绕定轴转动刚体的动能 动能定理
刚体绕定轴转动的动能定理

刚体绕定轴转动的动能定理1. 引言刚体是指其内部各点之间的相对位置关系在运动过程中不会发生改变的物体。
刚体绕定轴转动是指刚体在固定轴线上做圆周运动的情况。
动能定理是物理学中的一条重要定理,描述了物体运动过程中动能的变化与外力做功之间的关系。
本文将对刚体绕定轴转动的动能定理进行全面详细、完整且深入的阐述。
2. 刚体绕定轴转动在刚体绕定轴转动的情况下,我们需要考虑刚体的转动惯量和角速度等因素。
转动惯量是描述刚体对转动运动抵抗程度的物理量,通常用符号I表示。
角速度是描述刚体旋转快慢程度的物理量,通常用符号ω表示。
根据牛顿第二定律和角动量守恒定律,我们可以得到刚体绕定轴转动时的基本方程:τ=Iα其中,τ表示作用于刚体上产生转矩(力矩)大小,α表示角加速度。
刚体绕定轴转动的运动规律与作用在刚体上的转矩和转动惯量有关。
3. 动能定理的推导根据刚体绕定轴转动的基本方程,我们可以推导出刚体绕定轴转动的动能定理。
我们来考虑刚体上某一质点的动能T。
由于刚体上各质点都在绕着同一个轴旋转,因此它们具有相同的角速度ω。
设某一质点到轴心的距离为r,则该质点具有的线速度v为v=rω。
该质点的动能T′可以表示为:T′=12mv2=12m(rω)2=12mr2ω2其中,m表示质点的质量。
由于刚体是由众多质点组成的,因此整个刚体的动能T 可以表示为所有质点动能之和:T=∑Tni=1′i其中,n表示刚体上质点的总数。
根据牛顿第二定律和角动量守恒定律,我们知道刚体绕定轴转动时转动惯量I和角加速度α之间存在关系τ=Iα。
将该关系代入动能的表达式中,得到:T=12Iω2其中,ω表示整个刚体的角速度。
刚体绕定轴转动的动能可以表示为12Iω2。
这就是刚体绕定轴转动的动能定理。
4. 动能定理的物理意义刚体绕定轴转动的动能定理描述了刚体在转动过程中动能的变化与外力做功之间的关系。
根据动能定理,我们可以得出以下物理结论:1.外力对刚体做功会改变刚体的动能。
3.3刚体定轴转动中的功与能

解:以 ω 和 ω 分别表示冲孔前后的飞轮的角速度
1 2
ω = (1 − 0 .2 )ω = 0.8ω
2 1
2
2
2πn ω = = 8πrad ⋅ s 60
1 1
−1
1
1 1 1 由转动动能定理 A = Jω − Jω = Jω (0 .8 − 1) 2 2 2 1 又 J = mr A = −5 .45 × 10 J 2
课后习题 3-8
θ1
θ2
二、刚体的转动动能和重力势能
1.绕定轴转动刚体的动能 绕定轴转动刚体的动能 绕定轴转动刚体的
∆ ,∆ ,⋅⋅⋅,∆ ,⋅⋅⋅,∆ m m m m r r r r r, r ,⋅⋅⋅, r ⋅⋅⋅, r r r r r v ,v ,⋅⋅⋅,v ,⋅⋅⋅,v
1 2 i
1 2 i, N
N
Q = rω v 1 E= ∆ v m 2
2 2 2
1 1
2
3
质量M的圆盘滑轮可绕通过盘心的水平轴转 例3-7半径R质量 的圆盘滑轮可绕通过盘心的水平轴转 半径 质量 滑轮上绕有轻绳,绳的一端悬挂质量为m的物体 的物体。 动,滑轮上绕有轻绳,绳的一端悬挂质量为 的物体。 当物体从静止下降距离h时 物体速度是多少? 当物体从静止下降距离 时,物体速度是多少? 以滑轮、 解:以滑轮、物体和地球组成系统为研究对 由于只有保守力做功,故机械能守恒。 象。由于只有保守力做功,故机械能守恒。 设终态时重力势能为零 初态:动能为零,重力势能为mgh 初态:动能为零,重力势能为 末态: 末态:动能包括滑轮转动动能和物体平动动能 由机械能守恒
i i
i i i
2
1
2
i
N
刚体的能量定轴转动的动能定理

三、转动动能
刚体绕定轴以角速度旋转 刚体的动能应为各质元动能之 和为此将刚体分割成很多很小的
r i vi mi
M
质元 m1, m2 mi mn
r 任取一质元 mi 距转轴 i ,则该质元动能:
mivi2 / 2 mi (ri)2 / 2 miri22 / 2
故刚体的转动动能:
n
Ek Ek
在一微小过程中 力矩作的功
dA Md (1)
在一微小过程中
XX 力1矩O1作的2功2 M M
dA Md (1)
在考虑一个有限过程,设
在力矩作用下,刚体的角
位置由 功
1
2
则力矩的
A dA 2 Md (2) 1
力矩的功反映力矩对空间的积累作用,力矩越 大,在空间转过的角度越大,作的功就越大。 这种力矩对空间的积累作用的规律是什么呢?
/2 mg L cosd
0
2
mgL / 2
N
YZ
XO
r
mg
依动能定理
A力矩
1 2
J2
1 2
J02
A力矩
mg
L 2
mg
L 2
1 2
J
2
0
mgL J
mgL 1 mL2
3g L
3
XX
1
1 O
2
2
2 1
Md
1 2
J
2 2
1 2
J12
M
M
例)设一细杆的质量为m,长为L,一端支以
枢轴而能自由旋转,设此杆自水平静止释放。
求: 当杆过铅直位置时的角速度:
N
YZ
XO
r
mg
绕定轴转动刚体的动能__动能定理

质点系动力学:刚体运动规律及转动动能定理

质点系动力学在物理学中,质点系动力学是研究物体间相互作用的力以及物体运动轨迹的学科。
本文将讨论质点系动力学中的一个重要概念:刚体运动规律及转动动能定理。
刚体运动规律刚体是一个比较理想化的物理模型,假设物体的形状和大小在运动过程中保持不变。
根据刚体运动规律,刚体在外力作用下会发生运动,根据牛顿第二定律,刚体的运动状态取决于作用在刚体上的合力。
刚体的运动可分为平动和旋转两种类型。
在平动运动中,刚体整体沿直线或曲线运动;而在旋转运动中,刚体绕固定轴线旋转。
根据刚体运动规律,刚体的运动轨迹可以用运动学方程描述,运动方程中包含了速度、加速度等因素。
转动动能定理转动动能定理是描述刚体绕固定轴线旋转动能变化的重要定理。
根据转动动能定理,刚体旋转过程中的动能变化等于作用在刚体上的转动力做功的总和。
假设有一个质量为m、半径为r的刚体,绕垂直轴线(转动惯量为I)旋转。
根据转动动能定理,刚体的转动动能变化ΔK等于转动力做的功W。
转动动能的变化由以下公式给出:ΔK = W = τθ其中,τ为转动力矩,θ为转动角度。
转动角度与角速度的关系为θ = ωt,因此转动动能变化ΔK还可以表示为ΔK = τωt。
结论通过以上讨论,我们了解了质点系动力学中的刚体运动规律以及转动动能定理。
刚体运动规律可以帮助我们理解物体在运动过程中的轨迹和状态变化,而转动动能定理则为解释物体旋转运动提供了重要定量关系。
深入研究质点系动力学中的这些概念,有助于我们更好地理解物体的运动规律和相互作用过程。
在质点系动力学的研究中,刚体运动规律及转动动能定理是重要的基础知识,对于进一步探索物体间相互作用和运动规律具有重要意义。
希望本文的介绍能够帮助读者更好地理解质点系动力学中的这一部分内容,激发对物理学的兴趣和探索。
大学物理3_4 刚体绕定轴转动的动能定理

3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
例3 留声机的转盘绕通过盘心垂直盘面的轴以角速度 作匀速转动.放上唱片后,唱片将在摩擦力作用下随转盘一 起转动.设唱片的半径为 R 、质量为 m ,它与转盘间的摩 擦系数为 .求(1)唱片与转盘间的摩擦力矩;(2)唱片达到 角速度 需要多长时间;(3)在这段时间内,转盘的驱动力 矩作了多少功? 解 (1)如图所示,在唱片上取长为 dl 宽为 dr 的面积元 dS dldr ,该面 积元所受的摩擦力为:
1 2 1 2 1 1 1 2 2 2 2 W J J0 mR 0 mR 2 2 2 2 4
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 例3-11 一长为 l , 质量为 m0 的均质细竿可绕支点O自 由转动 . 一质量为 m、速率为 v0 的子弹射入竿内一端, 使竿的偏转角为30º 问子弹的初速率为多少 ? .
加速度
力 质量
dr v dt dv a dt
F
d 角速度 dt d 角加速度 dt
力矩
M
m
转动惯量 J
动量
P mv
角动量
L J
r
dm
2
3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
质点运动规律与刚体定轴转动的规律对照 质点的平动 刚体的定轴转动
EPB EkB EPA EkA
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 1 2 4 2 2 J J1 J 2 ml ml ml 3 3
取A点的重力势能为零,即 则有 而
EPA 0
刚体的能量,定轴转动的动能定理

yi
MgyC
M
g
mi
三、转动动能
刚体绕定轴以角速度旋转 刚体的动能应为各质元动能之 和为此将刚体分割成很多很小的 质元 m , m m m
1 2 i
2 i i 2
ri M
vi m
i
1 2 2 2 E mi ri J /2 k E k i 1 2 n 1 2 2 1 Ek lim mi ri ( r 2 dm) 2 m 0 2 2 mghC mvC J 2 2
四、力矩的功、定轴转动的动能定理 设有一外力 F 作用在 + d ds 刚体上,绕 O轴作定轴 转动( F 在垂直于轴 O 的平面内)。 M M 在时间 内刚体角位移为 dt d 力 F 作的功:
F
r
ds rd dA F ds F sin rd Md
故刚体的转动动能:
n
i
m v / 2 mi (ri ) / 2 mi ri / 2
2 2
任取一质元 mi 距转轴 ri ,则该质元动能:
n
对既有平动又有转动的刚体的动能、机械能又 如何呢?
势能零点
1 2 2 Ek 1 mvC J m、J C 2 2 C vC
其平动动能应为各质元动能和。
二、刚体的重力势能 任取一质元其势能为 m gy i i (以O为参考点)
Y
M
vC
C mi
E p mi gyi
m y M
i
i
yC
结论:刚体的重力势能决定于刚体质心距势能 X 零点的高度,与刚体的方位无关。即计算刚体 O 的重力势能只要把刚体的质量全部集中于质心 处,当一个质点处理即可(无论平动或转动)
3.6 转动动能及转动动能定理

转动动能及转动动能定理
质点转动动能及刚体定轴转动动能
22
1i i i k m E v ∆=∑22221)(21ωωJ r m i i i =∆=∑质点转动动能: 刚体定轴 转动动能: ⎰=21d θθθM W θωθθd d d ⎰=21t
J ⎰=21ωωωωd J 合外力矩对绕定轴转动的刚体所作
的功等于刚体转动动能的增加量。
21222
121d 21ωωθθθJ J M W -==⎰
已知:一长为l , 质量为m 的均匀细杆,用摩擦可忽略的柱铰链悬挂于A 处,欲使静止的杆AB自竖直位置恰好能转至水平位置,
求:必须给杆的最小初角速度。
解:设必须给杆的最小初角速度为 则杆的初动能为: 2
121ωJ E k =达到水平位置杆的末动能为: 0
1=k E 初末过程中重力矩做的功为: 2
l
mg W -=2
21
02ωJ l
mg -=-23
1ml J =l
g 30=ω⇒0
ω
已知:一质量为 ,半径为 R 的圆盘,可绕一垂直通过盘心的 无摩擦的水平轴转动。
圆盘上绕有轻绳,一端挂质量为 m 的物体。
问:物体在静止下落高度 h 时,
其速度的大小为多少?
设绳的质量忽略不计。
'm
22211mgh mv J 22v
1
,J m R r 22mgh
v m m 2
ωω=+'==='
+解:
Thanks!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·
R m
1 1 2 2 v gh 0 = JOω + m −m 2 2 1 2 JO = M R v = Rω 2
Ep = 0
h
v0=0
4m gh v= 2m+ M
例 弹簧与均质杆相连 把杆拉至水平 弹簧与均质杆相连,把杆拉至水平 已知弹簧的原长 l0=20cm, OO1=40cm, k =4.9N/m 杆长 l=30cm, m =98kg 求 杆运动到竖直位置时的角速度 解 研究对象:杆和弹簧 研究对象 杆和弹簧 受力分析: 受力分析 N不作功 不作功 各力的做功情况: 各力的做功情况 F和mg作功 和 作功 O
λ1 =30cm
λ2 =10cm
1 2 JO1 = ml 3
1 2 1 1 2 1 kλ 1 = mgl + kλ 2+ Jω 2 2 2 2 2
ω = 5.72 rad / s
例 图示装置可用来测量物体的转动惯量。待测物体A装在转 图示装置可用来测量物体的转动惯量。待测物体 装在转 动架上,转轴 上装一半径为 的轻鼓轮, 动架上,转轴Z上装一半径为r 的轻鼓轮,绳的一端缠绕 在鼓轮上, 的重物。 在鼓轮上,另一端绕过定滑轮悬挂一质量为 m 的重物。 重物下落时, 轴转动。 重物下落时,由绳带动被测物体 A 绕 Z 轴转动。今测得 重物由静止下落一段距离 h,所用时间为t, 物体A对 轴的转动惯量Jz。 求 物体 对Z 轴的转动惯量 。设绳子 不可伸缩,绳子、 不可伸缩,绳子、各轮质量及轮轴 处的摩擦力矩忽略不计。 处的摩擦力矩忽略不计。 解 分析 机械能) 分析(机械能 机械能
•
l,m
Ep = 0
B
θ
l Ep2 = −m sinθ g Ep1 = 0 N 4 • 1 O Ek1 = 0 , Ek2 = JOω2, • 2 1 l 2 JO = JC +m 2 d JOω −m sinθ = 0 g mg 2 4 6gsinθ 1 2 l 2 7 2 ω =2 JO = m +m ) = m l ( l 7l 12 4 48
ω
例 一匀质圆盘 忽略轴处的摩擦力, 一匀质圆盘,忽略轴处的摩擦力 忽略轴处的摩擦力 求 物体 下落高度h 时的速度 物体m下落高度 下落高度 解 选(滑轮、物体、地球) 滑轮、物体、地球 滑轮 为研究系统,只有重力作功, 为研究系统,只有重力作功, E守恒。 守恒。 守恒
绳子不计质量且不伸长
M 定轴O 定轴
(
)
二. 力矩的功
力的累积过程——力矩的空间累积效应 力矩的空间累积效应 力的累积过程
•
功的定义
r r dA = F ⋅ dr = Fcosθds
= Frcosθdθ
ω
O
dθ
= F rdθ τ
=M θ d
力矩作功的微分形式 力矩作功的微分形式
r r dr r' r .θ r P
v F
•
对一有限过程
θ2
积分形式) A = ∫ M θ (积分形式 d 积分形式
θ1
若M=C
A=M(θ2 −θ1)
讨论 (1) 合力矩的功 A=
(2) 力矩的功就是力的功。 力矩的功就是力的功。
∫ ∑Midθ = ∑∫ θ θ i i
1
θ2
θ2
1
Midθ = ∑A i
i
(3) 内力矩作功之和为零。 内力矩作功之和为零。
取 ∆ i ,其动能为 m 其动能为
r vi
P
• ∆mi
1 2 1 Eki = ∆mvi = ∆mr2ω2 i i i 2 2
刚体的总动能
各质量元速度不同, 各质量元速度不同, 但角速度相同
结论 绕定轴转动刚体的动能等于刚体对转轴的转动惯 量与其角速度平方乘积的一半
1 1 1 2 2 2 2= J 2 ω Ek = ∑Eki = ∑ ∆mr ω = ∑ mr ω ∆ ii i i 2 2 2
此题也可用机械能守恒定律方便求解
mg
例 均匀直杆质量 m,长为 。初始水平静止,轴光滑,AO =l /4 ,长为l。初始水平静止,轴光滑, 求 杆下摆 角后的角速度ω 杆下摆θ角后的角速度 角后的角速度 解 选(杆+地球 系统,只有 地球)系统 杆 地球 系统, 重力作功,E守恒。 重力作功, 守恒 A O
θ2
ω2
•
刚体的机械能 刚体重力势能
• ∆m i
E = EK + EP
Ep = ∑∆mgh i i
C•
∑∆mihi = mghC =m g
m
质心的势能
h C
h i EP = 0
1 2 刚体的 gh 机械能 E = 2 Jω +m C
•
刚体的机械能守恒
1 2 Jω +m C = C gh 2
对于包括刚体的系统, 对于包括刚体的系统,功能原理和机械能守恒定律仍成立
dh =v, = a dv dt dt m 2 gr a= 2 =常 量 m + JZ r
m 2 2 1at2 = 1 gr t h= 2 2m 2 + JZ r
若滑轮质量不可忽略,怎样? 若滑轮质量不可忽略,怎样?
gt2 JZ = m 2( −1 r ) 2h
三. 转动动能定理 —— 力矩功的效果 dω 1 2 d dA= M θ = (J )dθ = Jω ω = d( Jω ) d dt 2
对于一有限过程
1 2 1 2 1 2 A = ∫ dA = ∫ d( Jω ) = Jω2 − Jω = ∆Ek 1 θ1 ω 2 2 1 2
绕定轴转动刚体在任一过程中动能的增量, 绕定轴转动刚体在任一过程中动能的增量,等于在该过 程中作用在刚体上所有外力所作功的总和。 程中作用在刚体上所有外力所作功的总和。这就是绕定 轴转动刚体的—— ——动能定理 轴转动刚体的——动能定理
的均匀细直棒, 例 一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动, 面内转动,初始时它在水平位置 求 它由此下摆 θ 角时的 ω
Байду номын сангаас
1 解 M = m cosθ gl 2
由动能定理
θ θ
O
•
m
l
x
θ
•C
l A = ∫ M θ = ∫ m cosθdθ d g 0 0 2 1 2 lm g 1 2 l = sinθ −0= Jω −0 J = m 3 2 2 3gsinθ 3gsinθ 1/ 2 2 ω = ω =( ) l l
EP1 = 0 Ek1 = 0
EP2 = −m gh
Ek2 = mv2 / 2+ JZω2 / 2
=v2(mr2 + JZ ) / (2r2)
机械能守恒
− m +v (m + JZ ) / (2r ) = 0 gh r
2 2 2
v2 (m 2 + J ) m = 2 r gh Z 2r
dh = 2 dv 1 (m 2 + J ) m g v r 2 Z dt dt 2r
§6.2 绕定轴转动刚体的动能 动能定理
一. 转动动能 设系统包括有 N 个质量元 z ∆m ,∆m ,......., ∆m,......, ∆mN 1 2 i ω rr r r r ,r ,.....r,.....rN 1 2 i r r r r r ri O v1,v2 ,......,vi ,......vN
但都是保守力作功,所以机械能守恒 但都是保守力作功 所以机械能守恒 选定势能的零参考点 原长,水平位置 原长 水平位置 O1
N
F
mg
水平位置: 水平位置
EP1 = 0
1 P 竖直位置: 竖直位置 E 1 = mgl 2 1 E杆转 = Jω 2 2
所以
1 2 E弹 = kλ 1 2 1 2 E弹 = kλ 2 2