不等式基本解法

合集下载

推导不等式的基本性质与解法

推导不等式的基本性质与解法

推导不等式的基本性质与解法不等式是数学中常见的一种关系表达式,它描述了两个数之间的大小关系。

推导不等式的基本性质与解法是数学学习的重要内容之一。

本文将介绍不等式的基本性质和解法,并通过一些例子来加深理解。

一、不等式的基本性质不等式有以下几个基本性质:1. 传递性:如果 a > b 且 b > c,则 a > c。

这个性质意味着不等式的大小关系具有传递性。

2. 反对称性:如果 a > b 且 b > a,则 a = b。

这个性质说明不等式的大小关系是自反的。

3. 加法性:如果 a > b,则 a + c > b + c。

减法性:如果 a > b,则 a -c > b - c。

这两个性质表示不等式在加减运算下仍然成立。

4. 正数性:如果 a > b 且 c > 0,则 ac > bc。

负数性:如果 a > b 且 c < 0,则 ac < bc。

这两个性质说明不等式在乘法运算下仍然成立。

5. 整除性:如果 a > b 且 c > 1,则 ac > bc。

也就是说,不等式的大小关系在整除运算下仍然成立。

二、不等式的解法解不等式的基本方法有以下几种:1. 求解线性不等式:对于形如 ax + b > c 或 ax + b < c 的线性不等式,可以通过移项、分析符号的变化来求解。

例如,解不等式 3x - 7 > 8:首先将常数项移项,得到 3x > 8 + 7,即 3x > 15。

然后将系数约分,得到 x > 5。

因此,不等式 3x - 7 > 8 的解为 x > 5。

2. 求解二次不等式:对于形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0的二次不等式,可以通过判别式和求解根的方法来求解。

例如,解不等式 x^2 - 4x - 5 > 0:首先计算判别式,得到 b^2 - 4ac = (-4)^2 - 4*1*(-5) = 36。

解不等式的方法

解不等式的方法

解不等式的方法解不等式是代数学中的重要内容,它在数学建模、优化问题、函数图像等方面都有着重要的应用。

在解不等式的过程中,我们需要掌握一些基本的方法和技巧,下面我将为大家介绍几种解不等式的常用方法。

一、一元一次不等式的解法。

对于一元一次不等式ax+b>c,我们可以按照以下步骤来解题:1. 将不等式转化为等价的形式,即ax+b-c>0;2. 根据a的正负情况进行讨论:a. 若a>0,则不等式的解集为x>-b/a+c;b. 若a<0,则不等式的解集为x<-b/a+c。

二、一元二次不等式的解法。

对于一元二次不等式ax^2+bx+c>0,我们可以按照以下步骤来解题:1. 求出二次函数的判别式Δ=b^2-4ac的值;2. 根据Δ的正负情况进行讨论:a. 若Δ>0,则二次函数有两个不等实根,即x的取值范围为x<x1或x>x2;b. 若Δ=0,则二次函数有两个相等的实根,即x的取值范围为x=x1=x2;c. 若Δ<0,则二次函数无实根,即不等式无解。

三、绝对值不等式的解法。

对于绝对值不等式|ax+b|<c,我们可以按照以下步骤来解题:1. 分情况讨论:a. 若a>0,则不等式的解集为-b<c<ax+b;b. 若a<0,则不等式的解集为-b<c<-ax-b。

四、分式不等式的解法。

对于分式不等式f(x)>0,我们可以按照以下步骤来解题:1. 求出分式的定义域;2. 求出分式的零点;3. 根据零点的正负情况进行讨论:a. 若零点为实数且大于0,则不等式的解集为定义域内使分式大于0的实数;b. 若零点为实数且小于0,则不等式的解集为空集。

五、不等式组的解法。

对于不等式组{f(x)>0, g(x)>0},我们可以按照以下步骤来解题:1. 求出每个不等式的解集;2. 将每个不等式的解集取交集,得到不等式组的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

常见不等式通用解法

常见不等式通用解法

常见不等式通用解法总结一、基础的一元二次不等式,可化为类似一元二次不等式的不等式① 基础一元二次不等式 如2x 2 x 60,x 2 2x 1 0 ,对于这样能够直接配方或者因式分解的基础一元次不等式,重点关注 解区间的“形状”。

当二次项系数大于 0,不等号为小于(或小于等于号)时,解区间为两根的中间。

3又如x 2 ax 4-,令t x 2,再对a 进行分类讨论来确定不等式的解集2③含参数的一元二次不等式 解法步骤总结:序号步骤1首先判定二次项系数是否为0,为0则化为一元一次不等式,再分类讨论 2二次项系数非0,将其化为正的,讨论 判别式的正负性,从而确定不等式的解 集3若可以直接看出两根,或二次式可以因 式分解,则无需讨论判别式,直接根据 不同的参数值比较两根大小4综上,写出解集如不等式x 2 ax 1 0,首先发现二次项系数大于 0,而且此不等式无法直接看出两根,所以,讨论a 2 4的正负性即可。

0,R以只需要判定a 2和a 的大小即可。

a 0or a 1,{x R| x a} 此不等式的解集为0 a 1,( ,a 2) (a,) 2a 0or a 1,(, a) (a ,)又如不等式ax 2 2(a 1)x 4 0 ,注意:有些同学发现其可以因式分解,就直接写成2x x 60的解为(当二次项系数大于|,2)0,不等号为大于(或大于等于号)时,解区间为两根的两边。

2x 10的解为(,1 . 2) (1 .2,)当二次项系数小于②可化为类似一元二次不等式的不等式(换元) 如3x 1 x 的范围 0时,化成二次项系数大于0的情况考虑。

9x 2,令t 3x ,原不等式就变为t 23t 2 0,再算出t 的范围,进而算出此不等式的解集为0,{x 0,(R|x 自又如不等式x 2 (a 2 a )x a 30,发现其可以通过因式分解化为(x a)(x a 2)0,所)(x 1)2(x 2)(x 3)(x 4) 0 的示意图见下。

不等式的解法与应用

不等式的解法与应用

不等式的解法与应用不等式是数学中常见的一个概念,它描述了数值之间的关系。

不等式的解法与应用在实际问题中有着广泛的应用。

本文将介绍不等式的基本解法,并探讨在数学问题、自然科学和社会科学中的应用。

一、不等式的基本解法不等式的解法通常有两种方法:图像法和代入法。

1. 图像法图像法是通过绘制函数的图像来求解不等式。

以一元一次不等式为例,我们可以将其表示为y=ax+b的形式。

首先,我们将这个不等式转化为等式:y=ax+b。

然后,我们绘制这个函数的图像。

最后,根据题目要求,找出符合不等式的y的范围。

2. 代入法代入法是通过将一些实际数值代入不等式中,来判断不等式的真假。

以一元二次不等式为例,我们可以将其表示为ax^2+bx+c>0的形式。

我们可以将一些x的实际数值代入该不等式,计算出相应的y值,然后判断y的正负性,从而得出不等式的解集。

二、数学问题中的不等式应用不等式在数学问题中有着广泛的应用,包括代数、几何和概率统计等方面。

1. 代数在代数方面,不等式的应用广泛存在于线性规划、优化和函数的性质研究等领域。

例如,在线性规划中,我们需要找到满足一定约束条件下的最优解。

这些约束条件通常可以用不等式描述。

在函数性质研究中,我们常常通过分析不等式解集的特点来研究函数的单调性、极值点和零点等性质。

2. 几何不等式在几何中也有着广泛的应用。

例如,在三角形的研究中,我们可以通过不等式来判断三角形的形状和性质。

例如,对于一个三角形,我们可以使用三角不等式来判断是否为锐角三角形、直角三角形或钝角三角形。

三、自然科学中的不等式应用不等式在自然科学中也有着重要的应用,包括物理学、化学和生物学等领域。

1. 物理学在物理学中,不等式被广泛应用于描述力学系统、热力学系统和电磁系统等的性质。

例如,在力学中,我们可以使用不等式来描述物体的运动范围和速度限制。

在热力学中,不等式可以用来描述系统的热平衡条件。

在电磁学中,不等式可以用来描述电荷和电流之间的关系。

不等式的基本性质与解法

不等式的基本性质与解法

不等式的基本性质与解法不等式在数学中起着重要的作用,它描述了数值之间的大小关系。

解不等式是解决问题、推导结论的常用方法之一。

本文将介绍不等式的基本性质与解法,帮助读者更好地理解和应用不等式。

一、不等式的基本性质1.1 传递性:若a>b,b>c,则a>c。

这个性质说明了不等式在数值之间的传递性,即如果一个数大于另一个数,而后者又大于第三个数,则第一个数一定大于第三个数。

1.2 加法性:若a>b,则a+c>b+c。

这个性质说明了不等式在两边同时加上一个相同的数时,不等号的方向不变。

1.3 减法性:若a>b,则a-c>b-c。

与加法性类似,减法性说明了不等式在两边同时减去一个相同的数时,不等号的方向不变。

1.4 乘法性:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。

乘法性说明了不等式在两边同时乘以一个正数或负数时,不等号的方向会发生变化。

1.5 除法性:若a>b且c>0,则a/c>b/c;若a>b且c<0,则a/c<b/c。

除法性说明了不等式在两边同时除以一个正数或负数时,不等号的方向会发生变化。

二、不等式的解法2.1 图解法:对于一元一次不等式,可以通过图像来解决。

首先将不等式转换为等式,画出等式对应的直线,然后根据不等号的方向确定直线上的某一边的解集。

这种方法适用于简单的线性不等式。

2.2 求解法:对于更复杂的不等式,通常需要应用一些不等式性质和运算法则。

例如,可以通过加、减、乘、除等操作将不等式化简为简单的形式,再求解。

2.3 分类讨论法:对于一元高次不等式,可以将不等式中的变量分别取不同的值,然后根据不等式的性质进行分类讨论。

通过逐个排除不符合条件的情况,最终得到解集。

2.4 绝对值法:对于含有绝对值的不等式,可以通过拆分绝对值的定义,建立不等式的多种情况,然后分别求解。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。

不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。

解决这种问题需要灵活运用数学知识和技巧。

本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。

一、置换法。

这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。

如果成立,则不等式恒成立。

对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。

由于平方数是非负数,所以不等式始终成立。

二、加法法则。

这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。

由于x的取值范围不限制,所以不等式恒成立。

三、减法法则。

与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。

由于x的取值范围不限制,所以不等式恒成立。

四、乘法法则。

这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。

由于x的取值范围不限制,所以不等式恒成立。

五、除法法则。

与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。

由于x的取值范围不限制,所以不等式恒成立。

六、平方法则。

这种方法是通过平方运算来改变不等式的符号。

对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种表示数值关系的方法。

解不等式就是找出使不等式成立的数值范围。

在解不等式时,可以通过几种常见的方法来确定解集。

一、图像法图像法适用于简单的一元一次不等式。

通过将不等式转化为直线的形式,并在数轴上画出对应的线段,可以直观地找到满足不等式的数值范围。

例如,对于不等式x + 3 > 2,我们可以将其转化为x > -1的形式。

在数轴上,我们可以画出一个开口向右的箭头,箭头的起点为-1,表示解集为大于-1的所有实数。

二、代入法代入法是一种常见的解不等式的方法,特别适用于含有绝对值的不等式。

通过将可能的解代入到不等式中,验证是否满足不等式的关系,可以逐步缩小解集。

例如,对于不等式|2x - 3| < 5,我们可以先将其拆分成两个不等式:2x - 3 < 5和2x - 3 > -5。

然后分别解这两个不等式,可以得到解集为-1 < x < 4。

三、性质法性质法是解不等式的一种常用方法,通过利用不等式的性质和常用不等式的性质,可以快速求解不等式。

例如,对于不等式x^2 - 4x > 3,我们可以将其转化为x^2 - 4x - 3 > 0的形式。

通过因式分解或配方法,可以求得该不等式的根为x > 3或x < 1。

然后,结合二次函数的凹凸性质,可以得到解集为x < 1或x > 3。

四、区间法区间法是一种用于求解一元二次不等式的常用方法。

通过将一元二次不等式转化为标准形式,然后结合图像法和区间划分的方法,可以求解出不等式的解集。

例如,对于不等式x^2 - 5x + 6 > 0,可以将其转化为(x - 2)(x - 3) > 0的形式。

通过将x^2 - 5x + 6 = 0的根-1, 2, 3绘制在数轴上,并观察函数的正负性,可以得到解集为-1 < x < 2或x > 3。

综上所述,解不等式的方法有很多种,包括图像法、代入法、性质法和区间法等。

基本不等式的解法高中数学

基本不等式的解法高中数学

基本不等式的解法高中数学基本不等式是数学中常见且重要的一种不等式,它可以帮助我们解决很多问题。

在解决问题时,我们经常会遇到需要比较大小关系的情况,而基本不等式提供了一种有效的方法。

我们来看一下什么是基本不等式。

基本不等式是指对于任意实数a 和b,有以下三个基本不等式成立:1. 加减法法则:如果a>b,则对于任意实数c,有a+c>b+c,a-c>b-c成立。

2. 乘法法则:如果a>b且c>0,则ac>bc成立;如果a>b且c<0,则ac<bc成立。

3. 除法法则:如果a>b且c>0,则a/c>b/c成立;如果a>b且c<0,则a/c<b/c成立。

基本不等式的解法主要有两种常见的方法:代入法和变形法。

我们来介绍代入法。

代入法是指将不等式中的某个变量用其他已知条件表示出来,然后代入到不等式中进行比较。

这种方法常用于求两个变量之间的大小关系。

例如,我们要证明当x>0时,有x^2>0成立。

我们可以将x表示为x=√(x^2),然后将其代入到不等式中,得到(√(x^2))^2>x^2,即x^2>x^2,显然成立。

我们来介绍变形法。

变形法是指通过对不等式进行变形,使其更易于比较大小关系。

这种方法常用于求不等式的最值或者一元函数的单调性。

例如,我们要证明当x>0时,有x+1/x>2成立。

我们可以通过变形将不等式转化为x^2-2x+1>0,然后求出该二次函数的判别式,发现其大于零,即该二次函数的图像在x轴上方,从而得到不等式成立。

基本不等式还可以用于求解一些实际问题。

例如,我们要找到一个数x,使得其与另一个已知数的和最小。

我们可以设所求数为x,已知数为a,根据基本不等式的加减法法则,有x+a>x,即a>0。

因此,我们可以得出结论,所求数与已知数的和最小值为0。

基本不等式在数学中的应用非常广泛,不仅可以用于解决代数问题,还可以用于解决几何问题、概率问题等。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,描述了数值之间的大小关系。

它是由不等号(例如>, <, ≥, ≤, ≠)连接的两个数或表达式组成的。

解不等式就是找出满足该不等式的所有数值。

在解不等式的过程中,需要考虑不等式中的未知数、常数以及可能存在的绝对值、平方根等特殊情况。

以下是几种常见的不等式解法方法:一、加减法解不等式若不等式中的未知数带有符号,并且仅涉及到加减法运算,则可以通过移项的方式解不等式。

具体步骤如下:1. 将所有含有未知数的项放在一边,将常数放在另一边,确保未知数的系数为正数;2. 合并同类项;3. 如果未知数系数为负数,将不等号反转;4. 如果不等式两侧都含有未知数,则根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式2x + 5 < 7 - x。

1. 将所有含有未知数的项放在一边,将常数放在另一边,得到2x + x < 7 - 5;2. 合并同类项,得到3x < 2;3. 未知数系数为正数,不需要改变不等号;4. 进行筛选,得到x < 2/3;5. 最后化简,得到解集{x | x < 2/3}。

二、乘除法解不等式若不等式中的未知数带有符号,并且仅涉及到乘除法运算,则可以通过乘除法的逆运算解不等式。

具体步骤如下:1. 将不等式中的未知数项移动一侧,将常数项移动到另一侧;2. 如果是乘法,则将未知数系数为正数;3. 如果是除法,则需考虑被除数符号与除数符号的关系;4. 根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式3x - 4 > 2x + 1。

1. 将未知数项移动到一侧,将常数项移动到另一侧,得到3x - 2x > 1 + 4;2. 未知数系数为正数,不需要改变不等号;3. 进行筛选,得到x > 5;4. 最后化简,得到解集{x | x > 5}。

三、绝对值不等式的解法对于含有绝对值的不等式,需要分情况进行讨论。

基本不等式解法

基本不等式解法

基本不等式解法基本不等式是数学中常用的解题方法之一,通过不等式的性质和变形,可以推导出一些有用的结论,帮助我们解决各种实际问题。

在本文中,我们将介绍基本不等式的一些常见形式和解题技巧。

一、基本不等式的定义基本不等式是指在一定条件下,不等式中的变量所满足的最小或最大值。

基本不等式可以用来描述实际问题中的约束条件,从而得到最优解。

二、基本不等式的性质1. 加法性质:若a>b,则a+c>b+c。

2. 减法性质:若a>b,则a-c>b-c。

3. 乘法性质:若a>b,且c>0,则ac>bc;若a>b,且c<0,则ac<bc。

4. 除法性质:若a>b,且c>0,则a/c>b/c;若a>b,且c<0,则a/c<b/c。

三、基本不等式的常见形式1. 一元一次不等式:形如ax+b>0,其中a和b是已知数,x是未知数。

2. 一元二次不等式:形如ax^2+bx+c>0,其中a、b和c是已知数,x是未知数。

3. 分式不等式:形如f(x)/g(x)>0,其中f(x)和g(x)是已知函数,x 是未知数。

4. 绝对值不等式:形如|f(x)|>g(x),其中f(x)和g(x)是已知函数,x 是未知数。

四、基本不等式的解题方法1. 一元一次不等式的解法:1) 将不等式化简为ax>0的形式,确定a的正负性。

2) 根据a的正负性确定解集的范围。

2. 一元二次不等式的解法:1) 将不等式化简为ax^2+bx+c>0的形式,确定a的正负性。

2) 根据a的正负性和判别式的值,确定解集的范围。

3. 分式不等式的解法:1) 找出分子和分母的零点,并确定它们的正负性。

2) 根据分子和分母的正负性确定解集的范围。

4. 绝对值不等式的解法:1) 将不等式化简为两个不等式,并分别求解。

2) 将两个不等式的解集合并得到最终的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法
基本不等式是数学中一种重要的概念,它可以帮助我们解决许多复杂的问题。

基本不等式的公式有许多,其中最常用的是加法不等式、乘法不等式、减法不等式和比较不等式。

加法不等式的公式是:若a、b是任意实数,则有a+b≥0。

加法不等式的解法是:若a、b是
任意实数,则可以将a+b≥0转化为a≥-b,从而得出a的取值范围。

乘法不等式的公式是:若a、b是任意实数,则有ab≥0。

乘法不等式的解法是:若a、b是任
意实数,则可以将ab≥0转化为a≥0或b≥0,从而得出a、b的取值范围。

减法不等式的公式是:若a、b是任意实数,则有a-b≥0。

减法不等式的解法是:若a、b是
任意实数,则可以将a-b≥0转化为a≥b,从而得出a的取值范围。

比较不等式的公式是:若a、b是任意实数,则有a>b或a<b。

比较不等式的解法是:若a、b
是任意实数,则可以将a>b或a<b转化为a-b>0或a-b<0,从而得出a的取值范围。

基本不等式的公式和解法可以帮助我们解决许多复杂的问题,它们在生活中也有着重要的作用。

比如,当我们在购物时,可以利用基本不等式的公式和解法来比较价格,从而节省购物费用。

此外,基本不等式的公式和解法还可以帮助我们解决许多其他的问题,比如计算投资回报率、计算贷款利息等。

总之,基本不等式的公式和解法对我们的生活娱乐有着重要的意义,它们可以帮助我们解决许多复杂的问题,节省购物费用,计算投资回报率和贷款利息等。

不等式的基本解法

不等式的基本解法

不等式的基本解法我们来看一下一元一次不等式的解法。

一元一次不等式通常可以表示为ax + b > 0(或 < 0)的形式,其中a和b为常数,x为变量。

要解这种不等式,我们可以按照以下步骤进行:1. 将不等式转化为等式:将不等式中的“>”(或“<”)改为“=”,得到ax + b = 0的等式。

2. 求解等式:解这个一元一次方程,得到x = -b/a的解。

3. 确定不等式的符号:根据不等式的类型(大于还是小于),确定解集的符号范围。

如果不等式是大于号,解集为x > -b/a;如果不等式是小于号,解集为x < -b/a。

接下来,我们来看一下一元二次不等式的解法。

一元二次不等式通常可以表示为ax^2 + bx + c > 0(或 < 0)的形式,其中a、b和c为常数,x为变量。

要解这种不等式,我们可以按照以下步骤进行:1. 求解二次方程:将不等式转化为ax^2 + bx + c = 0的二次方程。

a. 如果a = 0,那么这个二次方程退化为一次方程,可以使用一元一次不等式的解法进行求解。

b. 如果a ≠ 0,那么我们可以使用求根公式或配方法求解这个二次方程,得到x的两个解x1和x2。

2. 确定不等式的符号:根据不等式的类型(大于还是小于),确定解集的符号范围。

a. 如果不等式是大于号,解集为x < x1 或 x > x2。

b. 如果不等式是小于号,解集为x > x1 或 x < x2。

c. 如果不等式是大于等于号或小于等于号,解集为x ≤ x1 或x ≥ x2。

还有一些特殊类型的不等式需要特别注意。

例如,绝对值不等式和分式不等式。

对于绝对值不等式,我们可以按照以下步骤进行求解:1. 将绝对值不等式转化为两个不等式:将绝对值不等式拆分为正负两个不等式,分别去掉绝对值符号。

2. 分别求解两个不等式:分别求解去掉绝对值符号后的两个不等式,得到两个解集。

不等式的解法

不等式的解法

不等式的解法数学中的不等式是我们在初中阶段学习的重要内容之一。

解不等式是解决数学问题的基本技能,也是我们日常生活中需要运用的数学知识。

在这篇文章中,我将为大家介绍几种常见的不等式解法,并通过具体的例子来说明。

一、一元一次一元一次不等式是最基础的不等式类型,它的解法与一元一次方程类似。

我们以不等式2x + 3 > 5为例进行讲解。

首先,我们将不等式中的等号去掉,得到2x + 3 = 5。

然后,我们根据方程的性质,将x的系数化为1,得到x + 3/2 = 5/2。

最后,我们将x的系数化为1后的方程进行求解,得到x = 1/2。

根据不等式的性质,我们可以知道,当x > 1/2时,不等式2x + 3 > 5成立。

因此,不等式的解集为x > 1/2。

二、一元二次一元二次不等式是稍微复杂一些的不等式类型,它的解法需要运用到二次函数的性质。

我们以不等式x^2 - 4x + 3 > 0为例进行讲解。

首先,我们将不等式中的等号去掉,得到x^2 - 4x + 3 = 0。

然后,我们求出方程的根,得到x = 1和x = 3。

接下来,我们将数轴分成三段:x < 1,1 < x < 3和x > 3。

我们可以通过代入法来判断每一段的取值范围。

当x < 1时,代入x = 0,得到0^2 - 4*0 + 3 = 3 > 0,因此不等式在这一段成立。

当1 < x < 3时,代入x = 2,得到2^2 - 4*2 + 3 = -1 < 0,因此不等式在这一段不成立。

当x > 3时,代入x = 4,得到4^2 - 4*4 + 3 = 7 > 0,因此不等式在这一段成立。

综上所述,不等式的解集为x < 1或x > 3。

三、绝对值绝对值不等式是一种常见的不等式类型,它的解法需要运用到绝对值的性质。

我们以不等式|2x - 3| < 5为例进行讲解。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。

在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。

1. 直接法直接法是解决不等式的恒成立问题最直接的方法。

通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。

这种方法通常适用于简单的不等式,能够快速得到结果。

2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。

当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。

这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。

3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。

通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。

这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。

4. 代入法代入法是一种通过代入特定的数值进行验证的方法。

通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。

这种方法通常适用于验证不等式的特定性质或条件。

5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。

通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。

这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。

6. 几何法几何法是一种通过几何形象进行分析的方法。

通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。

这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。

7. 递推法递推法是一种通过递归关系进行推导的方法。

通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。

这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。

8. 极限法极限法是一种通过极限的性质进行分析的方法。

不等式的基本性质与解法

不等式的基本性质与解法

不等式的基本性质与解法不等式是数学中常见的描述数量关系的工具,它可以表达两个数、两个量或两个函数之间的大小关系。

在解决实际问题时,不等式的理解和运用至关重要。

本文将介绍不等式的基本性质以及解法,并通过一些例子来进一步说明。

一、不等式的基本性质不等式有以下基本性质:1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向不变。

例如:若a < b,则a + c < b + c;若a > b,则a - c > b - c。

2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向不变;而若乘除一个负数,则不等号的方向反转。

例如:若a < b,c > 0,则ac < bc;若a > b,c < 0,则ac > bc。

3. 倒置性质:若不等式两边同时倒置(取倒数),不等号的方向也要倒置。

例如:若a < b,则1/a > 1/b;若a > b,则1/a < 1/b。

二、不等式的解法1. 图解法:对于简单的一元一次不等式,我们可以通过图解法来求解。

例如,对于不等式2x + 1 > 5,我们可以先绘制出直线y = 2x + 1和y = 5的图像,然后找到两条直线的交点,交点右侧的区域即为不等式的解集。

2. 转化法:有些不等式可以通过转化为等价的形式来求解。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为(x - 1)(x - 3) > 0的形式,然后根据函数图像的正负性来确定解集。

3. 分类讨论法:对于复杂的不等式,我们可以通过分类讨论的方法来求解。

例如,对于不等式|x - 2| < 3,我们可以将其拆解为两个不等式x - 2 < 3和-(x - 2) < 3,并分别求解得到解集,然后取它们的交集。

4. 根据性质求解:我们可以根据不等式的性质来求解。

例如,对于不等式x^2 - 5x + 6 < 0,我们可以分解它为(x - 2)(x - 3) < 0,然后根据乘法性质可知,当x在2和3之间时,不等式成立。

基本不等式的解法

基本不等式的解法

基本不等式的解法如下:
方法一:代数方法。

通过变形和化简等操作,将不等式转化为更简单的形式,从而得到不等式的解集。

例如,对于不等式2x + 5 > 3x - 1,可以移项得到2x - 3x > -1 - 5,然后化简为-x > -6,最后根据-x的系数为负数,将不等式两边的符号取相反,得到x < 6。

方法二:图像法。

将不等式转化为图像的形式,通过观察图像来确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将其转化为x > -2。

然后在数轴上标出-2和1、2、3等点,根据不等号的符号确定解集。

方法三:比较法。

通过比较两个不等式的解集来确定它们是否相同。

例如,对于不等式x + 2 > 0和x + 1 > 0,可以通过比较它们的解集来确定它们是否相同。

方法四:同解变形法。

将不等式进行同解变形,使其转化为另一个不等式,然后求解新的不等式。

例如,对于不等式x + 2 > 0,可以将其转化为x + 1 > -1的形式,然后根据同解变形法则得到x + 1 > 0,从而得到原不等式的解集。

需要注意的是,基本不等式的解法有很多种,不同的方法适用于不同的不等式类型和问题背景。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

方法技巧专题30不等式的解法与基本不等式

方法技巧专题30不等式的解法与基本不等式

方法技巧专题30不等式的解法与基本不等式不等式是数学中常见的一类问题,解决不等式问题需要掌握一些方法和技巧。

本文将介绍不等式的解法以及基本不等式。

一、不等式的解法1.同加同减法:对于不等式a<b,可以在两边同时加上(或减去)同一个数得到新的不等式,即:a+c<b+ca-c<b-c2.同乘同除法:对于不等式a<b,可以在两边同时乘上(或除以)同一个正数得到新的不等式,即:a*c<b*c,c>0a/c<b/c,c>0需要注意的是,当同乘或同除的数为负数时,不等号的方向需要颠倒,即:a*c>b*c,c<0a/c>b/c,c<03.倒置不等号:对于不等式a<b,如果两边同时乘以-1,不等号的方向需要颠倒,即:-a>-b4.分类讨论:对于一些复杂的不等式,可以通过分类讨论的方法进行求解。

根据不等式中出现的变量或系数的范围,将不等式分为几个情况进行讨论,然后逐一解决。

5.代换法:对于一些复杂的不等式,可以通过代换一些变量来简化问题。

选择合适的代换变量,使得不等式中的形式更加简单,从而更容易求解。

二、基本不等式基本不等式是不等式求解中常用且重要的技巧,掌握了基本不等式可以更方便地求解复杂的不等式问题。

以下是几个常用的基本不等式:1.平均值不等式:对于任意一组非负实数a1, a2, ..., an,平均值不等式成立:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)即算术平均数大于等于几何平均数。

2.均值不等式:对于任意一组非负实数a1, a2, ..., an,有下列不等式成立:(a1 + a2 + ... + an) / n ≥ (√a1 + √a2 + ... + √an) / √n 即算术平均数大于等于几何平均数。

3.柯西-施瓦茨不等式:对于任意一组实数a1, a2, ..., an和b1, b2, ..., bn,有下列不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)^2 ≤ (a1^2 + a2^2 + ... + an^2) * (b1^2 + b2^2 + ... + bn^2)即两组数的乘积之和的平方不超过各自平方和的乘积之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式基本解法在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。

类型4:)()()()()()()(maxmin I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x的范围。

解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。

二、利用一元二次函数的判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。

(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。

三、利用函数的最值(或值域)(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。

简单计作:“大的大于最大的,小的小于最小的”。

由此看出,本类问题实质上是一类求函数的最值问题。

例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。

解析:由]1,0(sin ,0,1sin 22cos )24(sin sin 4)(2∈∴<<+=++=B B B B BB B f ππ ,]3,1()(∈B f ,2|)(|<-m B f 恒成立,2)(2<-<-∴m B f ,即⎩⎨⎧+<->2)(2)(B f m B f m 恒成立,]3,1(∈∴m 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

解析:由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。

如果把上题稍微改一点,那么答案又如何呢?请看下题:(2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。

解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得x x y cos sin -=的最大值取不到2,即a 取2也满足条件,所以2≥a 。

所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a 的取值。

利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。

四:数形结合法对一些不能把数放在一侧的,可以利用对应函数的图象法求解。

例5:已知恒成立有时当21)(,)1,1(,)(,1,02<-∈-=≠>x f x a x x f a a x ,求实数a 的取值范围。

解析:由x x a x a x x f <-<-=2121)(22,得,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由12221)1(211-=--=-a a 及得到a 分别等于2和0.5,并作出函数x x y y )21(2==及的图象,所以,要想使函数x a x <-212在区间)1,1(-∈x 中恒成立,只须x y 2=在区间)1,1(-∈x 对应的图象在212-=x y 在区间)1,1(-∈x 对应图象的上面即可。

当2,1≤>a a 只有时才能保证,而2110≥<<a a 时,只有才可以,所以]2,1()1,21[ ∈a 。

由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。

利用函数图象解题时,思路是从边界处(从相等处)开始形成的。

例6:若当P(m,n)为圆1)1(22=-+y x 上任意一点时,不等式0≥++c n m 恒成立,则c 的取值范围是( )A 、1221-≤≤--cB 、1212+≤≤-cC 、12--≤cD 、12-≥c解析:由0≥++c n m ,可以看作是点P(m,n)在直线0=++c y x 的右侧,而点P(m,n)在圆1)1(22=-+y x 上,实质相当于是1)1(22=-+y x 在直线的右侧并与它相离或相切。

12111|10|01022-≥∴⎪⎩⎪⎨⎧≥+++>++∴c c c ,故选D 。

其实在习题中,我们也给出了一种解恒成立问题的方法,即求出不等式的解集后再进行处理。

以上介绍了常用的五种解决恒成立问题。

其实,对于恒成立问题,有时关键是能否看得出来题就是关于恒成立问题。

下面,给出一些练习题,供同学们练习。

练习题:1、对任意实数x ,不等式),,(0cos sin R c b a c x b x a ∈>++恒成立的充要条件是_______。

][22b a c +>2、设]1,(7932lg lg -∞++=在ay x x x 上有意义,求实数a 的取值范围.),95[+∞。

3、当1||)3,31(<∈x Log x a 时,恒成立,则实数a 的范围是____。

)],3[]31,0[(+∞4、已知不等式:32)1(1211......2111+->++++++a Log n n n n a 对一切大于1的自然数n 恒成立,求实数a 的范围。

)]251,1([+∈a含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

本文就结合实例谈谈这类问题的一般求解策略。

一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。

所以实数a 的取值范围为),31()1,(+∞--∞ 。

若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。

解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。

综上可得实数m 的取值范围为)1,3[-。

二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔例3.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,求实数a 的取值范围。

解:设c x x x x g x f x F -++-=-=1232)()()(23, 则由题可知0)(≤x F 对任意]3,3[-∈x 恒成立 令01266)(2'=++-=x x x F ,得21=-=x x 或而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=- ∴045)(max ≤-=a x F∴45≥a 即实数a 的取值范围为),45[+∞。

相关文档
最新文档