方向行驶,则小船经过10min恰好到达河正对岸的B点。
高考专题02 小船过河高考物理一轮复习专题详解 Word版含解析
高考重点难点热点快速突破把握小船渡河的两类问题(1)要求最短时间过河,则船头必须垂直指向对岸,不论船速与水流速度的关系如何. (2)要求过河的位移最短,则要区分两种情况:①当船在静水中的速度v 1大于水流速度v 2时,最短过河位移为河宽d ,如图甲所示,船头指向上游与河岸的夹角α=arccos v 2v 1.②当船在静水中的速度v 1小于水流速度v 2时,过河的最短位移为x ,如图3-1-1乙所示,船头指向上游与河岸的夹角为θ=arccos v 1v 2,最短位移x =v 2v 1d .例题讲解:例1:如图所示,河水由西向东流,河宽为800 m ,河中各点的水流速度大小为v 水,各点到较近河岸的距离为x ,v 水与x 的关系为v 水=3400x (m/s)(x 的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v 船=4 m/s ,则下列说法中正确的是( )A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是160 s 【答案】 B【解析】 小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,小船的合运动是曲线运动,A 错.当小船运动到河中间时,东西方向上的分速度最大,此时小船的合速度最大,最大值v m =5 m/s ,B 对.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错.小船的渡河时间t =200 s ,D 错.例2:(多选)(2017年湖南郴州高三上学期第一次教学质检)甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点.则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 【答案】:BD专题练习1.(2017·衡阳联考)一只小船渡过两岸平行的河流,河中水流速度各处相同且恒定不变,方向平行于河岸.小船的初速度均相同,且船头方向始终垂直于河岸,小船相对于水分别做匀加速、匀减速和匀速直线运动,其运动轨迹如图所示.下列说法错误的是( )A .沿AC 和AD 轨迹小船都是做匀变速运动B .AD 是匀减速运动的轨迹C .沿AC 轨迹渡河所用时间最短D .小船沿AD 轨迹渡河,船靠岸时速度最大 【答案】 D2.(多选)如图甲、乙所示,民族运动会上有一个骑射项目,运动员骑在奔驰的马背上沿跑道AB 运动,且向他左侧的固定目标拉弓放箭.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的箭的速度为v 2,跑道离固定目标的最近距离OC =d.若不计空气阻力的影响,要想命中目标且射出的箭在空中飞行时间最短,则( )A .运动员放箭处离目标的距离为v 1v 2dB .运动员放箭处离目标的距离为v 12+v 22v 2 dC .箭射到固定目标的最短时间为dv 2D .箭射到固定目标的最短时间为d v 22-v 12【答案】 BC【解析】联系“小船渡河模型”可知,射出的箭同时参与了v 1、v 2两个运动,要想命中目标且射出的箭在空中飞行时间最短,箭射出的方向应与马运动的方向垂直,故箭射到固定目标的最短时间为t =d v 2,箭的速度v =v 12+v 22,所以运动员放箭处离固定目标的距离为x=vt =v 12+v 22v2d ,B 、C 两项正确. 3.(2017·深圳模拟)如图甲所示,一条宽度为d 的小河,水流(从西向东)的速度恒定为v 0,一小船从小河的南岸向北岸驶去,已知船头始终正对北岸,经时间T 小船到达小河的北岸,0~T 时间内,小船在静水中的速度v 随时间t 变化的关系如图乙所示,则下列说法正确的是( )A .小船可能到达Q 点B .小船可能沿直线达到R 点C .小船相对于岸的最大速度为2v 0D .小船的渡河时间T 小于2dv 0【答案】 D4.(多选)一条河宽100 m ,船在静水中的速度为4 m/s ,水流速度是5 m/s ,则( ) A .该船能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100 mD .该船渡到对岸时,船沿岸方向的位移可能小于100 m 【答案】 BD【解析】据题意,由于船速为v 1=4 m/s ,而水速为v 2=5 m/s ,即船速小于水速,则无论船头指向哪个方向,都不可能使船垂直驶向对岸,A 项错误;据t =L v 1sin θ(θ为船头指向与水流方向的夹角),知道使t 最小需要使sin θ最大,即使船头与河岸垂直,B 项正确;要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则有合速度为v =3 m/s ,渡河时间为t =L 35v 1=1253 s ,则船的合位移为vt =125 m ,所以C 项错误;船的渡河位移最小时,船沿岸方向的位移为:(v 2-45v 1)t =75 m ,所以D 项正确.5.(2017·南通模拟)如图所示,河两岸相互平行,水流速度恒定不变.船行驶时相对水的速度大小始终不变.一开始船从岸边A 点出发,船身始终垂直河岸,船恰好沿AB 航线到达对岸B 点耗时t 1,AB 与河岸的夹角为60°.调整船速方向,从B 点出发沿直线BA 返航回到A 点耗时t 2.则t 1∶t 2为( )A .1∶1B .1∶2C .1∶3D .1∶4 【答案】 B6.(2017年海南七校联考)帆船船头指向正东以速度v (静水中速度)航行,海面正刮着南风,风速为3v ,以海岸为参考系,不计阻力.关于帆船的实际航行方向和速度大小,下列说法中正确的是( )A.帆船沿北偏东30°方向航行,速度大小为2vB.帆船沿东偏北60°方向航行,速度大小为2vC.帆船沿东偏北30°方向航行,速度大小为2vD.帆船沿东偏南60°方向航行,速度大小为2v【答案】:A【解析】由于帆船的船头指向正东,并以相对静水中的速度v航行,南风以3v的风速吹来,当以海岸为参考系时,实际速度v实=v2+3v2=2v,sinα=v2v =12,α=30°,即帆船沿北偏东30°方向航行,选项A正确.7.如图所示,河宽d=120 m,设船在静水中的速度为v1,河水的流速为v2,小船从A 点出发,在渡河时,船身保持平行移动,若出发时船头指向河对岸的上游B点处,经过10 min,小船恰好到达河正对岸的C点,若出发时船头指向河正对岸的C点,经过8 min小船到达C 点下游的D点处,求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离s CD.【答案】(1)0.25 m/s (2)0.15 m/s (3)72 m。
高中物理小船过河问题含答案
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高考最新集训试题-小船渡河问题专题(含答案)
高考最新集训试题-小船渡河问题专题(含答案)1.某小船在静水中的速度大小保持不变,该小船要渡过一条河,渡河时小船船头垂直指向河岸.若船行至河中间时,水流速度突然增大,则( )A .小船渡河时间不变B .小船渡河时间减少C .小船渡河时间增加D .小船到达对岸地点不变2.如图所示为某人游珠江,他以一定的速度且面部始终垂直于河岸向对岸游去。
设江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )A 、水速大时,路程长,时间长B 、水速大时,路程长,时间不变C 、水速大时,路程长,时间短D 、路程、时间与水速无关3.小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( )A .越接近河岸水流速度越小B .越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响4.一艘小船在静水中的速度为4 m/s ,渡过一条宽200 m ,水流速度为5 m/s 的河流,则该小船A .能到达正对岸B .以最短位移渡河时,位移大小为200mC .渡河的时间可能少于50 sD .以最短时间渡河时,沿水流方向的位移大小为250 m5.在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 ( )2dvl v D.21dv v 6.船在静水中的速度与时间的关系如图甲所示,河水的流速随离河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下面对该船渡河的说法正确的是( )A .船在河水中的最大速度是5 m/sB .船渡河的时间是150sC .船在行驶过程中,船头必须始终与河岸垂直试卷第2页,总8页D210m7.如图所示,MN 是流速稳定的河流,河宽一定,小船在静水中的速度为v.现小船自A 点渡河,第一次船头沿AB 方向,到达对岸的D 处;第二次船头沿AC 方向,到达对岸E 处,若AB 与AC 跟河岸垂线AD 的夹角相等,两次航行的时间分别为t B 、t C ,则( )A .tB >tC B .t B <t CC .t B =t CD .无法比较t B 与t C 的大小8.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船( )A .沿AD 轨迹运动时,船相对于水做匀减速直线运动B .沿三条不同路径渡河的时间相同C .沿AB 轨迹渡河所用的时间最短D .沿AC 轨迹船到达对岸的速度最小9.下列四个选项的图中实线为河岸,河水的流速u 方向如图中箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线,已知船在静水中速度大于水速,则其中正确是( )10.一只小船在静水中的速度为0.3m∕s,它要渡过一条宽度为60m 的河,河水的流速为0.4m∕s , 下列说法正确的是( )A .船不能到达对岸的上游B .船过河的最短位移是60mC .船过河的最短时间是120sD .船过河所需的时间总是200s11.如图所示,船从A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度4m/s ,则船在静水中的最小速度为( ) (sin37°=0.6,cos37°=0.8)A .5 m/sB .2.4 m/sC .3 m/sD .3.2 m/s12.某河流中河水的速度大小v 1=2m/s ,小船相对于静水的速度大小v 2=1m/s .现小船船头正对河岸渡河,恰好行驶到河对岸的B 点,若小船船头指向上游某方向渡河,则小船( )A .到达河对岸的位置一定在B 点的右侧B .到达河对岸的位置一定在B 点的左侧C .仍可能到达B 点,但渡河的时间比先前长D .仍可能到达B 点,但渡河的时间比先前短13.如图所示,一条小船位于200 m 宽的河中央A 点处,从这里向下游m 处有一危险的急流区,当时水流速度为4 m/s ,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为 ( ).m/s.2 m/s D .4 m/s14.如图所示,两次渡河时船对水的速度大小和方向都不变.已知第一次实际航程为A 至B ,位移为S 1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A 至C ,位移为S 2,实际航速为v 2,所用时间为t 2.则( )A .t 2>t 1 2121S v v S = B .t 2>t 1 1122S v v S = C .t 2=t 1 1122S v v S = D .t 2=t 1 2121S v v S = 15.小船从A 码头出发,沿垂直于河岸的方向渡河,若河宽为d ,渡河速度v 船恒定,河水的流速与到河岸的距离成正比,即v 水=kx (x≤d/2,k 为常量),要使小船能够到达距A 正对岸为s 的B 码头,则:A.v 船应为kd 2/4s v 2v 1B.v船应为kd2/2sC.渡河时间为s/kdD.渡河时间为2s/kd16.已知某江水由西向东流,江宽为d,江水中各点水流速度大小与该点到较近岸边的距离成正比,,,x是各点到近岸的距离。
专题提升课五 小船渡河与关联速度问题
目录
提升
3.掌握两类最值问题 (1)过河时间最短问题
创新设计
由于水流速度始终沿河道方向,不能提供指向河对岸的分速度。若要过河时 间最短,则船头垂直于河岸航行即可。由图甲可知,t 短=vd船,此时船过河的
位移
s=sind
根据运动的合成,船的速度必须减小,再根据 t=vd船,可知渡河的时间变长, 故选 A。
01 02 03
目录
随堂对点自测
创新设计
2.(绳的关联问题)如图所示,物体A套在竖直杆上,经细绳通过光滑轻质定滑 轮拉动物体B在水平面上运动,开始时A、B间的细绳呈水平状态,现由计算 机控制物体A的运动,使其恰好以速度v沿杆匀速下滑(B始终未与滑轮相碰),
01 02 03 04 05 06 07 08 09 10 11 12
目录
课后巩固训练
创新设计
2.(2022·江苏无锡期末)一小船要渡过一条50 m宽的河,已知船在静水中的速
度为4 m/s,水流速度为3 m/s。则以下说法中正确的是( C )
A.小船渡河的位移一定大于50 m B.小船渡河的速度一定小于或等于5 m/s C.小船渡河的最短时间为12.5 s D.小船不可能到达正对岸
目录
提升
创新设计
提升2 关联速度问题
1.关联速度 用绳、杆(高中阶段研究的绳都是不可伸长的,杆都是不可伸长且不可压缩 的)相牵连的物体或者直接接触的两物体,在运动过程中两物体的速度通常 不同,但两物体的速度间存在某种联系,称为关联速度。
目录
提升
创新设计
2.解决关联速度问题的一般步骤 第一步:先确定合运动,即物体的实际运动。 第二步:确定合运动的两个实际作用效果,一是沿绳(或杆)方向的平动效 果,改变速度的大小;二是沿垂直于绳(或杆)方向的转动效果,改变速度 的方向。即将实际速度正交分解为垂直于绳(或杆)和平行于绳(或杆)方向 的两个分量并作出运动矢量图。 第三步:根据沿绳(或杆)方向的速度相等列方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小船渡河专题训练卷1.如图所示,河的宽度为d ,船渡河时船头始终垂直河岸.船在静水中的速度大小为v 1,河水流速的大小为v 2,则船渡河所用时间为( ) A .1d v B .2d v C .12d v v D .2212d vv2.河宽420 m ,船在静水中速度为4 m /s ,水流速度是3 m /s ,则船过河的最短时间为( ) A .140 s B .105 s C .84 s D .760 s3.小船在静水中的航行速度为1m/s ,水流速度为2m/s ,为了在最短距离内渡河,则小船船头指向应为(图中任意方向间的夹角以及与河岸间的夹角均为300)( )A .a 方向B .b 方向C .c 方向D .e 方向4.小船在静水中的速度是v ,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至河中心时,河水流速增大,则渡河时间将( ) A. 不变 B.减小 C.增大 D.不能确定 5.一条河宽为d ,河水流速为1v ,小船在静水中的速度为2v ,要使小船在渡河过程中所行路程S 最短,则( )A .当1v >2v 时,B .当1v <2v 时,d v v v s 12221+=C .当1v >2v 时,d v v s 21=D .当2v <1v ,d v v s 12= 6.一小船在静水的速度为3m/s ,它在一条河宽150m ,水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸B .渡河的时间可能少于50sC .以最短时间渡河时,它沿水流方向的位移大小为200mD .以最短位移渡河时,位移大小为150m 7.某船在静水中的速率为4m/s, 要横渡宽为40m 的河, 河水的流速为5m/s 、下列说法中不A、该船不可能沿垂直于河岸的航线抵达对岸B、该船渡河的速度最小速度是3m/sC、该船渡河所用时间至少是10sD、该船渡河所经位移的大小至少是50m8.一艘船以相对于静水恒定的速率渡河,水流速度也恒定(且小于船速),若河的宽度一定,要使船到达对岸航程最短,则()A.船头指向应垂直河岸航行 B.船头指向应偏向下游一侧C.船头指向应偏向上游一侧 D.船不可能沿直线到达对岸9.一小汽船欲渡过一条宽为150m的小河。
已知小汽船在静水中的速度为5m/s,河水流速是4m/s,若小汽船的船头始终垂直河岸,则渡河时间为秒。
若小汽船欲以最短位移渡河,则渡河时间为秒。
10.小船匀速横渡一条宽120m的河流,当船头垂直于河岸方向航行时,30s到达河对岸下游60m处,则船在静水中的速度为;若船头保持与河岸上游成α角航行,恰好到达正对岸,则α= 。
11.一只船在200m宽的河中横渡,水流速度是2m/s,船在静水中的航速是4m/s,欲使小船以最短时间渡过河去,则应使船头方向_________河岸(填“垂直”或“不垂直”)行驶,最短的时间是_________ s.12.河宽420m,船在静水中的速度为5m/s,水流速度是4m/s,则过河的最小位移为__________m。
13.某人乘船横渡一条小河,船在静水中的速度和水速一定,且船速大于水速. 若渡河最短时间为t1,用最短位移渡河时间为t2,则船速与水速之比为多少?14.船在静水中的速度为v,流水的速度为u,河宽为L。
(1)为使渡河时间最短,应向什么方向划船?此时渡河所经历的时间和所通过的路程各为多大?(2)为使渡河通过的路程最短,应向什么方向划船?此时渡河所经历的时间和所通过的路程各为多大?答案【解析】试题分析:小船的渡河时间只和河宽已经沿垂直河岸方向的速度 ,所以1d t v =故选A考点:考查了小船渡河问题 点评:将船的运动分解为沿河岸方向和垂直于河岸方向,在垂直于河岸方向上的速度等于静水速,根据河宽以及在垂直于河岸方向上的速度求出渡河的时间. 2、【答案】B 【解析】试题分析:由运动的独立性可知,当船头指向正对岸时,过河时间最短,因此过河时间为420/4=105s ,故选B 考点:考查小船过河点评:本题难度较小,当船头垂直指向正对岸时过河时间最短 3、【答案】B【解析】因为船速小于水速,小船不可能垂直渡河,则以水速矢量末端为圆心,以船速矢量的大小为半径画圆,从水速矢量的始端向圆弧做切线,则合速度沿此切线方向航程最短,设船速为1v ,水速为2v ,根据几何知识可得121sin 2v v θ==,即沿b 方向,选B 。
4、【答案】A【解析】本题考查运动的合成和分解。
小船渡河时间由河宽和垂直于河岸的速度决定,河水流速增大不影响小船垂直于河岸的速度,渡河时间不变。
选A 。
5、【答案】C 【解析】当船速大于水流速时小船能到达正对岸,最短距离为河宽d ,当船速小于水流速时,肯定被冲到下游,合速度方向与船速垂直时路程最短,最短路程为21,sin sin v da a v =,选C 6、【答案】C【解析】考点:运动的合成和分解 分析:船航行时速度为静水中的速度与河水流速二者合速度,最短的时间主要是希望合速度在垂直河岸方向上的分量最大,这个分量一般刚好是船在静水中的速度,即船当以静水中的速度垂直河岸过河的时候渡河时间最短;如果船在静水中的速度小于河水的流速,则合速度不可能垂直河岸,那么,小船不可能垂直河岸正达对岸.解析:A 、因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸.故A 错误. B 、当船的静水中的速度垂直河岸时渡河时间最短:min 50dt s v==故B 错误. C 、船以最短时间50s 渡河时沿河岸的位移:min 450200x v t m m ==⨯=水,即到对岸时被冲下200m ,故C 正确.D 、因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸.所以最短位移大于河的宽度即大于150m .故D 错误. 故选C . 7、【答案】B【解析】考点:运动的合成和分解. 专题:运动的合成和分解专题.分析:小船渡河时,小船的实际速度是小船在静水中的速度和河水的速度的合速度.因为合运动与分运动之间有等时性,所以当船头始终正对河岸用时最短.当合速度方向越接近在垂直河岸的方向,渡河的位移越小.解答:解:A :因为水速大于船在静水中的速度,所以船不可能沿垂直于河岸的航线抵达对岸.故A 正确 B :小船的实际速度是小船在静水中的速度和河水的速度的合速度,所以合速度的范围是(1,9),故B 错误.C :当船头始终正对河岸用时最短,则:t=440=船速河宽=10s ,故C 正确. D :当合速度方向越接近在垂直河岸的方向,渡河的位移越小,因为水速大于船在静水中的速度,所以下图中的合速度最接近垂直河岸的方向.所以实际速度为3m/s ,实际运动方向与河岸方向成53°角.所以实际位移为:8.04053sin 0=河宽=50m .故D 正确. 本题选错误的,故选:B点评:小船渡河时,要把握住小船的实际速度是小船在静水中的速度和河水的速度的合速度,利用矢量的合成与分解遵从平行四边形定则找关系即可. 8、【答案】C 9、【答案】30, 50 【解析】试题分析:当船头与河岸垂直时的渡河时间=30s dt v =水;船速大于水速,小船可以垂直河岸渡河,此种情况渡河距离最短,渡河时间22-t v v'=船水。
考点:小船渡河点评:要想小船垂直河岸渡河,船头应斜指向上游,让船速沿河岸的分量抵消水速,垂直河岸的分量是用来渡河的速度,渡河时间22-t v v=船水。
10、【答案】【解析】当船头垂直于河岸方向航行时,根据运动的独立性可得,船在静水中的速度为s m t d v /430120===船,水流速度s m t s v /23060===水,若船恰好到达正对岸,则2142cos ===船水v v α,则α=60° 故答案为:s m /4 60° 11、【答案】垂直 50 12、【答案】420【解析】当小船的合速度垂直于河岸运动时位移最小,最小值为420m 。
13、【答案】21222221t t t -=νν【解析】设小河河宽为d ,则当船以最短的时间渡河时: t 1=1v d…… ①当船以最短的位移渡河时 t 2=2221v v d -……②得:21222221t t t -=νν 14、【答案】(1)应沿垂直于河岸的方向划船 v L t =1,221u v vL d += (2)①当v >u 时,划船的速度方向与河岸夹α角偏向上游方向vuarccos =α,合速度方向垂直于河岸。
222uv L t -=,d 2=L②当v <u 时,划船的速度方向与河岸夹β角偏向上游方向vLud u v v Lu t vu ='-='=2222,,arccos β 【解析】(1)为使渡河时间最短,必须使垂直于河岸的分速度尽可能大,即应沿 垂直于河岸的方向划船,此时所渡河经历的时间和通过的路程分别为vL t =1,22221)(u v v L v L u L d +=+= (2)为使渡河路程最短,必须使船的合速度方向尽可能垂直于河岸。
分如下两种情况讨论:①当v >u 时,划船的速度方向与河岸夹α角偏向上游方向,合速度方向垂直于河岸。
于是有vcos α=uL=vsin αt 2 d 2=L由此解得:vu arccos =α,222uv L t -=,d 2=L②当v <u 时,划船的速度方向与河岸夹β角偏向上游方向,于是又有ββθθsin )sin(sin 合v u v =+=,uv )sin(sin βθθ+= 为使渡河路程最短,必须使船的合速度方向跟河岸的夹角最大,sin(β+θ)=π/2 , 即v 垂直于v 合ucos β=v22222,cos t u v d L d '⋅-='='β 由此解 得:v Lud uv v Lu t v u ='-='=2222,,arccos β。