差分方程的解法分析及MATLAB实现(程序)
差分方程及matlab求解

称为n阶差分方程的通解.在通解中给任意常数 C1,C2,…,Cn 以确定的值所得的解,称为n阶差分方程的 特解.
例如,函数yt=at+C(a为已知常数,C为任意常数)是差
分方程yt+1-yt=a的通解.而函数yt=at,yt=at-1,…均是这个 差分方程的特解. 由差分方程的通解来确定它的特解,需要给出确 定特解的定解条件. n阶差分方程F(t,yt,yt+1,…,yt+n)=0常见的定解条件为 初始条件.
方程的通解
1 t 1 1 t -1 2 t 1 t 1 t +1 yt = A( ) + ( ) ( 2 - 1) = A ( ) + 2 2 3 2 2 3 2 A = A - 为任意常数 . 3
2.待定系数法求特解
情形Ⅰ f(t)为常数. 方程变为yt+1+ayt=b, a,b均为非零常数. 试以 yt = (为待定常数)形式的特解代入方程得 +a =(1+a) =b. 当a≠-1时,可求得特解
三、 差分方程的解
定义4 如果将已知函数yt=j(t)代入方程F(t,yt,yt+1,…, yt+n)=0, 使 其 对 t=…,-2,-1,0,1,2,… 成 为 恒 等 式 , 则 称 yt=j(t)为方程的解.含有n个任意(独立)常数C1,C2,…,Cn 的解
yt=j(t,C1,C2,…,Cn)
解,那么,非齐次线性差分方程的通解为: y(t)=yA(t)+ y (t)
即
y(t)=A1y1(t)+A2y2(t)+…+Anyn(t)+ y(t), 这里A1,A2,…,An为n个任意(独立)常数.
有限差分法matlab程序

有限差分法matlab程序
有限差分法是一种常见的数值分析方法,它可以用来求解微分方程的解,称为数值解。
有限差分法的实现可以使用MATLAB,MATLAB 的强大的编程能力可以帮助我们更方便的实现有限差分法。
首先,我们需要了解什么是有限差分法。
有限差分法是一种数值计算的方法,它用一组等间距的数组来拟合一个函数,然后利用这些数组求出函数的值。
有限差分法可以用来解决复杂的微分方程,这是由于它能够将一个复杂的微分方程分解成一系列简单的微分方程,每个方程都可以用有限差分法来解决。
其次,使用MATLAB来实现有限差分法需要了解MATLAB中有限差分法的必要组件。
MATLAB中有限差分法的组件主要有:矩阵操作、函数计算、微分方程求解等。
首先,我们使用矩阵操作来实现函数的拟合,然后使用函数计算得到函数的值。
最后,我们使用微分方程求解器来解决复杂的微分方程。
最后,实现有限差分法在MATLAB中需要编写MATLAB程序。
MATLAB 程序首先需要编写矩阵操作程序,使用矩阵操作程序拟合函数;然后编写函数计算程序,计算函数的值;最后,编写微分方程求解程序,利用微分方程求解器来解决复杂的微分方程。
有限差分法是一种重要的数值分析方法,在很多科学中都有着广泛的应用,MATLAB可以让我们更方便的实现有限差分法,在微分方程的求解中发挥其独特的作用。
本文简要介绍了如何使用MATLAB来实现有限差分法,希望能为大家提供一些帮助。
怎样用Matlab求解差分方程题解读

利用plot 绘图观察数量变化趋势
可以用不同线型和颜色绘图 r g b c m y k w 分别表示 红绿兰兰绿洋红黄黑白色 : + o * . X s d 表示不同的线型
plot(k,y1,k,y2,k,y3) 在同一坐标系下画图 plot(k,y2,':')
>> plot(k,y2,'--')
Matlab实现
首先建立一个关于变量n ,r的函数 function x=sqh(n,r) a=1+r; x=100; for k=1:n x(k+1)=a*x(k); end
在command窗口里调用sqh函数
k=(0:20)';
>> y1=sqh(20,0.0194); >> y2=sqh(20,-0.0324); >> y3=sqh(20,-0.0382); >> round([k,y1',y2',y3'])
将种群按年龄等间隔的分成若干个年龄组,时 间也离散化为时段,给定各年龄组种群的繁殖 率和死亡率,建立按年龄分组的种群增长模型, 预测未来各年龄组的种群数量,并讨论时间充 分长以后的变化趋势。
模型及其求解 设种群按年龄等间隔的分成n个年龄组,记 i=1,2,· · · ,n,时段记作k=0,1,2· · · ,且年龄组区间与 时段长度相等(若5岁为一个年龄组,则5年为一 个时段)。以雌性个体为研究对象 记在时段k第i年龄组的数量为xi(k);第i年龄组的 繁殖率为bi,表示每个个体在一个时段内繁殖 的数量;第i年龄组死亡率为di,表示一个时段 内死亡数与总数的比,si=1-di是存活率。
1,2 1, xk 0( k )
差分方程matlab解法

b 1 a
一阶线性常系数差分方程的解、平衡点及其稳定性
xk 1 axk b
• 自然环境下,b=0 • 人工孵化条件下
xk ak x0
xk ak x0 b(1 a
k
ቤተ መጻሕፍቲ ባይዱ
ak 1 )
1 ak a x0 b 1 a
• 令xk=xk+1=x得
x
差分方程的平衡点 • k→∞时,xk→x,称平衡点是稳定的
用matlab求解差分方程问题一阶线性常系数差分方程高阶线性常系数差分方程线性常系数差分方程组一阶线性常系数差分方程?濒危物种的自然演变和人工孵化?问题florida沙丘鹤属于濒危物种它在较好自然环境下年均增长率仅为194而在中等和较差环境下年均增长率分别为324和等和较差环境下年均增长率分别为324和382如果在某自然保护区内开始有100只鹤建立描述其数量变化规律的模型并作数值计算
模型建立
• 记第k年沙丘鹤的数量为xk,年均增长率为 r,则第k+1年鹤的数量为 •
xk+1=(1+r)xk k=0,1,2· · · · · ·
• 已知x0=100, 在较好,中等和较差的自然 环境下 r=0.0194, -0.0324,和-0.0382 我们利用 Matlab编程,递推20年后观察沙丘鹤的 数量变化情况
Matlab实现
• • • • • • • 首先建立一个关于变量n ,r的函数 function x=sqh(n,r) a=1+r; x=100; for k=1:n x(k+1)=a*x(k); end
• 在command窗口里调用sqh函数 k=(0:20)';
>> y1=sqh(20,0.0194); >> y2=sqh(20,-0.0324); >> y3=sqh(20,-0.0382); >> round([k,y1',y2',y3'])
用matlab实现线性常系数差分方程的求解

数字信号处理课程设计题目:试实现线性常系数差分方程的求解学院:专业:班级:学号:组员:指导教师:题目:用Matlab 实现线性常系数差分方程求解一. 设计要求1.掌握线性常系数差分方程的求解 2.熟练掌握Matlab 基本操作和各类函数调用 3. 结合Matlab 实现线性常系数差分方程的求解二.设计原理1.差分与差分方程与连续时间信号的微分及积分运算相对应,离散时间信号有差分及序列求和运算.设有序列f (k ),则称…,f(k+2),f(k+1),…,f (k -1),f (k -2),…为f (k )的移位序列。
序列的差分可以分为前向差分和后向差分。
一阶前向差分定义为()(1)()f k f k f k ∆=+- (3.1—1)一阶后向差分定义为()()(1)f k f k f k ∆=-- (3。
1—2)式中Δ和Δ称为差分算子.由式(3。
1—1)和式(3。
1-2)可见,前向差分与后向差分的关系为()(1)f k f k ∆=∆- (3.1-3)二者仅移位不同,没有原则上的差别,因而它们的性质也相同。
此处主要采用后向差分,并简称其为差分.由查分的定义,若有序列1()f k 、2()f k 和常数1a ,2a 则1122112211221112221122[()()][()()][(1)(1)][()(1)][()(1)]()()a f k a f k a f k a f k a f k a f k a f k f k a f k f k a f k a f k ∆+=+--+-=--+--=∆+∆ (3。
1—4)这表明差分运算具有线性性质。
二阶差分可定义为 2()[()][()(1)]()(1)()2(1)(2)f k f k f k f k f k f k f k f k f k ∆=∆∆=∆--=∆-∆-=--+- (3.1—5)类似的,可定义三阶、四阶、…、n 阶差分.一般地,n 阶差分10()[()](1)()nn n j j n f k f k f k j j -=⎛⎫∆=∆∆=-- ⎪⎝⎭∑ (3.1-6) 式中 !,0,1,2,,()!!n n j n j n j j ⎛⎫== ⎪-⎝⎭ (3。
用Matlab求解差分方程问题

• • • • • • •
K=(0:20)’; Y1=zwfz(100,21,0.18); Y2=zwfz(100,21,0.19); Y3=zwfz(100,21,0,20); Round([k,y1’,y2’,y3’]) Plot(k,y1,k,y2,’:’,k,y3,’o’), Gtext(‘b=0.18’),gtext(‘b=0.19’),gtext(‘b=0.20’)
>> plot(k,y2,'r') >> plot(k,y2,'y') >> plot(k,y2,'y',k,y1,':')
• 人工孵化是挽救濒危物种的措施之一, 如果每年孵化5只鹤放入保护区,观察在 中等自然条件下沙丘鹤的数量如何变化
Xk+1=aXk +5 ,a=1+r
如果我们想考察每年孵化多少只比较合 适,可以令
• • • • • •
function x=czqc(n) A=[0.6,0.2,0.1;0.3,0.7,0.3;0.1,0.1,0.6]; x(:,1)=[200,200,200]'; for k=1:n x(:,k+1)=A*x(:,k); end
如果直接看10年或者20年发展趋势,可以直接在命令窗 口(commond window)作,而不是必须编一个函数
1,2
5 2 10 b
植物能一直繁殖下去的条件是b>0.191
线性常系数差分方程组
• 汽车租赁公司的运营
• 一家汽车租赁公司在3个相邻的城市运营,为方便顾客起见公司承 诺,在一个城市租赁的汽车可以在任意一个城市归还。根据经验
估计和市场调查,一个租赁期内在A市租赁的汽车
用matlab求解差分方程

用matlab求解差分方程差分方程matlabMatlab求解差分方程问题用Matlab求解差分方程问题一阶线性常系数差分方程高阶线性常系数差分方程线性常系数差分方程组差分方程matlab差分方程是在离散时段上描述现实世界中变化过程的数学模型例1、某种货币1年期存款的年利率是r,现存入M元,问年后的本金与利息之和是多少?某k+1=(1+r)某k,k=0,1,2以k=0时某0=M代入,递推n次可得n年后本息为某n=(1+r)Mn差分方程matlab污水处理厂每天可将处理池的污水浓度降低一个固定比例q,问多长时间才能将污水浓度降低一半?记第k天的污水浓度为ck,则第k+1天的污水浓度为ck+1=(1-q)ck,k=0,1,2,从k=0开始递推n次得cn=(1q)c0n以cn=c0/2代入即求解。
差分方程matlab一阶线性常系数差分方程濒危物种的自然演变和人工孵化问题Florida沙丘鹤属于濒危物种,它在较好自然环境下,年均增长率仅为1.94%,而在中等和较差环境下年均增长率分别为-3.24%和-3.82%,如果在某自然保护区内开始有100只鹤,建立描述其数量变化规律的模型,并作数值计算。
差分方程matlab模型建立记第k年沙丘鹤的数量为某k,年均增长率为r,则第k+1年鹤的数量为某k+1=(1+r)某kk=0,1,2已知某0=100,在较好,中等和较差的自然环境下r=0.0194,-0.0324,和-0.0382我们利用Matlab编程,递推20年后观察沙丘鹤的数量变化情况差分方程matlabMatlab实现首先建立一个关于变量n,r的函数function某=qh(n,r)a=1+r;某=100;fork=1:n某(k+1)=a某某(k);end差分方程matlab差分方程matlab利用plot绘图观察数量变化趋势可以用不同线型和颜色绘图rgbcmykw分别表示红绿兰兰绿洋红黄黑白色:+o某.某d表示不同的线型差分方程matlabplot(k,y1,k,y2,k,y3)在同一坐标系下画图plot(k,y2,':')>>plot(k,y2,'--')>>plot(k,y2,'r')>>plot(k,y2,'y')>>plot(k,y2,'y',k,y1,':')>>plo t(k,y2,k,y1,':')差分方程matlab人工孵化是挽救濒危物种的措施之一,如果每年孵化5只鹤放入保护区,观察在中等自然条件下沙丘鹤的数量如何变化某k+1=a某k+5,a=1+r如果我们想考察每年孵化多少只比较合适,可以令某k+1=a某k+b,a=1+r差分方程matlabfunction某=fhqh(n,r,b)a=1+r;某=100;Fork=1:n某(k+1)=a某某(k)+b;end差分方程matlabk=(0:20);%一个行向量y1=(20,-0.0324,5);也是一个行向量round([k’,y1’])对k,y1四舍五入,但是不改变变量的值plot(k,y1)ky1是行向量列向量都可以也可以观察200年的发展趋势,以及在较差条件下的发展趋势,也可以考察每年孵化数量变化的影响。
MATLAB中的差分方程建模与求解方法

MATLAB中的差分方程建模与求解方法引言差分方程是数学中常见的一种方程类型,是一种离散形式的微分方程。
在实际问题中,差分方程能够提供对系统的离散描述,对于动态模型的建立和求解具有重要作用。
MATLAB作为一种功能强大的数值计算软件,其内置了丰富的工具箱和函数,为差分方程的建模和求解提供了便利。
一、差分方程的建模差分方程的建模是将实际问题转化为数学方程的过程。
在MATLAB中,差分方程的建模可以通过定义离散系统的状态和状态转移方程来实现。
下面以一个简单的例子说明差分方程的建模过程。
假设有一个人口增长模型,人口数在每年增加10%,则差分方程可以表示为:P(n+1) = P(n) + 0.1 * P(n),其中P(n)表示第n年的人口数,P(n+1)表示第n+1年的人口数。
在MATLAB中,可以通过定义一个函数来描述差分方程的状态转移方程,代码如下:```matlabfunction Pn = population_growth(Pn_minus_1)growth_rate = 0.1;Pn = Pn_minus_1 + growth_rate * Pn_minus_1;end```上述代码定义了一个名为"population_growth"的函数,该函数的输入参数为上一年的人口数"Pn_minus_1",输出为当前年的人口数"Pn"。
其中,growth_rate表示人口增长率,根据差分方程的定义,将上一年的人口数乘以增长率再加上本身,即可得到当前年的人口数。
二、差分方程的求解方法在MATLAB中,差分方程的求解可以通过多种方法实现。
下面介绍两种常用的差分方程求解方法:欧拉法和四阶龙格-库塔法。
1. 欧拉法(Euler's method)欧拉法是差分方程求解中最简单直观的一种方法。
其基本思想是通过离散化的方式逐步逼近连续函数的解。
具体步骤如下:1) 将时间段分割成若干个小区间;2) 根据差分方程的状态转移方程,在每个小区间内进行计算;3) 迭代计算直到达到指定的时间点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差分方程的解法分析及MATLAB 实现(程序)摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域法[1].1 迭代法例1 已知离散系统的差分方程为)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()43()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出2459)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下:clc;clear;format compact;a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐n=0:10;xn=(3/4).^n, %输入激励信号zx=[0,0],zy=[4,12], %输入初始状态zi=filtic(b,a,zy,zx),%计算等效初始条件[yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件2 时域经典法用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下.(1)求齐次解.特征方程为081432=+-αα,可算出41 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )41()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()43()(n u n x n =代入差分方程右端得自由项为 ⎪⎩⎪⎨⎧≥⋅==-⋅+-1,)43(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )43()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)43(213 )41()21()(21n n n C C n y ⋅++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用)(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为)(])43(213 )41(35)21(317[)1(])43(213 )41(35)21(317[)(25)(n u n u n n y n n n n n n ⋅+⋅+⋅-=-⋅+⋅+⋅-+=δ MATLAB 没有专用的差分方程求解函数,但可调用maple 符号运算工具箱中的rsolve 函数实现[5],格式为y=maple('rsolve({equs, inis},y(n))'),其中:equs 为差分方程表达式, inis 为边界条件,y(n)为差分方程中的输出函数式.rsolve 的其他格式可通过mhelp rsolve 命令了解.在MATLAB 中用时域经典法求解例1中的全响应和单位样值响应的程序如下.clc;clear;format compact;yn=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=(3/4)^n+1/3*(3/4)^(n-1),y(0)=5/2,y(-1)=4},y(n))'),hn=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=0,y(0)=1,y(1)=13/12},y(n))'),3 双零法根据双零响应的定义,按时域经典法的求解步骤可分别求出零输入响应和零状态响应.理解了双零法的求解原理和步骤,实际计算可调用rsolve 函数实现.yzi=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=0,y(-1)=4, y(-2)=12},y(n))'),yzs=maple('rsolve({y(n)-3/4*y(n-1)+1/8*y(n-2)=(3/4)^n+1/3*(3/4)^(n-1),y(0)=1,y(-1)=0},y(n))'),4 变换域法设差分方程的一般形式为)()(00r n x b k n y a r Mr k N k -=-∑∑==.对差分方程两边取单边z 变换,并利用z 变换的位移公式得])()([])()([1010m r m r r M r l k l k k N k z m x z X z b z l y z Y z a ---=-=---=-=∑∑∑∑+=+整理成)()()()()()(00z X z X z B z Y z Y z A +=+形式有. )(, )(110110M M N N z b z b b z B z a z a a z A ----+++=+++=. )()(, )()(110110∑∑∑∑=--=--=--=--==M r r m m r r N k k l l k k z m x b s X zl y a s Y可以看出,由差分方程可直接写出 )(z A 和 )(z B ,系统函数)(/)()(z A z B z H =,将系统函数进行逆z 变换可得单位样值响应.由差分方程的初始状态可算出 )(0z Y ,由激励信号的初始状态可算出 )(0z X ,将激励信号进行z 变换可得 )(z X ,求解z 域代数方程可得输出信号的象函数 , )()()()()()(00z A z Y z X z X z B z Y -+= 对输出象函数进行逆z 变换可得输出信号的原函数)(n y .利用z 变换求解差分方程各响应的步骤可归纳如下:(1)根据差分方程直接写出 )(z A 、 )(z B 和)(z H ,)(z H 的逆变换即为单位样值响应;(2)根据激励信号算出 )(z X ,如激励不是因果序列则还要算出前M 个初始状态值;(3)根据差分方程的初始状态 )(, ),2( ),1(N y y y -⋅⋅⋅--和激励信号的初始状态 )(, ),2( ),1(M x x x -⋅⋅⋅--算出 )(0z Y 和 )(0z X ;(4)在z 域求解代数方程)()()()()()(00z X z X z B z Y z Y z A +=+得输出象函数 )(z Y , )(z Y 的逆变换即为全响应;(5)分析响应象函数的极点来源及在z 平面中的位置,确定自由响应与强迫响应,或瞬态响应与稳态响应;(6)根据零输入响应和零状态响应的定义,在z 域求解双零响应的象函数,对双零响应的象函数进行逆z 变换,得零输入响应和零状态响应.用变换域法求解例1的基本过程如下. 根据差分方程直接写出2181431 )(--+-=z z z A ,1311 )(-+=z z B .系统函数的极点为41,21. 对激励信号进行z 变换得)43/( )(-=z z z X .激励象函数的极点为3/4. 根据差分方程的初始状态算出102123 )(-+-=z z Y .根据激励信号的初始状态算出 0)(0=z X . 对z 域代数方程求解,得全响应的象函数)323161123/()83243125( )(2323-+-+-=z z z z z z z Y . 进行逆z 变换得全响应为)(])43(213 )41(35)21(317[)(n u n y n n n ⋅+⋅+⋅-= 其中,与系统函数的极点对应的是自由响应;与激励象函数的极点对应的是强迫响应. )(z Y 的极点都在z 平面的单位圆内故都是瞬态响应.零输入响应和零状态响应可按定义参照求解.上述求解过程可借助MATLAB 的符号运算编程实现.实现变换域法求解差分方程的m 程序如下: clc;clear;format compact;syms z n %定义符号对象% 输入差分方程、初始状态和激励信号%a=[1,-3/4,1/8],b=[1,1/3], %输入差分方程系数向量y0=[4,12],x0=[0], %输入初始状态,长度分别比a 、b 短1,长度为0时用[]xn=(3/4)^n, %输入激励信号,自动单边处理,u(n)可用1^n 表示% 下面是变换域法求解差分方程的通用程序,极点为有理数时有解析式输出 %N=length(a)-1;M=length(b)-1;%计算长度Az=poly2sym(a,'z')/z^N;Bz=poly2sym(b,'z')/z^M;%计算A(z)和B(z)Hz=Bz/Az;disp('系统函数H(z):'),sys=filt(b,a),%计算并显示系统函数hn=iztrans(Hz);disp('单位样值响应h(n)='),pretty(hn),%计算并显示单位样值响应Hzp=roots(a);disp('系统极点:');Hzp,%计算并显示系统极点Xz=ztrans(xn);disp('激励象函数X(z)='),pretty(Xz),%激励信号的单边z 变换Y0z=0;%初始化Y0(z),求Y0(z)注意系数标号与变量下标的关系for k=1:N;for l=-k:-1;Y0z = Y0z+a(k+1)*y0(-l)*z^(-k-l);endenddisp('初始Y0(z)'),Y0z,%系统初始状态的z 变换X0z=0;%初始化X0(z),求X0(z)注意系数标号与变量下标的关系for r=1:M;for m=-r:-1;X0z = X0z+b(r+1)*x0(-m)*z^(-r-m);endenddisp('初始X0(z)'),X0z,%激励信号起始状态的z 变换Yz=(Bz*Xz+X0z-Y0z)/Az;disp('全响应的z 变换Y(z)'),pretty(simple(Yz)),yn=iztrans(Yz);disp('全响应y(n)='),pretty(yn),% 计算并显示全响应Yziz=-Y0z/Az;disp('零输入象函数Yzi(z)='),pretty(Yziz),%零激励响应的z 变换yzin=iztrans(Yziz);disp('零输入响应yzi(n)='),pretty(yzin),% 计算并显示零输入响应 Yzsz=(Bz*Xz+X0z)/Az;disp('零状态象函数Yzs(z)='),pretty(Yzsz),%零状态响应的z 变换yzsn=iztrans(Yzsz);disp('零状态响应yzs(n)='),pretty(yzsn),% 计算并显示零状态响应该程序的运行过程与手算过程对应,显示在命令窗的运行结果与手算结果相同.。