求解差分方程的三种基本方法
差分方程的求解
![差分方程的求解](https://img.taocdn.com/s3/m/a0187b3bee06eff9aef807ef.png)
计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )
(完整版)差分方程的常见解法
![(完整版)差分方程的常见解法](https://img.taocdn.com/s3/m/4f831e1959fb770bf78a6529647d27284a73375a.png)
(完整版)差分方程的常见解法差分方程的常见解法差分方程是数学中的一种重要方程类型,常用于描述离散事件系统的发展规律。
在求解差分方程时,我们可以采用以下几种常见的解法。
1. 直接求解法直接求解法是最简单且常用的差分方程求解方法之一。
它的基本思想是通过观察差分方程的规律,找到解的形式,并通过代入验证得到确切的解。
举例来说,对于一阶线性差分方程$y_{n+1} = ay_n + b$,我们可以猜测解的形式为$y_n = c\lambda^n$,其中$c$和$\lambda$为待定常数。
将此解代入方程,再通过已知条件解得$c$和$\lambda$的值,从而得到原差分方程的解。
2. 特征方程法特征方程法是一种常用于求解线性齐次差分方程的方法。
对于形如$y_{n+2} = ay_{n+1} + by_n$的差分方程,我们可以通过构造特征方程来求解。
具体步骤是,我们将差分方程中的项移动到一边,得到$y_{n+2} - ay_{n+1} - by_n = 0$。
然后,假设解的形式为$y_n =\lambda^n$,将其代入方程,得到特征方程$\lambda^2 - a\lambda - b = 0$。
解这个特征方程,得到特征根$\lambda_1$和$\lambda_2$,然后通解的形式为$y_n = c_1\lambda_1^n + c_2\lambda_2^n$,其中$c_1$和$c_2$为待定常数。
3. Z 变换法Z 变换法是一种广泛应用于差分方程求解的方法,特别适用于线性时不变差分方程。
该方法的基本思想是将差分方程转化为代数方程,并利用 Z 变换的性质求解。
对于差分方程$y_{n+1} = ay_n + b$,通过取 Z 变换,我们可以得到转化后的方程$Y(z) = azY(z) + b \frac{1}{1 - z^{-1}}$,其中$Y(z)$代表$y_n$的Z 变换。
然后,将方程整理,求解得到$Y(z)$,再通过反 Z 变换将其转换为差分方程的解$y_n$。
差分方程的解法-推荐下载
![差分方程的解法-推荐下载](https://img.taocdn.com/s3/m/16ab454faf45b307e9719734.png)
法计算。常用的方法有:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
差分方程的求解方法及其应用
![差分方程的求解方法及其应用](https://img.taocdn.com/s3/m/8cf20f240a4e767f5acfa1c7aa00b52acfc79ca0.png)
差分方程的求解方法及其应用差分方程是数学中一个比较重要的分支,用于描述离散化的动态系统和过程,广泛应用于物理、工程、生态、经济、金融等领域。
通过离散化,可以将连续的问题转化为离散的数值计算问题,从而可以用计算机进行求解。
本文将介绍差分方程的求解方法及其应用,希望能够对读者有所帮助。
一、差分方程的定义差分方程是指包含有未知函数的离散变量的函数方程。
通俗的说,就是说差分方程用来描述离散的数学模型。
一般的差分方程可以写成如下形式:$$y_{n+1} = f(y_n, y_{n-1}, \cdots, y_{n-k+1}, n)$$其中,$y_n$ 是未知函数在 $n$ 时刻的值,$f$ 是一个给定的函数,$k$ 是差分方程中自变量的个数。
当 $k=1$ 时,常常称为一阶差分方程,如下所示:$$y_{n+1} = f(y_n, n)$$此外还有二阶、三阶等高阶差分方程。
差分方程与微分方程相似,都是用来描述某种动态系统的变化规律,只是微分方程是描述连续变化的模型,而差分方程是描述离散变化的模型。
二、差分方程的求解方法差分方程的求解方法可以分为两类,一类是解析解法,即用数学公式直接求解;另一类是数值解法,即用计算机进行数值计算求解。
1. 解析解法对于一些特殊的差分方程,可以用解析解法求出解析解。
解析解法就是通过数学公式直接求解,得到函数在论域上的解析表达式,从而可以对解析表达式进行分析求得有关该函数的很多重要信息。
以一阶线性差分方程为例,即:$$y_{n+1} = ay_n + b, \ \ (n=0,1,2,\cdots)$$其中 $y_0$ 是已知值, $a$ 和 $b$ 是常数。
可以通过数学公式得到该差分方程的解析解:$$y_n = a^ny_0 + b\frac{a^n-1}{a-1}, \ \ (n=0,1,2,\cdots)$$其它的高阶差分方程可以运用代数学、矩阵论、微积分等方法求解。
2. 数值解法数值解法是一种通过数值计算来求解差分方程的方法。
差分方程的解法
![差分方程的解法](https://img.taocdn.com/s3/m/7994de3da36925c52cc58bd63186bceb19e8ed3a.png)
差分方程的解法1. 引言差分方程是描述离散系统的一种数学工具。
在许多科学领域和工程应用中,差分方程被广泛使用,例如物理学、经济学和计算机科学等。
对于一个给定的差分方程,寻找其解法是非常重要的,因为解法可以帮助我们理解系统的演化和预测其行为。
2. 常用的差分方程解法下面介绍几种常用的差分方程解法:2.1. 递推法递推法是差分方程解法中最常见和最简单的一种方法。
该方法基于差分方程的递推关系,通过迭代计算不同时间步长下的解,并逐步逼近真实解。
递推法适用于一些简单的线性差分方程,例如一阶和二阶差分方程等。
2.2. 特征方程法特征方程法主要用于解线性恒定系数差分方程。
通过将差分方程转化为代数方程,然后求解特征方程的根,可以得到差分方程的通解。
特征方程法适用于一些具有周期性和稳定性的差分方程。
2.3. 变换法变换法是一种将差分方程转化为其他类型方程然后求解的方法。
常见的变换方法有Z变换、拉普拉斯变换和离散傅里叶变换等。
通过变换法,我们可以将差分方程转化为易于求解的形式,从而得到解析解或近似解。
2.4. 迭代法迭代法是一种通过迭代计算逼近差分方程解的方法。
常见的迭代方法有欧拉法、龙格-库塔法和蒙特卡洛方法等。
迭代法适合于解决非线性、复杂或高阶的差分方程,并能够提供数值解。
3. 解法选择的依据在选择差分方程的解法时,我们需要根据差分方程的特性和给定问题的要求来确定一个最合适的解法。
以下是一些选择解法的依据:- 差分方程的类型和形式:不同类型和形式的差分方程可能适用于不同的解法。
- 解的精确性要求:如果需要求得解的精确值,可以选择特征方程法或变换法;如果只需要求得近似解,可以选择递推法或迭代法。
- 计算效率和速度要求:某些解法可能更加高效和快速,适合在大规模计算中使用。
- 可行性和实际性要求:选择对于给定问题实现可行并且实际可行的解法。
4. 结论差分方程的解法多种多样,每种解法都各具特点和适用范围。
在实际应用中,我们需要根据问题的要求和特点选择最合适的解法。
差分方程与微分方程的求解
![差分方程与微分方程的求解](https://img.taocdn.com/s3/m/7523038a02d276a200292e1e.png)
求解 1. 求差分方程满足初值问题之解:11232133123123(1)3()()()(1)2()()(1)()()2()(1)(1)1,(1)0x n x n x n x n x n x n x n x n x n x n x n x x x +=-+⎧⎪+=+⎪⎨+=-+⎪⎪===⎩ 解:原差分方程组可化为:112233(1)311()(1)201()(1)112()x n x n x n x n x n x n +-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪+= ⎪ ⎪⎪ ⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭则令311201112-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,求矩阵A 的特征值及特征向量 设特征值分别为123,,λλλ,对应的特征向量分别为123β,β,β.则231121(2)(1)0112λλλλλλ---=-=--=--A E可解得1232,2,1λλλ===设1λ对应的特征向量1111a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭β,则满足111111022101100a b c -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭可化简为11100a b c -=⎧⎨=⎩,令111a b ==可以得到特征向量1110⎛⎫⎪= ⎪ ⎪⎝⎭β同理可得到特征向量2110-⎛⎫ ⎪=- ⎪ ⎪⎝⎭β,3011⎛⎫ ⎪= ⎪ ⎪⎝⎭β设方程组的通解为:111222333()nnnx n c c c λλλ=++βββ代入特征值、特征向量,可得到方程组的通解为:123110()21211001n n x n c c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭代入初值条件:123(1)(1)1,(1)0x x x ===得到12123322122110n n n n n c c c c c c ⎛⎫-⎛⎫ ⎪ ⎪--= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可得123120c c c ⎧-=⎪⎨⎪=⎩,可以令11c =,所以212c =;综上所述,满足方程初值方程组的解为:11()210n x n -⎛⎫⎪= ⎪ ⎪⎝⎭2. 求差分方程之通解:2(4)2(2)()32nx n x n x n n n+-++=-+ 解:原方程的特征方程为:42210λλ-+= 即22(1)0λ-=从而求得特征根为11λ=-(二重),21λ=(二重) 因此原方程所对应的齐次方程的通解为:()(1)()1()n n xn A Bn C Dn =-+++ 即 ()(1)()nxn A Bn C Dn =-+++ 而原方程的特解为2(4)2(2)()3x n x n x n n +-++=-的特解1()x n与(4)2(2)()2n x n x n x n n +-++=的特解2()x n 之和.从而原方程具有如下的特解形式:221201201()()()()2()n x n x n x n n A n A n A B n B =+=++++将特解形式代入原方程,可得0010120014811922402244883914890A A A A A AB B B =⎧⎪+=⎪⎪++=-⎨⎪=⎪⎪+=⎩,从而0120114816124194881A A A B B ⎧=⎪⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪⎪=-⎪⎩综上,原方程的通解为22111148()()()(1)()()2()48624981n n x n xn x n A Bn C Dn n n n n =+=-++++-++- 3. 求微分方程满足初值问题之解:211212212121120d d d 320d d d d d 20d d d (0)1,-1,(0)0d t x x x x x tt t xx x x t t x x x t =⎧++++=⎪⎪⎪++-=⎨⎪⎪===⎪⎩解:方法一:降阶法令13d d x x t =,则原方程组可表示为:13323122312d d d d 320d d d 20d x x t xx x x x tt x x x x t ⎧=⎪⎪⎪++++=⎨⎪⎪++-=⎪⎩化简得:132123323d d d 2d d 22d x x t xx x x t x x x t ⎧=⎪⎪⎪=-+-⎨⎪⎪=--⎪⎩它的系数矩阵为001211022⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,特征方程是01211(2)(2)(1)0022λλλλλλλ--=---=+-++=---A E特征根为1232,2,1λλλ=-==-求得特征根所对应的特征向量分别为1102⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,21221⎛⎫⎪ ⎪=- ⎪ ⎪⎪⎝⎭T ,31121⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭T .故方程组的通解为1222123311()121()e 0e 2e 221()1t t t x t x t C C C x t --⎛⎫⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭- ⎪⎝⎭⎝⎭根据初值1120d (0)1,-1,(0)0d t x x x t====得12312323112211202C C C C C C C C ⎧++=⎪⎪-+-=-⎨⎪⎪-+=⎩解得123112,,463C C C === 则原方程组的解为:22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩方法二:消元法设dd t λ=,则原方程组可化为21212(32)(1)0(1)(2)(1)0(2)x x x x λλλλλ⎧++++=⎨++-=⎩(1)(2)λ-得21(2)(21)0(3)x λλλ++--= (2)(3)-得22(2)0x λλ--=解得两个特征根为122,1λλ==- 则2x 可表示为:2212e e ttx C C -=+ 根据初值2(0)0x =得22e e ttx C C -=- 将2x 代入(2)得212e 2e ttx C C λ-+=+ 即211d 2e 2e (4)d t t x x C C t-+=+ 下面用常数变易法求解(4) 先解对应齐次方程11d 20d x x t+=得齐次通解211e t x C -= 由常数变易法,令211(t)etx C -=为非齐次方程(4)的解,代入后得221()e e 2e t t t C t C C --'=+积分得41()e 2e 4tt C C t C =+ 则(4)的通解为2211e e 2e 4t tt C x C C --=++ 根据初值110d (0)0,-1d t x x t===得112142212C C C C C C ⎧++=⎪⎪⎨⎪-+-=-⎪⎩解得11314C C ⎧=⎪⎪⎨⎪=⎪⎩ 则221112()e e e 4123t t tx t --=++ 将13C =代入22e e t tx C C -=-得方程组的解为 22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩4. 利用待定系数法求解下列初值问题之解:Td (),(0)(0,1)d xA x f t x t=+= 其中TT 1235(,),,()(e ,0)53t x x x A f t -⎛⎫===⎪-⎝⎭解:方法一:待定系数法原方程组所对应的齐次方程组为112212d 35d d 53d x x x tx x xt⎧=+⎪⎪⎨⎪=-+⎪⎩特征方程235(3)25053λλλλ--==-+=--A E求得特征根为1,235i λ=±下求135i λ=+所对应的特征向量,设112αα⎛⎫=⎪⎝⎭ξ 则111225i 50()55i 0ααλαα-⎛⎫⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A E 从而可取11α=,则2i α= 于是由132()1e (cos5isin 5)()i t x t t t x t ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭得到齐次方程的通解为:11322()cos5sin 5e ()sin 5cos5t xt C t t x t C t t ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭下求非齐次方程的特解利用待定系数法,可设特解为12()e ()e t t x t A x t B --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭将其代入原方程组,可得e 3e 5e ee 5e 3et t t tt t tA AB B A B -------⎧-=++⎪⎨-=-+⎪⎩ 即451540A B A B +=-⎧⎨-=⎩,从而求得441541A B ⎧=-⎪⎪⎨⎪=-⎪⎩ 因此原方程的通解为113224()cos5sin 541e e ()sin 5cos5541t t x t C t t x t C t t -⎛⎫-⎪⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭- ⎪⎝⎭ 代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为:13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭方法二:常数变易法利用常数变易法,可设特解为11322()()cos5sin 5e ()()sin 5cos5t x t C t t t x t C t t t ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 带回到原方程,可得到132()cos5sin 5e e ()sin 5cos50t tC t t t C t t t -'⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭从而1132()cos5sin 5e e cos5e ()sin 5cos50e sin 5t t t t C t t t t C t t t t ----'⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭⎝⎭进而4142()e cos5()e sin 5t tC t t C t t --'⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭两边积分可得414254()e (sin 5cos5)414145()e (sin 5cos5)4141t t C t t t C t t t --⎧=-⎪⎪⎨⎪=--⎪⎩因此原方程组的通解为111222()()()()()()x t xt x t x t x t x t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13254sin 5cos5cos5sin 5cos5sin 54141e e sin 5cos5sin 5cos545sin 5cos54141t t t t C t t t t C t t t t t t -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭-- ⎪⎝⎭344cos5sin 54141e e sin 5cos54654141t t t t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫=+ ⎪⎪ ⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭.。
差分方程求解
![差分方程求解](https://img.taocdn.com/s3/m/9d1e5660657d27284b73f242336c1eb91a37338c.png)
差分方程求解什么是差分方程差分方程是离散时间系统模型中常用的数学工具之一。
它描述了在不同时间点上,系统状态之间的关系,其中系统状态是离散的。
差分方程在许多科学领域都有应用,如物理学、工程学和经济学等。
差分方程可以看作是微分方程在离散时间上的等效形式。
微分方程描述了连续时间系统的动态行为,而差分方程描述了离散时间系统的动态行为。
差分方程通常通过递推关系来表示系统状态之间的转移。
差分方程的一般形式差分方程的一般形式可以表示为:x[n+1] = f(x[n], x[n-1], ..., x[n-k])其中,x[n]表示系统在时间点n的状态,f表示系统状态之间的转移函数,k表示系统的阶数。
差分方程的求解方法1. 递推法递推法是一种直接求解差分方程的方法。
通过已知初始条件x[0], x[1], ..., x[k],可以逐步递推得到系统在任意时间点上的状态。
递推法的步骤如下:1.根据初始条件,求得x[k+1];2.迭代计算,依次求得x[k+2], x[k+3], ...。
递推法的优点是简单易用,并且不需要求解复杂的代数方程。
但它的缺点是只能求得系统的局部解,无法得到整个系统的行为。
2. 特征根法特征根法是一种求解差分方程的解析方法。
通过求解差分方程的特征方程,可以得到系统的特征根,进而得到系统的解析解。
特征根法的步骤如下:1.将差分方程转化为对应的特征方程;2.求解特征方程,得到系统的特征根;3.根据特征根的性质,推导得到系统的解析解。
特征根法的优点是能够得到系统的全局解,对于高阶差分方程尤为适用。
但它的缺点是求解过程较为繁琐,需要具备一定的数学知识。
差分方程的应用举例差分方程在许多科学领域都有广泛的应用。
以下是几个常见的应用举例:1. 自然科学中的应用在物理学和工程学等领域中,差分方程常用于描述动态系统的行为。
例如,可以用差分方程描述弹簧振子的运动过程、电路中电流的变化等。
2. 经济学中的应用在经济学中,差分方程常用于描述经济系统的演化过程。
§2.8 差分方程的求解
![§2.8 差分方程的求解](https://img.taocdn.com/s3/m/51c36f9c02d276a201292e08.png)
X
第
例2-8-3
学 院
9 页
求方程yn 6 y n 1 12 yn 2 8 y n 3 0的解。
特征方程
y n C1 2 C 2 n 2 C 3 n工 2 程
n n 2
r 6 r 2 0 电r 12 r 8 0 邮 京 所以r 2 三重根 北
3
学 2 大
电
子
工
程
3
院 学 n
学 C1 , C 2 , C 3 给定初始(边界)条件即可求出常数 大 北 京 邮 电
电
子
X
第
例2-8-4
j r2 Me j 设 r1 Me n n 院 y n C 1 r1 C 2 r2 学
10 页
C 1 Me Me n 大学 cos n j sin n C 2 M n cos n j sin n C1 M 电 邮 n n P C1 C2 京 PM cos n QM sin n 北 Q j (C 院 1 C2 ) P,Q为待定系数 学 程 M 1 y n 为等幅正弦序列 子工 子 C2 电
j n
工
程
j n
M 1 M 1
yn 为增幅正弦序列 大 电 邮 为减幅正弦序列 京 yn 北学 电 NhomakorabeaX
第
2.特解
线性时不变系统输入与输出有相同的形式。
输入 输出
j n
11 页
x n e an
电 邮 x n cos 京 n 北
x n e
电 jn 学 y n A e 大
院
2 学 r 特征方程 电大 5r 6 0 r 2r 3 0 特征根 京邮 r1 2, r2 3 北 n n y n C1 2 C 2 3 齐次解 院 学 n 0 y 0 C1 C 2 2 工程 定 C1 , C 2 子 电 n 1 y 1 2C1 3C学 2 1 大 解出 C1 5, C 2 3 邮电 n 京 n 所以y n 52北 33
差分方程求通解例题
![差分方程求通解例题](https://img.taocdn.com/s3/m/a18f5f24f4335a8102d276a20029bd64783e62b3.png)
差分方程求通解例题摘要:1.差分方程基本概念介绍2.差分方程求通解的方法3.差分方程求通解的例题解析4.差分方程求通解的注意事项正文:差分方程是一种数学模型,用于描述现实世界中存在的离散现象。
它是微分方程的一种改进,能够更好地解决实际问题。
差分方程广泛应用于物理、生物、经济等各个领域。
求解差分方程通解的方法一般有以下几种:1.常数变易法:适用于差分方程的常数项和一次项系数为零的情况。
2.待定系数法:适用于差分方程的常数项和一次项系数不为零的情况。
3.齐次差分方程求解法:适用于齐次差分方程的求解。
4.特征方程法:适用于非齐次差分方程的求解。
下面,我们通过一个例题来解析如何使用待定系数法求解差分方程的通解。
例题:求解差分方程y(n) - 2y(n-1) + y(n-2) = 0。
解:首先,我们根据差分方程的特征,设y(n) = An^2 + Bn + C,其中A、B、C 为待定系数。
然后,我们将y(n) 的表达式代入差分方程,得到:An^2 + Bn + C - 2[A(n-1)^2 + B(n-1) + C] + A(n-2)^2 + B(n-2) + C = 0。
化简后,得到:An^2 + (B-2A)n + (C-2B+2C) = 0。
由于该差分方程是齐次的,所以特征方程的根相等,即:B-2A = 0C-2B+2C = 0解得A = 1/2, B = 1, C = 1/2。
所以,该差分方程的通解为y(n) = 1/2n^2 + n + 1/2。
在求解差分方程的过程中,需要注意以下几点:1.根据差分方程的特征,选择合适的求解方法。
2.对于非齐次差分方程,需要先求出齐次差分方程的通解,然后再用特征方程法求解非齐次项。
3.在代入法求解过程中,需要注意各项的运算和化简。
差分方程的求解方法与应用
![差分方程的求解方法与应用](https://img.taocdn.com/s3/m/459a4516e3bd960590c69ec3d5bbfd0a7956d5e0.png)
差分方程的求解方法与应用差分方程是一类描述离散系统动态演化的数学模型。
与微分方程相比,差分方程更适用于描述离散时间下的系统变化规律。
在物理、经济、生物等各个领域中,差分方程都有广泛的应用。
本文将介绍差分方程的求解方法以及其在实际问题中的应用。
一、差分方程的求解方法差分方程的求解方法主要有直接求解法和递推求解法两种。
直接求解法是通过将差分方程转化为代数方程组,然后求解方程组得到方程的解。
这种方法适用于一些简单的差分方程,例如线性差分方程。
例如,对于一阶线性差分方程y(n+1) = a*y(n) + b,我们可以通过代入法得到y(n) = (a^n)*y(0) +b*(a^n-1)/(a-1)。
递推求解法是通过递推关系式求解差分方程。
这种方法适用于一些递推性质较强的差分方程,例如递推差分方程。
例如,对于递推差分方程y(n+2) = y(n+1) +y(n),我们可以通过给定初始条件y(0)和y(1),然后利用递推关系式y(n+2) = y(n+1) + y(n)逐步求解出y(2)、y(3)、y(4)等。
二、差分方程的应用差分方程在实际问题中有着广泛的应用。
下面将介绍差分方程在物理、经济和生物领域中的一些应用。
1. 物理领域差分方程在物理领域中的应用非常广泛。
例如,对于自由落体运动,可以通过差分方程描述物体在不同时间点的位置和速度变化。
另外,差分方程还可以用于描述电路中电流和电压的变化规律,从而帮助工程师设计和优化电路。
2. 经济领域经济学中的一些经济模型可以通过差分方程进行建模和求解。
例如,经济增长模型可以用差分方程描述经济发展过程中的变化规律。
此外,差分方程还可以用于描述金融市场中的股票价格变化、货币供给和需求等问题。
3. 生物领域生物学中的一些生态模型和遗传模型可以通过差分方程进行建模。
例如,种群动力学模型可以用差分方程描述不同物种之间的相互作用和数量变化规律。
另外,差分方程还可以用于描述基因传递和突变的过程,从而帮助科学家研究生物遗传学问题。
数字信号处理的差分方程求解技巧
![数字信号处理的差分方程求解技巧](https://img.taocdn.com/s3/m/5c601e7968eae009581b6bd97f1922791688befa.png)
数字信号处理的差分方程求解技巧数字信号处理中,差分方程是一种重要的数学工具,用于描述离散时间系统的行为。
差分方程是离散时间系统输入和输出之间的关系,通常表示为递推关系式。
求解差分方程是数字信号处理中的一个关键步骤,下面将介绍一些常见的差分方程求解技巧。
1. 齐次差分方程的求解:齐次差分方程是指其右侧没有任何输入项的差分方程。
求解齐次差分方程的一种常用方法是假设解为指数函数形式,然后将其代入原方程,解出未知常数。
例如,对于差分方程y[n] - y[n-1] = 0,假设y[n] = A^k,代入方程得到A^k - A^(k-1) = 0,解得A = 1,即解为y[n] = A^n = 1^n = 1。
2. 非齐次差分方程的求解:非齐次差分方程是指其右侧包含输入项的差分方程。
求解非齐次差分方程的一种常用方法是将其分解为齐次解和非齐次解的和。
首先求解对应的齐次方程,得到其解y_h[n],然后考虑对应的非齐次方程,假设其解为y_p[n],代入原方程求解非齐次解。
最终的解为y[n] = y_h[n] + y_p[n]。
例如,对于差分方程y[n] - y[n-1] = x[n],假设齐次解为y_h[n] = A^n,代入方程得到A^n - A^(n-1) = 0,解得A = 1。
然后假设非齐次解为y_p[n] = B,代入方程得到B - B = x[n],解得B = x[n]。
因此,原方程的解为y[n] = y_h[n] + y_p[n] = A^n + x[n]。
3. 递推关系的求解:递推关系是差分方程的一种表示形式,用于描述当前时刻的输出与之前时刻的输入和输出之间的关系。
求解递推关系的一种常用方法是使用Z变换。
Z变换是一种用于分析离散时间信号和系统的数学工具,通过将差分方程转换为代数方程来求解。
首先对差分方程进行Z变换,将差分方程转换为代数方程,然后通过求解代数方程得到系统的频率响应或系统函数。
最后,对代数方程求逆Z变换,得到系统的脉冲响应或差分方程的解析解。
差分方程和差分方程组的求解方法
![差分方程和差分方程组的求解方法](https://img.taocdn.com/s3/m/db9a22e9c0c708a1284ac850ad02de80d5d8066b.png)
差分方程和差分方程组的求解方法差分方程(difference equation)是一类离散时间的数学方程,它的形式是$$f(x_{n}) = g(x_{n-1},x_{n-2},\dots,x_{n-k})$$其中,$f$ 和 $g$ 是给定的函数,$x_n$ 表示第 $n$ 个时间点上的值,$k$ 是差分方程的阶数。
差分方程可以看做是差分格式(discretization scheme)的离散时间版本,它在数学建模中有着广泛的应用,特别是在自然科学、工程科学和金融学等领域。
在实际问题中,常常会遇到包含多个变量的复杂差分关系,这时候就需要考虑差分方程组(difference equation system),它可以写成如下形式:$$\mathbf{x}_n = \mathbf{g}(\mathbf{x}_{n-1},\mathbf{x}_{n-2},\dots,\mathbf{x}_{n-k})$$其中,$\mathbf{x}_n$ 是一个 $m$ 维列向量,表示第 $n$ 个时间点上所有变量的取值,$\mathbf{g}$ 是一个$m$ 维列向量函数,它的每个分量 $g_i$ 表示与 $\mathbf{x}$ 的第 $i$ 个分量有关的函数。
如果差分方程组是非线性的,那么它的求解通常需要使用数值方法,比如欧拉法(Euler method)、龙格-库塔方法(Runge-Kutta method)、辛普森法(Simpson's rule)等数值积分方法。
接下来我们将介绍这些常用的求解方法。
欧拉法欧拉法(Euler method)是一种初值问题的数值解法,它的核心思想是将连续的问题离散化,然后用迭代的方式在离散时间上逐步逼近真实解。
对于一阶差分方程$$y_n = f(y_{n-1},t_{n-1},\Delta t)$$欧拉法的迭代公式可以写成如下形式:$$y_{n+1} = y_n + \Delta t f(y_n,t_n,\Delta t)$$其中,$\Delta t$ 表示时间间隔,它可以取足够小的正数以保证求解精度。
差分方程求解
![差分方程求解](https://img.taocdn.com/s3/m/4b196e9548649b6648d7c1c708a1284ac85005b3.png)
差分方程求解什么是差分方程?差分方程是一种求解离散时间系统的数学工具。
与常微分方程相似,差分方程也是描述系统变化的方程,只不过它适用于离散时间点上的模型。
差分方程的核心思想是通过比较相邻时间点上的状态值来描述系统的变化规律。
差分方程可以用来对许多现实世界中的问题建模,例如人口增长模型、物理系统的离散模拟等等。
对差分方程进行求解,可以得到系统随时间变化的解析解或数值解。
差分方程的一般形式差分方程的一般形式可以表示为:x(t+1) = f(x(t))其中,x(t)表示系统在时间点t的状态,x(t+1)表示系统在时间点t+1的状态,f为状态转移函数,描述了系统从t到t+1的映射关系。
差分方程的求解方法差分方程的求解方法可以分为解析解法和数值解法。
解析解法解析解法通过对差分方程进行变换、代换和求解等数学方法,得到其解析解。
解析解通常是对问题的一种精确描述,可以给出系统在任意时间点上的状态。
常见的解析解法包括递推法、特征方程法和变换法等。
递推法通过逐个计算时间点上的状态值,从而得到整个系统的演化过程。
特征方程法则将差分方程转化为线性代数方程组,通过求解特征值和特征向量得到解析解。
变换法通过对差分方程进行变换,将其转化为已知的方程形式,从而简化求解过程。
数值解法数值解法通过离散化差分方程,近似求解系统的状态值。
数值解法通常需要选择合适的离散化方法和数值计算算法,同时需要注意误差控制和稳定性等问题。
常见的数值解法有欧拉法、改进的欧拉法、龙格-库塔法等。
这些方法通过近似计算状态转移函数的值,从而得到系统在每个时间点上的状态。
数值解法的结果通常是离散的,需要对结果进行插值和拟合等处理,以得到系统在连续时间上的状态。
结论差分方程是一种描述离散时间系统变化的数学工具。
对差分方程进行求解,可以得到系统在不同时间点上的状态。
解析解法和数值解法是求解差分方程的主要方法。
解析解法通过数学变换和求解,得到系统的精确解析解;数值解法通过近似计算,得到系统的数值解。
差分方程的解法
![差分方程的解法](https://img.taocdn.com/s3/m/228fe701ba1aa8114431d96d.png)
差分方程常用解法1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ (1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (2)为方程(1)对应的齐次方程。
如果(2)有形如n n x λ=的解,代入方程中可得:0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出方程(3)的根,则可以得到方程(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:n k k n n n c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(3)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan ,22=+=,则(2)的通解中有构成项:n c n c n n ϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +*n x (4)方程(4) 的特解可通过待定系数法来确定。
例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1)中确定出系数即可。
信号分析第五章第三节 常系数线性差分方程的求解法
![信号分析第五章第三节 常系数线性差分方程的求解法](https://img.taocdn.com/s3/m/ded0342fbd64783e09122b7d.png)
X
第 5 页
例5-3-1 已知y(k ) + 3 y(k − 1) + 2 y(k − 2) = x(k), 且y(0) = 0, y(1) = 2, x(k) = 2k ε (k), 求y(k)。
将差分方程变化为: 将差分方程变化为: y(k ) = −3y(k − 1) − 2 y(k − 2) + x(k) k = 2 y(2) = −3y(1) − 2 y(0) + x(2) = −2
提问:以上求解方法用 有问题吗 书上方法) 提问 以上求解方法用0-有问题吗 书上方法 以上求解方法用 有问题吗?(书上方法
X
第 1系数要用系统的 +值即 确定自由响应的待定系数要用系统的0 值即y(0),y(1) 确定自由响应的待定系数要用系统的 由差分方程从y(-1),y(-2)递推出 递推出y(0),y(1). 由差分方程从 递推出
k
y a 说明序列 (k)是一个公比为 1的几何级数可表示为 式中, 为常数, 定 A 式中, 为常数,由初始条件确
X
第 8 页
根据特征根(或解)的三种情况讨论
y(k) + a1 y(k − 1) + LL + an−1 y(k − n + 1) + an y(k − n) = 0
特征方程: 1 + a1r + a2 r + L + an r
2.零状态响应:系统初始状态为0,即
第 17 页
例5-3-6
y(k ) − 4 y(k − 1) + 3 y(k − 2) = 2k 已知: 已知: (其中k ≥ 0) y(− 1) = −1, y(−2) = 1 态响应法求解 利用零输入响应和零状
差分方程_精品文档
![差分方程_精品文档](https://img.taocdn.com/s3/m/c308c3760166f5335a8102d276a20029bc646378.png)
程)法。本节主要讲述前3种方法,后2种方法将在后续章节中讲
解。
一、差分方程的初值问题(边界条件)
二、差分方程的解法(前3种方法)
三、传输算子的概念
返回
一、差分方程的初值问题(边界条件)
相应于连续时间系统中的起始条件和初始条件, 在离散时间系统中存在着起始样值与初始样值。
起始样值即在激励信号加入之前系统已具有的 一组样值, 以符号y-(n)表示。
返回
例7-4-6 已知 y(n)+2y(n-1) =5u(n), 且y(-1) =1,
求完全解。
特征方程 a +2=0 a = -2
齐次解
yhn C1 2n
特解
因为x(n)=5u(n), n³0时为5(常数)
所以 yp(n) =D
代入原方程求特解 D+2D =5 (n 0)
完全解
所以 D 5
“E”表示将序列超前一个单位时间的运算。 E也称为移
序算子,利用移序算子可y(n写-1)出= 1: y(n)
对y于(n差+分1方)=程Eyy((nn)+1)
-
ay(n)
E
=x(n)
可改写为: (E - a)y(n) =x(n)
对于二例,可以引入
传输算子 HE 1
于是有:
Ea
而对于方程式 y(n) - ay(n-1) =x(n -1)
N
akCa nk 0
k 0
消去常数C,逐项除以a n-N 并化简得:
a0a N+a1a N-1+……+ aN-1a + aN=0
该式称为差分方程的特征方程,特征方程的根a1. a2 、……、 aN称为差分方程的特征根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解差分方程的三种基本方法
一、引言
差分方程是数学中的一种重要的方程类型,它描述了随时间变化的某一物理量的变化规律。
求解差分方程是数学中的一个重要问题,本文将介绍求解差分方程的三种基本方法。
二、递推法
递推法是求解差分方程最常用的方法之一。
递推法的基本思想是从已知条件开始,通过不断地递推求出未知条件。
具体步骤如下:
1. 将差分方程转化为递推关系式。
2. 根据已知条件确定初始值。
3. 通过递推关系式不断计算出后续值,直到得到所需的未知条件。
4. 验证得到的结果是否符合原来的差分方程。
三、特征根法
特征根法也称为特征值法或本征值法,它是求解线性齐次差分方程最
常用的方法之一。
特征根法的基本思想是通过求解差分方程对应齐次
线性常系数微分方程所对应的特征方程来得到其通解。
具体步骤如下:
1. 将差分方程转化为对应齐次线性常系数微分方程。
2. 求出该微分方程对应的特征方程。
3. 求解特征方程得到其特征根。
4. 根据特征根求出微分方程的通解。
5. 将通解转化为差分方程的通解。
四、拉普拉斯变换法
拉普拉斯变换法是求解非齐次差分方程最常用的方法之一。
拉普拉斯
变换法的基本思想是将差分方程转化为对应的积分方程,并通过求解
积分方程来得到其通解。
具体步骤如下:
1. 对差分方程进行拉普拉斯变换,将其转化为对应的积分方程。
2. 求解积分方程得到其通解。
3. 对通解进行反变换,得到差分方程的通解。
五、总结
本文介绍了求解差分方程的三种基本方法:递推法、特征根法和拉普拉斯变换法。
其中递推法适用于求解线性或非线性齐次或非齐次差分方程;特征根法适用于求解线性齐次差分方程;而拉普拉斯变换法则适用于求解非齐次差分方程。
在实际问题中,我们可以根据具体情况选择合适的方法进行求解。