比例分配应用题及答案
按比例分配应用题(3)
按比例分配应用题(3)1、光辉水果店运来一批苹果、梨子和橘子。
已知运来苹果与梨子数量的比是5:4,运来橘子与梨子数量的比是3:2,又知道运来的橘子比苹果多75千克。
光辉水果店运来苹果、梨子和橘子分别千克,千克,千克。
2、小翠和小文合打一份共192页的文件,如果小翠单独打,需要7小时完成,如果小文单独打,需要5小时完成。
完成时,小翠和小文分别打了页,页。
3、甲乙两个工程队同修一条公路。
如果甲工程队单独修,需要18天完成,乙工程队单独修,需要21天完成。
如果这条公路长136.5米,完成时,甲乙工程队分别修了米,米。
4、慢车从甲地开往乙地需要9小时,快车从乙地开往甲地比慢车少用1.8小时。
已知甲乙两地相距432千米,两车同时从甲乙两地相向而行,相遇时,慢车行了千米,快车行了千米。
5、甲乙两地相距451千米,货车从甲地开往乙地,2小时行了全程的23,客车从乙地开往甲地,3小时行了全程的56,两车同时从甲乙两地相向而行,相遇时,货车和客车分别行了千米,千米。
6、师徒俩共同加工一批零件,需要223小时完成,如果师傅单独加工,需要445小时完成。
已知这批零件共有387个,完成时,师傅加工了个,徒弟加工了个。
7、甲乙两人共同打一份文件,甲每小时打12页,乙单独打10.5小时可以完成。
已知任务完成时,甲乙所打页数的比是3:4,甲打了页,乙打了页。
8、货车从甲地开往乙地需要11小时,客车从乙地开往甲地,平均每小时行45千米,现货车与客车同时从甲乙两地相向而行,相遇时,货车与客车所行路程的比是6:5,货车行了千米,客车行了千米。
9、甲乙两个工程队共同承包一项修路工程,甲工程队单独需要18天完成,乙工程队每天修路72米,工程完成时,甲乙工程队修路米数的比是5:3,甲修了米,乙修了米。
10、一个三层书架共放288本书。
已知第一、二层书架书本数的比是8:7,又知道第三层书架比第二层书架多放24本书。
这个书架第一、第二、第三层分别放了书本,本,本。
六年级数学上册按比例分配应用题
六年级数学上册按比例分配应用题1.甲、乙两人每天共做56个机器零件,甲、乙工作效率的比是3:5,问甲、乙两人每天各做多少个零件?解析:设甲每天做3x个零件,乙每天做5x个零件,则3x+5x=56,解得x=8,因此甲每天做24个零件,乙每天做40个零件。
2.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需要石灰多少千克?解析:石灰和水的比是1:100,因此需要的水量是4545千克/100=45.45千克,石灰的重量也是45.45千克。
3.体育室有60根跳绳,按人数分配给甲乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?解析:甲班分得的跳绳数量是60×(42/90)=28根,乙班分得的跳绳数量是60×(48/90)=32根。
4.一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?解析:设分子为3x,分母为7x,则3x+7x=80,解得x=8,因此分子是24,分母是56,这个分数是24/56.5.一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?解析:设长为3x,宽为2x,则周长为2(3x+2x)=10x,解得x=20,因此长为60米,宽为40米,面积是2400平方米。
6.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?解析:设甲车间的人数为5x,乙车间的人数为7x,则5x+7x=2×36,解得x=3.6,因此甲车间有18人,乙车间有25.2人,约为25人。
7.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?解析:设水泥、沙子、石子的比为2x:3x:5x,则2x+3x+5x=96,解得x=8,因此水泥需要16吨,沙子需要24吨,石子需要40吨。
8.一种药水是用药物和水按3:400配制成的。
1)要配制这种药水1612千克,需要药粉多少千克?2)用水60千克,需要药粉多少千克?3)用48千克药粉,可配制成多少千克的药水?解析:(1)药物和水的比是3:400,因此需要的药物重量是1612千克×(3/403)=12千克。
按比例分配应用题
按比例分配应用题(1)1、水果店运来苹果和梨共540千克,已知苹果和梨的比是7:2,水果店运来苹果和梨各多少千克?2、某建筑工地需要配制5580吨混凝土,水泥、沙子和石子的比是2:3:4,需要水泥、沙子和石子各多少吨?3、已知甲乙两数的和是208,两数的比是7:9,甲乙两数各是多少?4、已知一块长方形菜地的周长是49米,又知道长与宽的比5:2,求这块菜地的长与宽各是多少?5、一根铜线分作三段,第一段占全长的25,正好是30米,余下的第二、三段的长度的比是3:2。
第二、三段各长多少米?6、华工厂有三个车间,第一车间有工人225人,第二、第三车间工人人数的比是7:11,占全厂人数的23。
三个车间各有工人多少人?7、学校图书馆有科技读物、儿童读物和文艺类读物三种书。
已知这三类读物本数的比是2:5:3,又知道儿童读物有250本,科技读物和文艺类读物各有多少本?8、甲乙两人1小时加工零件数的比是8:9。
已知甲比乙少生产4个零件,甲乙两人1小时各生产多少个零件?9、一块长方形菜地,长和宽的比是8:5,长比宽长7.2米,这块菜地的面积是多少平方米?10、甲乙两地相距252千米,货车从甲地开往乙地需要7小时,客车从乙地开往甲地需要8小时,两车同时从甲乙两地相向而行,相遇时,两车各行了多少千米?11、师徒俩共同加工一批零件。
已知师傅加工这批需要8.4小时,徒弟加工这批零件比师傅多用5.6小时。
如果这批零件共有576个,则师傅和徒弟各加工零件多少个?12、甲乙两人共同加工一批零件。
甲每天加工48个,乙单独加工15天可以完成。
完成任务时,甲乙加工的零件数的比是4:5。
甲乙两人各加工多少个零件?13、春燕小学六年级有3个班,共有142个学生。
乙知一班和二班学生人数的比是12:11,又知道三班比二班多6人,春燕小学六年级一、二、三班各有学生多少人?14、甲乙丙三个仓库共有化肥280.5吨,已知甲仓库与乙仓库化肥存量的比是6:7,又知道丙仓库比甲仓库少33吨,甲乙丙三个仓库各存化肥多少吨?15、甲乙丙三人共同加工一批零件。
比例的应用题六年级
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
六下数学 第四单元 比例 应用题专项训练70题 非常完整版带答案
第四单元 比例 应用题专项训练1、用图中的4个数据可以组成多少个比例?3:1.5=4:2 1.5:3=2:43:4=1.5:2 4:3=2:1.52:1.5=4:3 1.5:2=3:42:4=1.5:3 4:2=3:1.52、已知24×3=8×9,根据比例的基本性质,你能写出比例吗?你能写几个? 24:8=9:3 24:9=8:3 3:8=9:24 3:9=8:248:3=24:9 8:24=3:9 9:3=24:8 9:24=3:83、用6,12,15再配上一个数组成比例。
设再配上的数为x①6x=12×15 x=30②12x=6×15 x=7.5③15x=6×12 x=4.84、两个比的比值都是23,它们组成比例的外项分别是41和91,请你写出这个比例。
41:( a )=( b ):91=23 则a=41÷23=61 b=23×91=61 所以这个比例为41:61=61 :915、用右图中的4个数字组成比例,你可以组成多少个比例?首先根据两种方法求出三角形的面积:5×2.4=4×3,再写出比例式6、已知24×3=8×9,根据比例的基本性质,你能写出比例吗?你能写几个? 24:8=9:3 24:9=8:33:8=9:24 3:9=8:248:3=24:9 8:24=3:99:3=24:8 9:24=3:87、相同质量的水和冰的体积之比是9:10。
一块体积是50dm3的冰,化成水后的体积是多少?设化成水后的体积是 x dm3。
X/50=9/10x=458、李老师买了6个足球和8个篮球,买两种球所花钱数相等。
(1)足球与篮球的单价之比是多少?4:3(2)足球的单价是40元,篮球的单价是多少?解:篮球的单价是x 元40:x =4:3x =309、新堂小区1号楼的实际高度是38米,它的高度与模型高度的比是500 :1 。
按比例分配应用题
按比例分配应用题1、学校买来故事书和科技书840本,故事书和科技书数量的比是5∶3。
两种书各买了多少本?2、甲、乙、丙三个队共修一条长9300米的公路,按各队人数分配任务。
甲队有45人,乙队有60人,丙队有50人。
三个队各应修路多少米?3、工人用6份砂子、4份水泥和10份石子配制一种混凝土,一次要配制5000千克。
需要砂子、水泥和石子各多少千克?4、三角形三条边长的和是108厘米,三条边的比是3∶4∶5。
三条边各长多少厘米?5、有840吨货物,分给两个运输队运出去。
甲队有载重5吨的汽车12辆,乙队有载重3吨的汽车15辆。
按两个队的运输能力分配,甲、乙两队各应运货物多少吨?6、一个长方形的周长84厘米,长与宽的比是4∶3。
这个长方形的长和宽各是多少厘米?7、甲、乙、丙三个数的和是210。
甲数和乙数的比是2∶3,乙数和丙数的比是4∶5。
甲、乙、丙三个数各是多少?8、把一批图书按4∶5∶6分借给甲、乙、丙三个班。
已知甲班比丙班少分得24本。
三个班各分得多少本?9、生产同样数量的零件,甲需要3小时,乙需要4小时。
现在两个人在一段时间里共生产了零件630个。
甲、乙两个人各生产多少个?10、两个城市相距380千米,一列客车和一列货车同时从两城市相对开出,经过4小时相遇。
客车和货车的速度的比是11∶8。
客车和货车每小时各行多少千米?11、图书室把540本4∶5借给三年级和四年级的学生。
每个年级各分到图书多少本?、12、有630棵树苗,按3∶4分配给甲、乙两个绿化队。
两队各应种多少棵?13、一个三角形,三个内角度数的比是1∶2∶3,这三个角分别是多少度?14、42人到面积分别是60平方米、80平方米的菜园去除草。
如果按面积大小分配人员,这两处菜园各应去多少人除草?15、4户居民共用一个水表,各户水费按人口数分摊。
赵家4人,钱家3人,孙家6人,李家2人。
4家共付水费60元。
各户应付水费多少元?16、学校把864本练习本按人数分配六年级三个班。
按比例分配应用题 参考答案
按比例分配应用题参考答案典题探究一.基本知识点:二.解题方法:例1.六年级(2)班有学生48人,男生与总人数的比是5:8,则女生有()人.A.30 B.18 C.25考点:按比例分配应用题.专题:比和比例应用题.分析:“男生与总人数的比是5:8”,则女生占了总人数的,总人数已知是48人,就是求48的是多少.据此解答.解答:解:48×=18(人)答:女生有18人.故选:B.点评:本题的重点是求出女生人数占总数的几分之几,再根据分数乘法的意义列式解答.例2.甲、乙、丙三个数的比是3:4:5,这三个数的平均数是48,乙数是()A.48 B.36 C.12 D.60考点:按比例分配应用题.专题:比和比例应用题.分析:“甲、乙、丙三个数的比是3:4:5”,则乙数占了三个数总和的,这三个数的和是48×3=144.据此解答.解答:解:48×3=144144×=48答:乙数是48.故选:A.点评:本题的重点是求出乙占了三个数和的几分之几,再求出三个数的和是多少,然后根据分数乘法的意义列式解答.例3.欢欢看一本80页的书,已看的页数和剩下的页数比是7:5,欢欢大约看了()页.A.7B.47 C.56考点:按比例分配应用题;比的应用.专题:比和比例应用题.分析:由“已看的页数和剩下的页数比是7:5”,可求出已看的页数占总页数的,然后根据总页数,解决问题.解答:解:7+5=12,80×=80×≈47(页).答:欢欢大约看了47页.故选:B点评:本题关健是先通过“已看的页数和剩下的页数比“求出已看的页数占总页数的几分之几,用按比例分配的方法,解决问题.例4.一批货物按2:3:5分配给甲、乙、丙三个商店.丙商店分得这批货物的,乙商店分得这批货物的30%.考点:按比例分配应用题.分析:把这批货物的总重量看做单位“1”,也就是要分配的总量,是按照甲、乙、丙三个商店的质量比为2:3:5进行分配的,先求出三个商店分得的总份数,进一步用按比例分配的方法求出三家商店各分得这批货物的几分之几,进而确定哪家商店分得这批货物的,进一步把乙商店分得这批货物的几分之几改写成百分数即可.解答:解:三个商店分得的总份数:2+3+5=10(份),甲商店分得:1×=,乙商店分得:1×==0.3=30%,丙商店分得,1×==;答:丙商店分得这批货物的,乙商店分得这批货物的30%.故答案为:丙,30.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,没有具体的数量,就看作单位“1”.演练方阵A档(巩固专练)1.在50千克盐水中,盐和水的比是1:9,盐是()千克.A.1:10 B.1:9 C.5D.5考点:按比例分配应用题.专题:比和比例应用题.分析:盐和水的比是1:9,则盐就占了盐水的,已知盐水重50千克,用乘法可求出盐的重量.据此解答.解答:解:50×=5(千克)答:盐是5千克.故选:D.点评:本题的重点是根据比与分数的关系求出盐占了盐水的几分之几,再根据求一个数的几分之几是多少用乘法计算.2.一个三角形,3个内角度数之比是2:5:2,这个三角形是()三角形.A.锐角B.钝角C.直角D.等边考点:按比例分配应用题;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得最大角的度数,由此判断三角形的类型.解答:解;2+5+2=9180×=100(度);答:这个三角形是钝角三角形;故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.3.甲、乙、丙三数之比为2:7:9,这三个数的平均数为24,则甲数是()A.8B.16 C.32 D.64考点:按比例分配应用题.专题:比和比例应用题.分析:根据这三个数的平均数为24,可得这三个数的和是24×3=72,求出这三个数的总份数及甲数占总份数的几分之几,根据求一个数的几分之几是多少用乘法计算.解答:解:2+7+9=1872×=8故选:A.点评:根据平均数求出总数,利用求一个数的几分之几是多少用乘法计算是解决此题的关键.4.一个三角形三个内角度数的比是3:2:1,这是一个()三角形.A.锐角B.直角C.钝角D.无法确定考点:按比例分配应用题;三角形的分类.专题:比和比例应用题.分析:因为三角形的内角度数和是180°,三角形的最大的角的度数占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.最大的角:180°×=90°所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.5.从直角的顶点引一条射线,把直角分成两个角,使它们的度数之比为2:3,其中较大角的度数是()A.36°B.54°C.18°D.108°考点:按比例分配应用题.专题:比和比例应用题.分析:把直角分成两个角,使它们的度数之比为2:3,就是把90度按照2:3进行分配,那么较大的角就占,根据一个数乘分数的意义,求出较大角.解答:解:2+3=5;90°×=54°;答:较大的角是54°.故选:B.点评:解答此题应明确直角是90°,求出总份数,然后求出较大角占的分率,再根据分数乘法的意义求解.6.把140本书按一定的比分给2个班,合适的比是()A.4:5 B.3:4 C.5:6考点:按比例分配应用题;比的应用.专题:压轴题.分析:把140本书按一定的比分给2个班,如果按4:5分,就是把140平均分成4+5=9(份),一个班分4份,一个班分5份,140不能被9整除;如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;如果按5:6分,就是把140平均分成5+6=11(份),一个班分5份,一个班分6份,140不能被11整除.解答:解:根据分析,如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;故选:B点评:本题是考查按比例分配的实际应用,培养学生应用所学知识解决问题的能力.7.已知甲数与乙数的比是2:7,甲乙两数的和是36,甲数比乙数少()A.16 B.18 C.20 D.22考点:按比例分配应用题.分析:根据题意可知:乙数占两数和的,乙数占两数和的,甲数比乙数少两数和的(﹣),进而根据一个数乘分数的意义,解答即可.36×(﹣),=36×,=20;故选:C.点评:解答此题的关键:判断出单位“1”,先求出甲数比乙数少两数和的几分之几,进而根据一个数乘分数的意义,解答即可.8.把600本书按3:5分给五、六年级,六年级分到()本.A.150 B.225 C.300 D.375考点:按比例分配应用题.分析:此题要分配的总量是600本书,是按照五、六年级的本数比为3:5进行分配,先求出五、六年级分得本数的总份数,进一步求出六年级分得的本数占总本数的几分之几,最后求得六年级分得的本数,列式解答后再选择即可.解答:解:总份数:3+5=8(份),六年级分得的本数:600×=375(本);答:六年级分到375本.故选:D.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,再看此总量是按照什么比例进行分配的,再进一步按照比例分配的方法求出其中的一个量.9.六一班有学生50人,六二班有学生40人,两个班共植树36棵,要合理分配任务,六一班应植树几棵?正确列式是()A.B.C.D.考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:要合理分配任务,也就是按照两个班的学生人数进行分配.先求出两个班一共有多少人,再求出六一班学生人数占两个班总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解答:解:50+40=90(人),36×=20(棵),答:六一班应植树20棵.故选:C.点评:此题解答关键是理解只有按两个班的人数的多少进行分配才合理.根据按比例分配的方法解答.10.被减数、减数与差的和是80,差与减数的比是5:3,差是()A.50 B.25 C.15考点:按比例分配应用题.分析:由于被减数=减数+差,所以根据“被减数、减数与差的和是80,”可求出减数和差的和,再由“差与减数的比是5:3,”可找到总数和总份数,即可求出一份.解答:解:(80÷2)÷(5+3)=40÷8=55×5=25故选B点评:找准总数,找准把总数分成的总份数,求出一份是多少.即可解答.B档(提升精练)1.把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分()吨.A.28 B.7C.14 D.21考点:按比例分配应用题.分析:根据总数是63吨,总份数是4+2+3,可求出一份是多少,再根据甲乡比乙乡多(4﹣2)份,即可求出甲乡比乙乡多分的吨数.解答:解:63÷(4+2+3)×(4﹣2)=63÷9×2=7×2=14(吨)答:故选C.点评:找准总数,找准把总数分成的总份数,再求出一份是多少.2.长方形的周长是48厘米,长与宽的比是3:5,它的面积是()平方厘米.A.270 B.135 C.540考点:按比例分配应用题;长方形、正方形的面积.专题:比和比例应用题;平面图形的认识与计算.分析:先求出长与宽的总份数,再求出长与宽占总数的几分之几,分别求出长与宽,进一步求出面积.解答:解:长与宽的总份数:3+5=8(份),48÷2×=9(厘米),48÷2×=15(厘米).面积:9×15=135(平方厘米).答:面积是135平方厘米.故选B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.3.一个等腰三角形的周长是120厘米,相邻两条边长度的比是2:1,这个等腰三角形的底是()A.60厘米B.48厘米C.30厘米D.24厘米考点:按比例分配应用题;等腰三角形与等边三角形.专题:压轴题.分析:由题意可知“等腰三角形相邻两条边长度的比是2:1”,根据三角形边的关系“三角形的两边之和大于第三边,两边之差小于第三边”,所以腰的长度大于底的长度,即:腰的长度:底的长度=2:1;这样把三角形的周长分成了2+2+1=5(份),底占其中的1份,底是周长的;知道周长求底,根据题意列式计算即可.解答:解:120×,=120×,=24(厘米);即:三角形的底是24厘米.故选:D.点评:解答此题先根据三角形边的关系确定腰和底的比,再求出周长的总份数,最后求底的长度.4.一个三角形三个角度数的比是2:2:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形考点:按比例分配应用题;三角形的分类.分析:三角形的内角和是180°,根据比例求出这三个角各是多少度,再根据角的度数判断是什么样的三角形.解答:解:总份数:2+2+5=9(份);这三个角的最大角是:180°×=100°;100°>90°;这个三角形是钝角三角形.故答案选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.甲、乙、丙三人储蓄钱数的比是1:2:3,他们储蓄钱数的平均数是50元,乙储蓄了()元.A.50 B.100 C.150考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:根据“甲乙丙三人储蓄钱数之比是1:2:3”,求得甲乙丙储蓄钱数的总份数,再求得乙储蓄的钱数占总数的几分之几;根据“他们储蓄钱数的平均数是50元”,求得三人储蓄的总钱数;最后求得乙储蓄的钱数,列式解答即可.解答:解:甲乙丙储蓄钱数的总份数:1+2+3=6(份);三人储蓄的总钱数:50×3=150(元);乙储蓄的钱数:150×=50(元).答:乙储蓄了50元.故选:A.点评:此题主要考查按比例分配应用题的特点:已知三个数的比,三个数的和,求其中的一个数,用按比例分配解答.6.把126吨化肥,按4:3:2分配给甲、乙、丙三个村,甲村比丙村多分化肥()吨.A.14 B.28 C.42考点:按比例分配应用题.专题:比和比例应用题.分析:根据总数是126吨,总份数是4+3+2,可求出一份是多少,再根据甲村比丙村多(4﹣2)份,即可求出甲村比丙村多分的吨数.解答:解:126÷(4+3+2)×(4﹣2)=126÷9×2=28(吨)答:甲村比丙村多分化肥28吨.故选:B.点评:找准总数,找准把总数分成的总份数,再求出一份是多少,进而解决问题.7.甲、乙、丙三个数的和为300,甲数为120,乙数和丙数的比是5:4,丙数是()A.180 B.100 C.80考点:按比例分配应用题.专题:比和比例.分析:乙数和丙数的比是5:4,根据比与分数的关系可知:丙数就占乙丙两数和,乙丙两数的和是(300﹣120).据此解答.解答:解:(300﹣120)×,=180×,=80.答:丙数是80.故选:C.点评:本题的关键是根据比与分数的关系求出丙占乙丙两数和的几分之几,再求出乙丙两数的和是多少,然后根据分数乘法的意义列式解答.8.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,结果A做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出480元给A、B、C三人作为报酬,若按天数计算劳务费,则这480元中A应该分()元.A.180 B.192 C.200 D.320考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意可知:他们一共做了6+5+4+1=16天,那么平均算下来,16÷4=4天,一个人就要做四天,但D做了一天因事请假,他做了一天,就少做了3天,则A多做了6﹣4=2天,B多做了一天,那么那48元是给多做天数的报酬,一共多做了3天,就用报酬费480÷3=160元,一天就要给160元,A多做了2天,就用160×2=320元即可解决.解答:解:一共做的天数:6+5+4+1=16(天)平均每人做的天数:16÷4=4(天)A多做的天数:6﹣4=2(天)B多做的天数:5﹣4=1(天)一共多做的天数:2+1=3(天)A应得480÷3×2=320(元),答:这480元应分给A320元.故选:D.点评:解答此题的关键是先求出一共做的天数,从而知道平均每人要做的天数,再求出A多做了几天,就把D少做3天的酬劳平均分成3份,即可求出.9.已知A+B=80,A:B=3:5,则A、B分别是()A.30、48 B.50、30 C.30、50考点:按比例分配应用题.分析:首先求得A、B两数的总份数,再分别求得A、B所占总数的几分之几,最后求得A、B两个数,列式解答即可.解答:解:总份数:3+5=8(份),数A:80×=30,数B:80×=50,或80﹣30=50.答:则A是30,B是50.故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比与两个数的和,求这两个数,用按比例分配的方法解答.10.绿化队准备植树96棵,按7:8:9的比例分配给甲、乙、丙三个小组.甲组应植树()棵.A.36 B.32 C.28 D.26考点:按比例分配应用题.专题:比和比例应用题.分析:由题意可得:甲组植树的棵数占植树总棵数的,把植树总棵数看作单位“1”,根据一个数乘分数的意义,用乘法解答即可.解答:解:7+8+9=24,96×=28(棵);答:甲组应植树28棵;故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.C档(跨越导练)1.一个分数的分子分母和是132,约分后为,原分数是()A.B.C.考点:按比例分配应用题.专题:压轴题.分析:解答此题先求分子和分母的和的总份数,再求1份是多少,然后求分子和分母分别是多少,最后写出这个分数.解答:解:总份数:4+7=11(份),一份:132÷11=12,分子:4×12=48,分母:7×12=84.即:这个分数是.故选:B.点评:此题主要考查按比例分配,解答此题先求分子、分母和的总份数,再求其中的1份是多少,最后求分子、分母分别是多少.2.一个最简真分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是,原来的分数是()A.B.C.D.考点:按比例分配应用题.分析:这个最简分数的分子、分母分别减去5之后,所得分数的分子、分母之和为(50﹣5﹣5)40.因为所得分数的值是,根据比例分配,则:所得分数的分子为:40×=16,分母为:40×=24.故:原分数为:=.解答:解:(50﹣5﹣5)×,=40×,=16;40×,=24.,=.故选:B.点评:解答此题的关键是求所得分数的分子、分母之和;重点是根据比例分配,求出所得现在分数的分子、分母分别占和的几分之几.3.把1些树苗按2:3:5分配给一班、二班、三班的学生去种植,一班比三班的树苗少()%.A.60 B.40 C.20考点:按比例分配应用题;百分数的实际应用.专题:比和比例应用题.分析:用一班比三班少的份数除以三班的份数,就是一班比三班少百分之几.据此解答.解答:解:(5﹣2)÷5,=3÷5,=60%.答:一班比三班的树苗少60%.故选:A.点评:本题的关键是根据比与除法的关系来进行解答.4.某电器商店有180台电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50 B.100 C.80考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意,首先求出总份数,再求出彩电占总数量的几分之几,根据一个数乘分数的意义,有乘法解答.解答:解:180×=100(台);答:彩电有100台.故选:B.点评:此题考查的目的是让学生掌握按比例分配应用题的特点及解答规律,已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.一种混合糖中甲、乙两种糖的比是2:3,现加入甲糖120千克,乙糖40千克,得到混合糖660千克,新混合糖中甲、乙两种糖的比是()A.15:16 B.16:17 C.16:15 D.15:17考点:按比例分配应用题;比的意义.分析:根据题意“现加入甲糖120千克,乙糖40千克,得到混合糖660千克”得到加入糖之前甲、乙两种糖的和:660﹣(120+40)=500克,再根据题意求得甲、乙两种糖的总份数,然后分别求得甲、乙两种糖各占总分数的几分之几,最后分别求得加入糖之前甲、乙两种糖的质量,用原来两种糖的质量分别加上加入糖的质量,求出新混合糖种甲乙两种糖分别是多少,再求比并化简,列式解答即可.解答:解:加入糖之前甲、乙两种糖的和:660﹣(120+40),=660﹣160,=500(千克),总分数:2+3=5(份),加入糖之前甲、乙两种糖的质量分别是:500×=200(千克),600×=300(千克),新混合糖中甲、乙两种糖的质量分别是:200+120=320(千克),300+40=340(千克),新混合糖甲、乙两种糖的比:320:340,=(320÷20):(340÷20),=16:17.答:新混合糖中甲、乙两种的比16:17.故选:B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比和两个数的和,在这里需根据题意求这两个数得和,用现在糖的质量减去加入糖的质量,用按比例分配的方法解答.6.甲、乙、丙三个数的平均数是19,甲、乙两数的比是3:4,丙比甲少3,甲是()A.24 B.18 C.15考点:按比例分配应用题.分析:根据“甲、乙、丙三个数的平均数是19”,可求出三个数的和为57,再根据“丙比甲少3”,可假设丙和甲一样也占3份,那么三个数的和就成为(57+3),先求出三个数的总份数,再求出甲数占三个数和的几分之几,进而求出甲数的数值即可.解答:解:三个数的和:19×3=57,丙和甲一样也占3份时,三个数的和为:57+3=60,总份数:3+4+3=10(份),甲数为:60×=18;答:甲数是18.故选:B.点评:此题属于考查按比例分配的应用题,解决此题关键是把丙和甲看的一样多,都占3份时,三个数的和是多少,作为要分配的总量,进而按照3:4:3进行分配,再用按比例分配的方法进行解答.7.下面的说法正确的是()A.一个等腰三角形的周长是108厘米,其中两条边的比是2:5,腰为24或45厘米B.一种彩票的中奖率是1%,爸爸买了100张这种彩票,爸爸一定会有1次中奖C.相关联的两个量X、Y,Y=X,那么Y和X成正比例考点:按比例分配应用题;辨识成正比例的量与成反比例的量;简单事件发生的可能性求解.专题:比和比例;比和比例应用题;可能性.分析:(1)根据三角形的特性:三角形的任意两条边之和一定大于第三条边,可知等腰三角形三条边的比为2:5:5,不会是2:2:5,按比例分配求出腰即可判断;(2)一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大;(3)由Y=X,变式可得出=4,根据正比例的意义作出判断.解答:解:A.因为:三角形的任意两条边之和一定大于第三条边,所以等腰三角形三条边的比为2:5:5,108×=45(厘米),因此腰为24厘米不对;B.一种彩票的中奖率是1%,买100张彩票一定有1张中奖的说法错误.C.Y=X,=4,比值一定,所以Y和X成正比例,是正确的;故选:C.点评:此题主要考查了概率的意义,以及等腰三角形的性质和正比例的意义等知识.8.下面说法正确的是()A.一个三角形内角度数的比是1:2:3,这是个锐角三角形B.国际儿童节和国庆节都在大月C.同一个平面内,永不相交的两条直线叫做平行线D.在生活中,知道了物体的方向,就能确定物体的位置考点:按比例分配应用题;年、月、日及其关系、单位换算与计算;垂直与平行的特征及性质;三角形的分类;三角形的内角和;方向.专题:综合判断题.分析:(1)根据三角形内角和是180度,按比例分配求出最大角的度数,即可判断;(2)知道一年中1、3、5、7、8、10、12是大月,再知道儿童节和国庆节在哪个月,即可得解;(3)根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,即可判断;(4)物体位置对于某一观察点来说,是由一定的方向和距离确定的,只知道方向或距离不能确定物体的位置.判断即可.解答:解;A.180×=90°,所以是直角三角形而不是锐角三角形;B.国际儿童节是6月1日,国庆节是10月1日,6月是小月,10月是大月,所以国际儿童节和国庆节都在大月错误;C.在同一平面内,不相交的两条直线叫做平行线,是正确的;D.对于某一观察点来说,知道了物体的方向和距离就可以确定物体的位置,只知道方向或距离不能确定物体的位置.故选c.点评:此题主要考查的知识:平行线的定义,一年中哪些是大月和小月,节日的日期,以及要确定一物体的位置,必须知道方向和距离.9.甲、乙、丙三人的平均体重是50千克,他们的体重的比是4:3:3,甲的体重是()A.50×3×B.50×C.50×D.50×3×考点:按比例分配应用题.分析:根据题意,三人的总体重为50×3=150(千克),甲的体重占三人总体重的,根据一个数乘分数的意义,列式即可.解答:解:甲的体重是:50×3×;故选:A.点评:解答此题的关键是找准对应量,找出数量关系,根据数量关系,用按比例分配解答.10.水是由氢和氧按1:8的重量化合而成的,72千克水中,含氢和氧各()A.1千克,71千克B.8千克,64千克C.9千克,63千克D.63千克,9千克考点:按比例分配应用题.专题:比和比例应用题.分析:因为氢和氧按1:8化合成水,氢占水的,氧占水的,然后用乘法解答即可.解答:解:72×=8(千克)72×=64(千克);答:含氢和氧分别有8千克、64千克;故选:B.点评:本题的关键是分别求出氢和氧各占水的几分之几,然后再根据一个数乘分数的意义,用乘法列式解答.。
比例以及比例尺应用题(含答案)
比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题――比例问题(1)年级姓名一、填空题 1. 4:( )=设4:x=16=( )?10=( )% 2021?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=0.5(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为20.4亩、0.8亩、0.4亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161???设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?2331112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?0.5=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。
按比例分配应用题
按比例分配应用题
1、甲、乙两车间的平均人数是156人,两个间的人数比是5:7,甲、乙两车间各有多少人?
2、学校购买图书800册,高年级分配其中的
41,余下按3:1的比例分配给中低年级,中低年级各分得多少本?
3、水果店运来苹果、橘子和梨共435千克,如果橘子增加15千克,这三种水果重量的比是15:7:8
问橘子原来运来多少千克?
4、把一批书按4:5:6的比例分给甲乙丙三个班,已知甲班比丙班少分24本,三个班各分得多少本?
5、一个长方形的长和宽的比是3:2,如果长增加2米,这个新长方形的周长是24米,求这个新长方形的长与宽的比。
6、一次演讲比赛,有50名选手参加,其中有26人获奖,已知获二等奖的人数与获一等奖的人数比是4:1,获一等奖的人数是获三等奖人数的
81,获一等奖的有多少人?
7、修一条公路,已修的和没修的比是1:3,再修300米后,已修的和没修的比是1:2。
这条公路长多少米?
8、某工会男、女会员的比是3:2,公为甲乙丙三个组,已知甲乙丙三个组人数比为10:8:7,甲组中男女人数比为3:1,乙组中男女人数比为5:3,求丙组中男女会员的人数比。
9、甲乙丙三个村合修一条水渠,修完后甲乙丙村可浇灌的面积比是8:7:5。
原来三个村计划按可浇灌的面积比派出劳动力,后来因为丙村抽不出劳动力,经协商,丙村应抽出的劳动力由甲乙两村分担,丙村应付出1350元给甲乙两村,结果甲村共派出劳动力60人,乙村共派出40人,问甲乙两村各应分得多少元/。
按比例分配应用题课件
拓展与延伸:
1、长方形的周长的40M,长和宽的比是 4:1.长和宽各是多少? 2、甲、乙、丙三数的比是2﹕3﹕4, 平均数是12,三数各是多少?
2 9
,四年级种了多少棵?
(1)270×5/9=150(人) (2)180×2/9=4需要把一个数 量按照一定的比来进行分 配,这种分配方法通常叫 做按比例分配。
例1 :某种清洁剂浓缩液的稀释瓶,瓶上标 明的比是浓缩液和水的体积之比,若按 1﹕4的比配制500ML的稀释液,则浓缩液 和水的体积分别是多少?
2、某妇产医院上月新生婴儿303人, 男女婴儿人数之比是51﹕50,上月 新生男女婴儿各有多少人?
例2: 东岗小学把524本图书按照六年级三个
班的人数,分配给各班。一班有42人, 二班有45人,三班有44人。三个班各应 分得图书多少本?
524× 524× 524×
42
42+45+44
45 42+45+44 44 42+45+44
应用与提高
王伯伯家的菜地共800平方米,他 准备用2/5种南瓜,剩下的按2﹕1 的面积比种黄瓜和茄子,三种蔬 菜的面积分别是多少平方米?
南瓜: 800×2/5=320(平方米) 剩下面积:800-320=480(平方米) 黄瓜:480×2/(2+1)=320(平方米) 茄子:480×1/(2+1)=160(平方米)
216÷(2+3+4)=24(棵) 四年级:24×2=48(棵) 五年级:24×3=72(棵) 六年级:24×4=96(棵)
生活中的数学
一个足球的表面是由32块黑 色五边形和白色六边形皮围 成的,黑色皮和白色皮块数 比是3﹕5。两种颜色皮各有 多少块?
六年级数学按比分配应用题及答案
按比分配应用题及答案1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。
3、山羊和绵羊的头数比是2∶5,山羊40头。
山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)200÷100=2(根)52×2=104(根)48×2=96(根)答:一班可得跳绳104根,二班可得跳绳96根。
6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=1040÷10=44×4=166×4=24答:这个分数是24分之16。
7、一种药水是用药粉和水按1∶80配制成的。
⑴、40千克药粉,可配制成多少千克的药水?解:40×80=3200(千克)3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。
⑵、60千克水,需要药粉多少千克?解:60÷80=0.75(千克)答:60千克水,需要药粉0.75千克。
按比例分配应用题
1、一个长方形篮球场周长是100米,长与宽的比是13:7,这个篮球场的面积是多少平方米?
1,小班与大班所分苹果个数的比是按2∶3,2、有300个苹果,中班分的总数的
3
小班分得多少个苹果?
3、一本书125页,已看的页数和未看的页数的比是3:2,小红已经看了多少页?
4、某厂加工一批零件,加工的零件个数与未加工的比是5:7,加工的零件比
未加工的少120个,这批零件共有多少个?
5、用一根144厘米长的铁丝制成一个长方体,长、宽、高的比是3:4:5,这个长方体的体积是多少立方厘米?
6、一块长靠墙的菜地,长与宽的比是7:3,李爷爷用91米长的篱笆正好把菜地围起来,这块菜地的面积是多少平方米?
7、甲乙两地相距550千米,客车和货车分别从两地相向而行,5小时相遇,客车与货车的速度比是5:6,客车与货车的速度分别是多少?
8、丁丁、当当和冬冬三个人的平均体重是46千克,他们体重的比是
13:14:19,三个人的体重各是多少千克?
9、运送一批水泥,按3:4:5分给甲、乙、丙3个车队,甲队运了114吨,乙、丙两队各需运多少吨水泥?
10、一个等腰三角形,顶角和一个底角的度数比是6:3,它的顶角和一个底角各是多少度?
11、一种农药由水和药液按9:2的比例混合而成,现在有220千克农药,共需多少
药液?如果现有28千克药液可配制农药多少千克?。
按比例分配的应用题
() 1、母鸡只数与公鸡的比是4:3公鸡()份,母鸡()份,一共()份,()只数是()只数的() 2、六(2)班男生人数28人,女生人数21人。
男生人数与女生人数的比( )∶( ),男生人数()份,女生人数()份男生人数是女生的:女生人数是男生的:男生人数占全班人数的: 女生人数占全班人数的: 3、为了迎接校庆,我校准备购进一批彩旗,红旗、黄旗、蓝旗面数的比是3∶2∶1。
红旗占这批彩旗的: 黄旗占这批彩旗的: 蓝旗占这批彩旗的:4、给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3∶2。
两种颜色各涂多少格?(2)如果把图上的30个方格1∶2∶3涂成红、黄、绿三种颜色,你能算出三种颜色各应涂多少格?一种黄铜是由铜和锌按照3:7熔铸而成,生产这种黄铜12.5吨,需要锌和铜各多少吨?⑴生产这种黄铜共()吨。
⑵把这种黄铜共分()份。
⑶其中锌()份,占总份数的(),列式计算()。
⑷其中铜( ) 份,占总份数的( ) ,列式计算()。
5.新安小学把524本图书按照六年级三个班的人数,分配给各班。
一班有42人,二班有45人,三班有44人。
三个班各应分得图书多少本?解答方法是:(1)把比看成份数,先求出一份是多少,再根据比求出各部分量是多少。
(2)把比看成分数,先求出各部分量是总数的几分之几,再用分数乘法求出各部分量是多少。
1、小芳家养了28只鸡,公鸡和母鸡只数的比是2:5,公鸡和母鸡各有多少只?2、六一班和六二班订《少年科学》的人数比是3:4,两个班共订了49份。
两个班各订了多少份?3、新安小学参加植树活动,把216棵树按2:3:4分配给四、五、六三个年级。
每个年级各应植树多少棵?1、一个足球的表面是由32块黑色五边形和白色六边形皮围成的,黑色皮和白色皮块数比是3:5。
两种颜色皮各有多少块?把三角形分成两部分,使它们的面积比是1︰1,怎么分呢?把三角形分成两部分,使它们的面积比是1︰2 ,怎么分呢?把三角形分成两部分,使它们的面积比是2︰7 ,怎么分呢?信息1:11周岁的儿童,头与头部以下的高度比一般是2∶13,你能根据自己的身高,算出头部的长度吗?信息2:人体内血液与其他物质的比大约是1∶12,你能根据自己的体重,算出自己体内血液大约有多少千克?1.一批书共370本,把它按3︰7分给六1和六2班,两个班各分到多少本?2.一批书共370本,把它按2︰3︰5分给四五六年级,每个年级各分到多少本?3.一批书共370本,把它按男女生人数分给我班同学,男女生各分到多少本?4.鸡和鸭共有210只,鸡和鸭的只数比是2︰5,鸭有多少几只?鸡有210只,鸡和鸭的只数比是2︰5,鸭有多少几只?鸡比鸭少210只,鸡和鸭的只数比是2︰5,鸭有多少几只?5.等腰三角形的顶角与一个底角的比为2︰1,它的顶角是多少度?6.小红期中考试数学语文的平均分是80分,数学和语文的分数比是3︰2,她两门各考多少分?7.一根长80厘米的铁丝,做成一个长方体框架,长宽高的比是5︰3︰2,它的长宽高分别是多少厘米?8.长方形的周长是80厘米,长和宽的比是3︰2,它的面积是多少平方厘米?9.商店运来一批洗衣机,卖出80台,卖出的台数与剩下的比是2∶3,这批洗衣机一共有多少台?10.小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?11.加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
六年级数学按比分配应用题及答案
六年级数学按比分配应用题及答案1.将300本作业按照4:5:6的比例分配给四年级、五年级和六年级的同学,每个年级分别得到80本、100本、120本作业本。
2.假设一种生理盐水是将盐水和水按照1:100的比例配制而成的。
需要配制5050千克这种生理盐水,那么需要多少千克的盐水?答案是50千克。
3.山羊和绵羊的头数比是2:5,山羊有40头。
那么山羊和绵羊的总头数是多少?答案是140头。
4.假设一种石灰水是将石灰和水按照1:100的比例配制而成的。
需要配制5656千克这种石灰水,那么需要多少千克的石灰?答案是56千克。
5.体育室有200根跳绳,需要按照人数分配给六年级一班和二班。
一班有52人,二班有48人。
那么一班和二班各得多少根跳绳?答案是一班得到104根跳绳,二班得到96根跳绳。
6.一个分数,它的分子和分母的和是40,分子和分母的比是4:6.那么这个分数是多少?答案是24/16.7.假设一种药水是将药粉和水按照1:80的比例配制而成的。
⑴如果有40千克的药粉,那么可以配制多少千克的药水?答案是3240千克。
⑵如果有60千克的水,那么需要多少千克的药粉?答案是0.75千克。
⑶如果需要配制1620千克的这种药水,那么需要多少千克的药粉?答案是20千克。
8.将96分米长的铁丝焊成一个长方体框架,长、宽、高的比例是3:2:1.那么这个长方体的体积和表面积分别是多少?答案是体积为384立方分米,表面积需要计算。
解析:1.第一段:没有明显格式错误,但是可以将“答”和“解”两个字加粗或者改为标题格式更加清晰。
改写如下:题目:长方体的体积和表面积答案:这个长方体的体积是384立方分米,表面积是352平方分米。
2.第二段:没有明显格式错误。
3.第三段:没有明显格式错误。
4.第四段:没有明显格式错误。
5.第五段:没有明显格式错误。
6.第六段:没有明显格式错误。
7.第七段:没有明显格式错误。
8.第八段:没有明显格式错误。
小学语文试卷阅读比例分配(含答案)
小学语文试卷阅读比例分配(含答案)下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!专业课原理概述部分一、选择题(每题1分,共5分)1. 小学语文阅读教学中,课外阅读所占比例通常为:A. 10%B. 20%C. 30%D. 40%2. 下列哪种方法不利于提高小学生的阅读兴趣?A. 选择适合学生年龄段的读物B. 强制性阅读C. 创设阅读环境D. 定期组织阅读活动3. 在小学语文阅读教学中,教师应重点培养的阅读能力是:A. 朗读技巧B. 理解能力C. 速读能力D. 背诵能力4. 小学语文课程标准规定,小学高年级学生的课外阅读量应达到:A. 10万字B. 20万字C. 30万字D. 40万字5. 以下哪种方式不属于小学语文阅读教学方法?A. 课堂讲授B. 小组讨论C. 角色扮演D. 试卷测试二、判断题(每题1分,共5分)1. 小学语文阅读教学中,课内阅读与课外阅读的比例应该是相等的。
14 按比分配的实际应用(解析版)
14 按比分配的实际应用1.按两组比例应用水是由氢元素与氧元素按1:8的质量比组成,108千克水中含氢元素多少千克,氧元素多少千克?12 962.按三组比例应用把一批图书按2:4:33.图形比例如图,是一个扬州漆器仿古木质纯手工嵌螺《蝶舞》珠宝首饰盒。
若它的长和宽的比是16∶9,则它的长、宽、高的比是( )。
32∶18∶114.行程比例甲乙两车同时从A地向B地出发,乙车先到达B地,立即返回。
两车在距离B地20千米的C 地相遇,相遇时甲乙两车的所行路程之比是7∶9,相遇时甲车行了多少千米?140千米5.配制比例一种混凝土是把水泥、黄沙,和石子按2∶3∶5的比例配制而成的。
(1)要配制150吨这样的混凝土,三种材料各需要多少吨?(2)如果这三种材料各有24吨,配制这种混凝土,当黄沙全部用完时,水泥还剩多少吨?石子还需要增加多少吨?(1)水泥:30吨;黄沙:45吨;石子:75吨(2)水泥:8吨;石子:16吨【答案】见详解【分析】假设图中每个格子代表1,通过长方形面积公式:长方形面积=长×宽,代入数据求出已知长方形的面积,要画的三角形面积和已知长方形面积相等,再根据三角形面积公式:S =ah÷2,画出三角形;因为1+2=3,即作出三角形后,将其底边平均分成3份,连接一份所对应的点和所其对应的顶点,即为要作的三角形。
【详解】由分析可得:已知长方形长为4,宽为3,面积为:3×4=12,则要画的三角形面积为12,当三角形底为6厘米,高为4厘米时,面积为:6×4÷2=24÷2=12所以可以画一个底为6、高为4的三角形,其面积也是12。
1+2=3,将底边6分成3份,每份是2格,据此作图可将三角形分成面积1:2的两部分。
【点睛】本题考查了长方形面积和三角形面积的计算,同时要求学生会画指定面积的三角形,同时需要会按比例求出面积。
4王莉的书柜一共有三层,上、中、下层书的本数比是5∶6∶4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例分配应用题及答案
比例分配最终还是没有实施成功,以下是整理的比例分配应用题及答案,欢迎参考阅读!
一、请用比例的方法试解下列应用题:
1、配制一种农药,药粉和水的比是1:500.
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?
3、一个房间,用面积为9平方分米的方砖铺地需240块,如果改用边长4分米的砖铺地,需多少块?
4、服装厂原来生产一套成人西服用布2.5米,改进裁剪方法后,每套节约用布20%,原来生产240套西服的布,现在可生产多少套?
二、应用题:用合适的方法进行求解
1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?
2、甲乙两地相距360千米,一辆汽汽车从甲地到乙地计划7小时行完全程,汽汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)
3、在比例尺是的地图上,量得甲乙两地的距离为 4.5厘米,如果一辆客汽车和货汽车同时从甲乙两地相对开出,经过3小时相遇。
已知客汽车每小时行65千米,那么这辆货汽车每小时行多少千米?
4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。
在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。
一辆汽汽车从B城到C 站共用了0.6小时,求这辆汽汽车的速度。
5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?
6、小淘气看一本科技书,第一天看了全书的,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?
7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。
求截成的较长一个圆柱的体积。
8、某汽车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?
9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,
问这批零件共有多少个?
10、客货两汽车的速度比是3:2,货汽车行完甲乙两地全程要小时。
如果客货两汽车同时从甲乙两地出发,几小时可以相遇?
三、生活题:
吴工程师和李技术员从公司出发,合乘一辆出租汽车,吴工程师去实验室,李技术员去工地。
两人商定出租汽车费由两人合理分摊。
公司4千米实验室
工地
12千米
已知出租汽车的汽车费牌价为:0~3千米(起程价)8元;3千米以上每千米1.8元。
①他俩的汽车费共计多少元?②吴工程师应承担多少元汽车费?。