第29章《投影与视图》复习课教案

合集下载

人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案

人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。

内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。

通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。

但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。

三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。

2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。

3.能够运用所学知识解决实际问题。

四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。

2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。

3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。

六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。

2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。

3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。

教师在此过程中进行指导,帮助学生解决问题。

4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。

7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。

数学九年级下册《投影与视图-复习课》教案

数学九年级下册《投影与视图-复习课》教案

初中20 -20 学年度第一学期教学设计主备教师审核教师授课周次授课时间课题第二十九章投影与视图(复习) 课型复习课教学目标1、通过本节复习,使学生对本章知识点有一个系统的认识。

2、通过习题演练,达到灵活运用知识点的目的。

3、认识本节内容与生活实际的紧密联系。

教学重点掌握本章知识点。

教学难点灵活运用本章知识点。

教学方法与手段指导法,鼓励法,归纳法。

教学准备多媒体课件第一课时课时数1课时课堂教学实施设计(教师活动、学生活动)复备内容或集体备课讨论记录(标、增、改、删、调)师生共同勾勒出本章知识框架图:【知识归纳】1.平行投影和中心投影由形成的投影是平行投影.由形成的投影叫做中心投影.投影线投影面产生的投影叫做正投影.[注意] (1)在实际制图中,经常采用正投影.(2)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(3)阳光下同一时刻不同物体及影长与光线构成的三角形相似.2.视图三视图是、、的统称.三视图位置有规定,主视图要在,它的下方应是,坐落在右边.三视图的对应规律主视图和俯视图;主视图和左视图;左视图和俯视图.【当堂检测】1、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是( D )2、学校里旗杆的影子整个白天的变化情况是( B )A、不变B、先变短后变长C、一直在变短D、一直在变长3、晚上,人在马路上走过一盏灯的过程,其影子的长度变化情况是(B )A、先变短后变长B、先变长后变短C、逐渐变短D、逐渐变长4、如图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( D )A、5B、6C、7D、8四题图五题图【巩固提高】5.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值. (答案:x=1或x=2,y=3)6.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.(答案:12个,7个) 【课后小结】这节课你有什么收获。

《投影与视图》总复习教案

《投影与视图》总复习教案

本章复习【知识与技能】通过复习系统掌握本章知识.【过程与方法】提高解决问题分析问题的能力,培养空间想象能力.【情感态度】体会到数学来源于生活,应用于生活.【教学重点】投影和三视图.【教学难点】画三视图.一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解(一)投影1.中心投影:灯光的光线可以看成是从一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影.2.平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.3.中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.4.如何判断平行投影与中心投影分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.(二)视图1.三种视图的内在联系主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的高和宽. 因此,在画三种视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等.2.三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右边画出左视图.3.三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.【教学说明】1.以问题串的形式呈现,既可以帮助学生梳理知识,又增强了学生回答问题的针对性,增进师生的交流,促进学生回顾反思;2.意在让学生温故知新,为下一步巩固训练,形成技能作铺垫.三、典例精析,复习新知1.一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是()解:从上面看该组合体,俯视图是一个矩形,并且被一条棱隔开,故选B.2.如图所示几何体的主视图是()解:从正面看,此图形的主视图由3列组成,从左到右小正方体的个数是:1,3,1.故选B.3.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()解:因为太阳光的光线是平行的. 过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线平行的就是阳光下的影子,因而选D.4.(1)如图①是同一时刻两棵小树的影子,请你在图中画出形成树影的光线,并判断它是太阳光还是灯光的光线?若是灯光,请确定光源的位置.(2)请判断如图②的两棵小树影子是太阳光还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).解:(1)如图①是过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线相交,故是灯光,交点A就是光源.(2)如图②所示,是太阳光的光线. 原因是过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两直线平行. 然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连结这点与旗杆底端的线段就是旗杆的影子.【教学说明】通过设置学习小组,以任务驱动式,引导学生进行小组竞学,探求解题规律技巧,培养学生分析问题和解决实际问题的能力,提高课堂效率.四、复习训练,巩固提高1.下面是空心圆柱在指定方向上的视图,正确的是(C)2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下(D)A.小明的影子比小强的影子长B.小明的影长比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.请写出三种视图都相同的两种几何体:正方体、球体.4.身高相同的甲、乙两人分别在距同一路灯2米处、3米处,路灯亮时,甲的影子比乙的影子短(填“长”或“短”).5.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为(C)6.分别画出下图中立体图形的三视图:解:7.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.8.已知,如图,AB 和DE 是直立在地面上的两根石柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m. (1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE在阳光下的投影长为6m ,请你计算DE 的长.解:(1)如图,EF 即为DE 在阳光下的投影.(2)∵AB DE BC EF =,∴DE=·563AB EF BC ⨯==10(m ). 【教学说明】通过设置学习小组,引导学生进行小组竞学,探求解题规律技巧,培养学生分析问题和解决实际问题的能力,提高课堂效率.五、师生互动,课堂小结今天我们共同复习了视图与投影,知道了视图与投影之间的关系(在特殊位置下物体的平行投影即是物体的三种视图).如何画三视图、利用投影的性质可以测量旗杆、建筑物、路灯等物体的高度,即利用“平行投影时不同物体在同一时刻,物体与物体的影长成比例”或相似三角形的性质进行求解.那么你在哪些方面存在疑惑呢?【教学说明】该环节是为了提高学生归纳问题的能力,鼓励学生积极表达自己的观点,充分体现以学生为主体,教师为主导的教学原则.本环节的设置使学生学会从系统的角度把握学习方法,努力使知识结构化、网络化,引导学生注意各知识点之间的联系.1.布置作业:教材“复习题”中第3、5、9题.2.完成创业作业中本课时部分.本节课采用“问题助学、基本题组导学”的自助式学习模式,让学生在解决问题中梳理知识,提炼思想方法,形成技能.本节课的习题设置由浅入深、层层深入,体现基础性、变式性、层次性、导学性.教师只讲易混点、易错点、易漏点,重在点拨、规范.真正体现了“以学生为主体,以教师为主导,以练习为主线 ,以能力发展为主轴”的教学原则.立足于基础知识、基本技能、基本数学思想、基本活动经验的巩固和提高.符合学生的认知规律和教学活动规律,有效地提高了课堂效率和教学质量.。

人教版九年级下册第29章投影与视图29.2三视图教案

人教版九年级下册第29章投影与视图29.2三视图教案
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。每个小组用几何模型和绘图工具,尝试绘制三视图。
3.成果展示:每个小组将向全班展示他们的讨论成果和绘制的三视图。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-掌握三视图的绘制方法:学生需要掌握如何根据几何体在三个不同视图上的投影来绘制三视图,包括投影线、隐藏线、轮廓线等的正确表达。
-能够识别和绘制简单几何体的三视图:通过实际操作,学生应能够对常见的几何体如立方体、圆柱体、圆锥体等的三视图进行识别和绘制。
2.教学难点
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解几何体与其三视图之间的对应关系是一大难点。例如,如何从二维的视图想象出三维的形状。
3.重点难点解析:在讲授过程中,我会特别强调三视图的绘制方法和视图之间的相互关系这两个重点。对于难点部分,如隐藏线和投影线的处理,我会通过实物模型和示例图来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相Байду номын сангаас的实际问题,如如何根据三视图还原一个几何体。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图是指主视图、左视图和俯视图,它们分别从不同角度展示物体的形状。三视图是工程绘图和建筑设计中不可或缺的部分,它帮助我们更直观地理解物体的三维结构。
2.案例分析:接下来,我们来看一个具体的案例。通过一个简单的立方体,演示如何绘制三视图,并讲解三视图在实际中的应用。
-实际应用中的三视图理解:将三视图的知识应用到实际问题中,如解读建筑图纸或机械图纸,对于学生来说是一个挑战,需要他们将理论知识与实践相结合。

第29章 投影与视图全章教案

第29章  投影与视图全章教案

第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。

3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。

教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。

皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。

(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。

一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。

2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。

通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。

本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。

但投影概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。

三. 教学目标1.了解投影的概念、分类和基本性质。

2.掌握正投影和斜投影的特点。

3.能够运用投影性质解决实际问题。

4.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.投影的概念和分类。

2.投影的基本性质。

3.投影变换。

五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。

2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。

3.采用练习法,让学生在实践中巩固投影知识。

4.运用小组讨论法,培养学生合作学习的能力。

六. 教学准备1.投影仪、实物模型、多媒体动画。

2.投影习题、测验题。

3.投影实验材料。

七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。

例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。

2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。

通过示例,使学生了解正投影和斜投影的特点。

3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。

例如,让学生根据给定的物体,画出其正投影和斜投影。

4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。

这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。

本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。

但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。

另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。

三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。

2.让学生掌握视图的分类,学会画一视图、二视图、三视图。

3.培养学生空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。

2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。

3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。

六. 教学准备1.准备投影仪、实物、模型等教学道具。

2.准备相关的练习题和测试题。

3.准备黑板和粉笔。

七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。

2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。

3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。

教师巡回指导,解答学生疑问。

4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。

春九年级人教版数学下册教案:29投影与视图章末复习

春九年级人教版数学下册教案:29投影与视图章末复习

2021年春九年级人教版数学下册教案:29投影与视图章末复习章末复习教学目标【知识与技能】进一步理解投影、三视图等概念.能画出几何体的三视图,能根据三视图想象物体的形状.【过程与方法】通过对具体实例的评析加深对本章知识的理解,感受到三视图、平面展开图与各立体图形之间的相互转化关系.【情感态度】关注有关生活中的投影,生产中的三视图问题,提高数学应用意识,增强学生的空间想象能力.【教学重点】进一步加深对本章知识的理解,提高解题技能【教学难点】利用三视图想象实物形状,并根据相关数据进行计算.教学过程一、知识框图,整体把握1/62021年春九年级人教版数学下册教案:29投影与视图章末复习【教学说明】构建本章知识结构图可由师生共同完成,教师指示,学生回忆思考,可让学生获得本章完整的知识体系.同时教师在黑板知构.二、释疑解惑,加深理解本章通过问题的形式来释疑解惑,以加深学生对知识的理解.问题1平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心?问题2正投影和平行投影有什么关系?正投影与三视图的关系如何?画三视图时有哪些需要注意的问题?问题3怎样根据三视图想象立体图形的形状?【教学说明】教师出示问题,让学生独立思考,然后相互交流.教师2/6在巡视中听取学生的观点,看学生有哪些地方存在误区,对此教师要予以纠正,然后作出系统的说明.三、典例精析,复习新知例1如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子〔〕A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短例2主视图、左视图、俯视图分别是以下三个图形的物体是〕例3以下列图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,那么这个几何体的左视图是()【教学说明】上述三道例题都可让学生自主完成,然后相互交流,探3/6讨出正确结论.出现失误的学生在自查中反思,加深对知识的理解.其中例3中小正方形内数字所表示的意义是解题关键.例4由一些大小相同的小立方体组成的简单几何体的主视图和俯视图如下列图.〔1〕请你画出这个几何体的一种左视图;〔2〕假设组成这个几何体的小正方体的块数为n,求n的值.【分析】从俯视图可看出这个几何体有前后两排,前排并排有三个正方形,后排有两个正方形,从主视图可看出这个几何体分为左、中、右三列,左列最多只有一个立方块,中列最多有两个立方块,右列最多有三个立方块.由于这个几何体的左视图没有画出,故无法确定这个几何体的形状,但可知道这个几何体最少需要8个立方块,最多有11个立方块,而n=8,9,10,11四个值.它的左视图有或或或四种可能.【教学说明】本例的目的是让学生明确确定一个几何体必须从三个角度得到它的视图才行,仅有其中一个或两个都是不可能的.同时,通过本例可进一步加深学生的空间观念和分类讨论问题的能力.教学时仍可让学生先尝试着解决,最后教师予以评讲.4/6例5如图是某种物体的三视图及相关数据〔单位:cm),求该物体的体积〔,π,精确到3).【分析】由三视图可想象出这个物体应该是一个正六棱柱中央挖出了一个圆柱,其体积为V≈3.例6如下列图,点P表示广场上的一盏照明灯.1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;2〕假设小丽到灯柱MO的距离为米,照明灯P到灯柱的距离为米,小丽目测照明灯P的仰角为55°,她的目高QB为米,试求照明灯到地面的距离〔结果精确到米〕.〔参考数据:tan55°,sin55°≈,cos55°≈0.574)【分析】在〔1〕中,只需连接小敏的头的顶部〔记为D)与点P连线,5/6交地面〔AB所在直线〕于点C,那么线段AC的长即为小敏在灯P下的影子〔即图中粗线AC);在〔2〕中,过P作PH垂直于过Q点的水平线于H,即PH丄QH,再求PH的长即可.【教学说明】本例是一道投影和解直角三角形的综合问题,难度不大,学生能独立完成.教师在给出问题后,巡视全场,帮助学生完成解答.四、师生互动,课堂小结通过这节课的学习你有哪些问题?回忆本章知识,你还有哪些问题?【教学说明】学生相互交流,进一步加深对本章知识的理解,针对学生存在的疑问,可当堂解决,也可课后个别辅导,帮助他〔她〕完善对本章知识的认知.课后作业布置作业:从教材复习题29中选取.完成练习册中的内容.教学反思本课时通过知识框图和例题的讲解,力求让学生对本章知识了然于胸,教师在教学时应注意让学生在全面掌握知识点的根底上抓住重点、举一反三.6/6。

第二十九章投影与视图全章教案精品

第二十九章投影与视图全章教案精品

教学内容:29.1投影(1)教学目标:1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。

3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

教学重、难点教学重点:理解平行投影和中心投影的特征;教学难点:在投影面上画出平面图形的平行投影或中心投影。

教学资源:多媒体教学方法:自主阅读法,引导探索法教学过程:(一)创设情境你看过皮影戏吗? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。

皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。

(有条件的)放映电影《小兵张嘎》部分片段 ---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏(二)你知道吗出示投影:北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。

一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。

2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。

山东省德州市九年级数学《第二十九章投影与视图》复习教案 新人教版

山东省德州市九年级数学《第二十九章投影与视图》复习教案 新人教版

某某省某某市九年级数学《第二十九章投影与视图》复习教案新人教版一.学习目标:1.以分析实例为背景,认识投影和视图的基本概念和基本性质。

2.通过讨论简单立体图形与它的三视图的相互转化,使学生经历画图、设图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力。

3.通过制作立模型的课题学习,在实际动手中进一步加深对投影和视图知识的认识,加强在实际活动中手脑理论结合实际的能力。

二.学习内容:投影与视图三.学习重点:简单立体图形与它的三视图的转化(相互)四.学习难点:五.课时安排:本章约需11课时。

教学方法:1.教学中重视借助直观模型。

2.教学中重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律3.重视平面图形与立体图形的联系。

教学步骤:第一课时(总第二课时)①一. 教学目标(一)知识技能:1.了解投影的有关概念,能根据光线的方向辨认物体的投影。

2.了解平行投影和中心投影的区别。

3.了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

(二)教学思考:在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。

(三)解决问题:通过物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

(四)情感态度:通过学习,培养学生的积极主动参与学习数学活动的意识,增强学好的信心。

二.教学重点:了解正投影的含义,能根据正投影的性质画图。

三.教学难点:归纳正投影的性质,正确画出简单平面图形的正投影。

四.教学方法:会作交流。

五.教学过程:(一)观察事物和图片,了解投影的有关概念。

1.出示实物及图片,让学生观察、思考、感知物体与影子之间的关系得出投影的有关概念。

2.投影的概念:用光线照射物体,再某个平面上得到的影子叫做物体的投影。

3.物体的影子能反映物体的位置形状和大小,请结合实例说明影子与物体的密切联系。

让学生讨论举例说明4.平行投影,中心投影。

(1)概念(2)区别(3)联系(三)课堂小结:1.本节课你学到了哪些知识?2.谈谈你对投影知识的认识。

第29章 投影与视图教案

第29章 投影与视图教案

第二十九章投影与视图29.1投影第1课时投影投影知识是学习视图的基础.学生对投影和视图的知识已有初步感性认识,在此基础上,本课时通过对实例的观察比较,引人基本概念,归纳基本规律.不仅是使学生对投影的认识从感性上升为理性,达到更高的水平,更是为学生对后面学习三视图作铺垫、打基础.本课时以物体在日光或灯光照射下在地面或墙壁上形成的影子为基础,抽象出投影、投影线、投影面等概念.根据投影线与投影面的不同位置关系,将投影分为平行投影和中心投影两类.本节教学涉及空间中直线与直线、直线与平面的位置关系,而学生缺乏这方面的知识,因此学习本节内容有一定的难度.教学过程中要注意加强与实际的联系,运用多媒体,展示丰富的实物图片,让学生通过观察具体的实例,结合已有的生活经验,了解这些空间位置关系,并把这种认知迁移到本节课对平行投影和中心投影中投影线不同位置关系的了解.【情景导入】你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的传统艺术,在很多地区广为流行.皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎.皮影戏与手影戏有什么共同特征?【说明与建议】说明:通过幻灯片展示生活中常见的各种影子,使学生体会本节课学习的价值,从而自然地引出课题及投影的相关概念,符合学生的认知特点,激发学生的学习兴趣.建议:在以上活动的基础上引出投影的相关概念:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.问题由学生口答完成,从而引入新课.【归纳导入】教师课前整理、选择教学资源,多媒体展示,如图.选3~4个小组代表简单介绍,分析投影的光线特点.对展示图片编号,要求学生根据一定的标准进行分类(学优生可以先设定标准,再分类;学困生可以先分类,再根据自己的分类尝试写出分类的标准),通过对分类及标准的过程性加工,使学生理解由同一点(点光源)发出的光线形成的投影叫做中心投影,由平行光线形成的投影叫做平行投影.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.【说明与建议】说明:通过分类,使学生明晰平行投影和中心投影的本质区别,培养学生从大量信息中辨析本质的能力,由此引出本节课要研究的问题.建议:课前让学生自己感受生活中太阳光下的影子,并做好预习,了解投影分类,以便学习.【悬念激趣】你知道古埃及的金字塔吗?两千六百多年前,埃及有个国王,他想要知道已经盖好了的大金字塔的准确高度,可是谁也不知道该怎样测量,因为塔身是斜的.究竟用什么方法来测量呢?后来,国王请一个名叫泰勒斯的学者来解决这个问题,泰勒斯答应了.在一个风和日丽的日子,国王、祭司们亲自驾临,举行了测塔仪式.看时间已经不早,太阳光给每个在场的人和巨大的金字塔都投下了长长的影子.当泰勒斯确知自己的影子恰好等于他的身高时,他发出命令,让助手们立即测出金字塔的影子长度,接着泰勒斯结合其他信息十分准确地算出了金字塔的高度.【说明与建议】说明:从历史上有趣的事件入手,让学生体会数学来源于生活,又服务于生活.引发学生初步感受阳光下的影子的作用,激发学生的求知欲及学习兴趣.建议:学生在教师的引导下观看两幅图片,积极思考,提前感受阳光下的物体影子的实例,为后面的学习做铺垫.命题角度1 太阳光下影子的变化1.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是(B)A.③-④-①-② B.②-①-④-③ C.④-①-②-③ D.④-①-③-②命题角度2 利用太阳光下的影子求物体的高度2.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,则窗户的高AB为(A)A.1.5 m B.1.6 m C.1.86 m D.2.16 m3.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6米,求旗杆AB的高.解:(1)连接CE,过A点作AF∥CE交BD于F,则BF为所求,如图.(2)8米.命题角度3 中心投影特点的应用4.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子(B)A.一直都在变短 B.先变短后变长 C.一直都在变长 D.先变长后变短5.如图,在地面上竖直安装着AB,CD,EF三根立柱,在同一时刻同一光源下立柱AB,CD形成的影子分别为BG与DH.(1)此光源下形成的投影是中心投影.(2)作出立柱EF在此光源下所形成的影子.解:如图所示,线段FI为立柱EF在此光源下所形成的影子.命题角度4 相似三角形在中心投影中的应用6.如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,求小方行走的路程.解:∵AE⊥OD,GO⊥OD,∴EA∥GO,∴△AEB∽△OGB.∴AEOG=ABOB.∴1.65.6=ABAB+5.解得AB=2 m.∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=5 m.同理可得△DFC∽△DGO.∴FCGO=CDOD,即1.65.6=55+5+AC.解得AC=7.5(m).答:小方行走的路程AC为7.5 m.皮影戏与投影“银灯映照千员将,一箱容下百万兵”,这优美的诗句描述的是我国独特的民间艺术——皮影.据传,两千多年前,汉武帝爱妃李夫人染疾故去,武帝思念心切神情恍惚,终日不理朝政.大臣李少翁一日出门,路遇孩童手拿布娃娃玩耍,影子倒映于地栩栩如生.李少翁心中一动,用棉帛裁成李夫人影像,涂上色彩,并在手脚处装上木杆.入夜围方帷,张灯烛,恭请皇帝端坐帐中观看. 武帝看罢龙颜大悦,就此爱不释手. 这个载入《汉书》的故事,被认为是皮影戏最早的渊源.皮影后来逐步发展成为彩绘,镂雕,又改纸制为皮制,再配上音乐,唱腔,慢慢地成了后来的皮影戏.宋代已经成熟和盛行,东京汴梁瓦舍中的影戏艺人已有董十五、赵七、曹保义等9人.山西繁峙岩山寺文殊殿金代壁画中有一幅《影戏图》,生动形象地表现了当时山西皮影演出的实况.经过宋、金、元、明四个历史时期的发展,流行全国各地的皮影戏在清代呈现出繁荣局面.三、四十年代中,古“丝绸之路”上进入河西走廊的重镇——张掖,皮影戏有七十多个正本戏,一百多个折子戏,不少是个人创作独家所有,内容上也逐步有所改进.张掖的上寨小满一带制作的皮影刻成各种生动传神戏剧人物,具有造型简洁、纹样夸张的特点.各地皮影,风格不同.皮影除作戏剧表演外,还是一种有趣味的装饰品和艺术欣赏品.逢年过节或喜庆日子都要请皮影戏班子唱戏.道具主要为影窗,俗称“亮子”,一般高3尺,宽5尺,最高不过4尺,宽不过6尺,以白纸作幕,以便单人操作.其次为油灯一盏,用以映射影人和表演动作.一个皮影,要用五根竹棍操纵,艺人手指灵活,常常玩得观众眼花缭乱.不仅手上功夫绝妙高超,嘴上还要说、念、打、唱,脚下还要制动锣鼓.演皮影的屏幕,是用一块1米大小的白纱布做成的.白纱布经过鱼油打磨后,变得挺括透亮.演出时,皮影紧贴屏幕活动,镂空的人影和五彩缤纷的颜色真切动人.皮影是采用皮革为材料制成的,出于坚固性和透明性的考虑,又以牛皮和驴皮为佳.上色时主要使用红、黄、青、绿、黑等五种纯色的透明颜料.正是由于这些特殊的材质,使得皮影人物及道具在后背光照耀下投影到布幕上的影子显得瑰丽而晶莹剔透,具有独特的美感.由于受材质限制,保存甚难,所以传至今世的古影不多.最后告诉大家一个重要数学秘密,皮影的投影属中心投影,这是因为皮影的光源通常是一盏煤油灯,是点光源.皮影表演时,由于紧贴屏幕,所以产生的效果逼真.又因为是加工成半透明状的皮革刻制上彩而成,它是能透过与本身色彩相同的光线,映照在白色幕布上,因而皮影戏是彩色的.课题29.1 第1课时投影授课人素养目标1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.通过观察、比较,了解平行投影和中心投影的含义.3.学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.教学重点理解平行投影和中心投影的特征.教学难点在投影面上画出物体的平行投影或中心投影.授课类型新授课课时教学步骤师生活动设计意图活动一:创设情境、导入新课【课堂引入】影子我们已司空见惯,在日常生活中,我们可以看到各种各样的影子.比如,太阳照射在窗框、长椅等物体上时,会在墙壁或地面上留下影子,而皮影和手影都是在灯光照射下形成的影子.明确学习本章及本节内容的目的和意义,激发学生的学习热情.现应用的旗杆的高是(A)A.15 m B.16 m C.18 m D.20 m例2(1)如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.解:如图所示:(2)如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF.试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.解:如图所示:P点即为路灯的位置;学生自主解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,共同得到正确的结论.【变式训练】如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2 m,CD=6 m,点P到CD的距离是3 m,求P到AB的距离.解:∵AB∥CD,∴△PAB∽△PCD∴AB∶CD=P到AB的距离∶点P到CD的距离.∴2∶6=P到AB的距离∶3.∴P到AB的距离为1 m.给予学生一定的时间去思考,充分讨论,争取让学生自己得到正确答案,并对学习有困难的学生适当引导、点拨.画出平面图形的中心投影,通过物体的影子能够分析出点光源的具体位置.变式训练从不同角度考察投影的知识,加强学生对知识的掌握和理解.活动四:课堂检测【课堂检测】1.下列各种现象属于中心投影的是(A)A.晚上人走在路灯下的影子 B.中午用来乘凉的树影通过设置课堂检测,进一步巩固所学新知,同时检测C.上午人走在路上的影子 D.早上升旗时地面上旗杆的影子2.如图所示,甲、乙两建筑物在太阳光的照射下的影子的端点重合在C处.若BC=20 m,CD=40 m,乙的楼高BE=15 m,则甲的楼高AD=30m.3.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.①②解:如图所示:图①是灯泡光线形成的,图②是太阳光线形成的.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.学习效果,做到“堂堂清”.课堂小结1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!师生总结:主要内容有投影、投影面、投影线、平行投影和中心投影的概念.主要技能是在投影面上画出物体的中心投影,并能通过投影分析出点光源的具体位置.2.布置作业:教材第92页习题29.1第1,2题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.板书设计29.1 投影第1课时投影1.平行投影2.中心投影提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.详见电子资源第2课时正投影在学习本课时之前,学生已经具有一定的关于平面图形与立体图形的知识,并且在七年级上册接触过“从不同方向观察物体”和“点、线、面、体”之间的联系及基本几何体的平面展开图等反映平面图形与立体图形之间的联系问题.上一节课,学生又学习了投影的一些基础知识包括投影、中心投影、平行投影的概念,在此基础上,这节课主要学习正投影概念及探究正投影的成像规律,以正投影为平台,进一步深入研究投影的性质,更深一层理解立体图形与平面图形的相互转化关系,培养学生的空间观念,这为过渡到三视图的学习起着辅垫的作用,更为高中学习立体几何打下基础.【归纳导入】如图表示一块三角尺在光线照射下形成的投影,三个图的投影存在如下特点:图①中的投影线集中于一点,形成中心投影;图②③中,投影线互相平行,形成平行投影.图③中投影线垂直照射到投影面,这种投影叫正投影,而图②中,投影线斜着照射到投影面,不是正投影,所以平行投影不一定是正投影,但正投影一定是平行投影.正投影是光线与投影面之间的关系,与物体的放置无关.①②③【说明与建议】说明:经过观察、分析、比较的过程,抽象出正投影的概念,学生通过思考教师提出的问题,加深对正投影概念的理解.建议:让学生自主观察图形特点,结合概念加以理解.命题角度常见几何体的正投影及判断1.把一个正三棱柱如图摆放,光线由上向下照射此正三棱柱时的正投影是(B)A B C D2.圆形的纸片在平行光线下的正投影是(D)A.圆形 B.椭圆形 C.线段 D.以上都可能日晷简介日晷,本意是指太阳的影子.现代的“日晷”指的是人类古代利用日影测得时刻的一种计时仪器,又称“日规”.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长.第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置(上中天)时,针影位于正北(下)方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.课题29.1 第2课时正投影授课人素养目标1.了解正投影的概念.2.能根据正投影的性质画出简单图形的正投影.3.学生学会关注生活中有关投影的数学问题,提高数学的应用意识.教学重点正投影的含义及根据正投影的性质正确画出简单图形的正投影.教学难点归纳正投影的性质,正确画出简单图形的正投影.授课类型新授课课时教学步骤师生活动设计意图回顾展示问题:1.什么是投影?投影的两个要素是什么,试举例进行说明.2.投影是如何进行分类的?试举例进行说明.学生回顾已学过的知识和生活实例,为学习新知做好铺垫.活动一:创设情境、导【课堂引入】1.观察图(1)(2)(3)中的投影线有什么区别?它们分别形成了什么投影?通过观察活动,使学生体会到将实入新课师生活动:教师展示图片,提出问题,学生观察思考,相互讨论,发表意见.(1) (2) (3)2.图(2)(3)的投影都是什么投影?它们的投影线与投影面的位置关系有什么区别?师生活动:教师展示图片,学生观察思考、相互交流,教师引导学生回答图(2)(3)两幅图中的投影都是平行投影,图(2)中的投影线斜着照射投影面,图(3)中的投影线垂直照射投影面.给出正投影的概念:平行投影中,投影线垂直于投影面产生的投影叫做正投影.际问题抽象成几何图形,有助于分析问题的本质.经过对比更清楚地认识平行投影和中心投影的区别,为引出正投影的概念做必要的铺垫.活动二:实践探究、交流新知问题1:把一根直的铁丝(记为线段AB)放在三个不同的位置:①铁丝平行于投影面;②铁丝倾斜于投影面;③铁丝垂直于投影面(铁丝不一定要与投影面有交点).三种情形下铁丝的正投影各是什么图形?大小有何关系?师生活动:教师实物演示或图片展示,提出问题,学生观察、猜想、测量,教师引导学生归纳得出结论:①正投影是线段,线段长等于正投影长;②正投影是线段,线段长大于正投影长;③正投影是一个点.问题2:把一块正方形硬纸板(记为正方形ABCD)放在三个不同的位置:①纸板平行于投影面;②纸板倾斜于投影面;③纸板垂直于投影面.三种情形下纸板的正投影各是什么图形?大小有何关系?师生活动:教师实物演示,提出问题,学生先独立观察、思考,再相互交流,大胆猜想,勇于发表见解,教师引导学生归纳得出结论:①纸板的正投影与纸板的形状、大小一样;②纸板的正投影与纸板的形状、大小不完全一样;③纸板的正投影为一条线段.问题3:当物体的某个面平行于投影面时,这个面的正投影与这个面有怎样的关系?1.通过试验观察,分析正投影,简单直观,易于发现正投影的规律,为研究物体的正投影规律打下基础.2.用正方形纸板表示正方形,运用正投影的概念,观察分析它的正投影,根据前面所得规律,运用类比归纳得出平面图形正投影的规律.师生活动:教师提出问题,学生独立思考,大胆猜想,得出结论.教师根据学生的回答进行完善,师生共同归纳物体正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.活动三:开放训练、体现应用【典型例题】例1(教材第90页例)画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面(图1).(2)正方体的一个面ABCD倾斜于投影面,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面(图2).图1 图2例2当某一几何体在投影面P前的摆放位置确定以后,改变它与投影面P的距离,其正投影的形状(A)A.不发生变化 B.变大 C.变小 D.无法确定学生自主解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,共同得到正确的结论.【变式训练】如图,回答下列图形在投影面上的正投影是什么图形.(1)矩形AA1D1D.(2)矩形CC1D1D.(3)棱CC1,A1B1.解:(1)矩形AA1D1D的正投影是矩形.(2)矩形CC1D1D的正投影是线段.(3)棱CC1的正投影是线段,棱A1B1的投影是点.给予学生一定的时间去思考,充分讨论,争取让学生自己得到正确答案,并对学习有困难的学生适当引导、点拨.通过利用正投影的性质画物体的正投影,巩固所学重点内容,提高学生灵活运用知识解决实际问题的能力,发展学生的空间观念.重点考查正投影的含义及性质.活动四:课堂检测【课堂检测】1.木棒长为1.5 m,则它的正投影的长一定(D)A.大于1.5 m B.小于1.5 m C.等于1.5 m D.小于或等于1.5 m2.矩形的正投影不可能是(B)A.矩形 B.梯形 C.正方形 D.线段3.如图,投影线的方向如箭头所示.画出下列图中几何体的正投影.(1) (2) (3)解:(1) (2) (3)学生进行当堂检测,完成后,教师进行批阅、点评、讲解.通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂总结:(1)本节课主要学习了哪些知识?重点研究了什么问题?(2)平行投影与中心投影是根据什么进行分类的?平行投影与正投影有怎样的联系和区别?2.布置作业:教材第92~93页习题29.1第3,4题.通过小结,使学生梳理本节课所学内容,形成概念体系,掌握本节课的核心知识.板书设计29.1 投影第2课时正投影1.线段的正投影2.平面图形的正投影提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.详见电子资源29.2三视图第1课时三视图本节内容是立体几何的基础之一,三视图是利用物体的三个正投影来表现空间几何体的方法,在教材中起着衔接平面几何和立体几何的重要作用.【情景导入】多媒体播放古诗《题西林壁》的配画朗诵视频.【宋】苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.这首诗教会了我们怎样观察物体(横看、侧看、近看、身处其中看),这类似于本节课所研究的内容——三视图.【说明与建议】说明:通过一首古诗和美丽的庐山图中,引出课题,能够激发学生的学习兴趣,也能很好的反映本节课的主题.建议:由文学诗歌引入数学概念,体现教师的亲和力和学科之间的联系性,展示了数学的深层价值.【置疑导入】活动一:如图 1,直三棱柱的侧棱与水平面垂直.请与同伴一起探讨下面的问题:(1)以水平面为投影面,这个直三棱柱的三条侧棱的正投影分别是什么图形?(2)画出直三棱柱在水平面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?(3)水平面的这个投影能完全反映这个物体的形状和大小吗?如果不能,那么还需要哪些投影?图1如图 2所示是一个长方体,从上面、正面、左面三个不同方向对长方体进行正投影,得到不同的图形,它们都有什么特点呢?图2【说明与建议】说明:活动一回顾上节课学习的正投影,为本节课做好铺垫和准备.建议:班级分组操作活动二,教师引导学生得到主视图、俯视图和左视图的概念及性质.命题角度1 识别几何体的视图1.如图所示的几何体是由5个大小相同的小正方体搭成的,则从上面看到的该几何体的形状图是(C)A B C D命题角度2 识别实物的视图2.如图,这是一个由2个大小不一样的圆柱组成的几何体,则该几何体的俯视图是(B)A B C D命题角度3 画物体的三视图3.请你画出如图几何体的三视图.解:如图所示:课题29.2 第1课时三视图授课人素养目标1.会从投影的角度理解视图的概念.2.会画简单几何体的三视图.3.通过观察探究等活动知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系.教学重点从投影的角度加深对三视图的理解和会画简单的三视图.。

9下29.7《投影与视图复习》课案(学生用)

9下29.7《投影与视图复习》课案(学生用)

学案(学生用)第二十九章投影与视图(复习课)【学习目标】1.理解投影的概念,注意不同时刻同一物体的影长是不同的,但同一时刻不同的的物体得影长与光线构成的三角形是相似的.2.会判断简单物体的三视图.3.能根据三视图描述基本几何体或实物原型,培养空间想象能力.4.能根据实物图画三视图培养动手能力.【复习的重难点】重点:从投影的角度加深对三视图的理解和会画简单的三视图,根据物体的三视图描述几何体的基本形状或实物原型.难点:对三视图概念理解的升华及正确画出三视图,根据物体的三视图描述几何体的基本形状或实物原型.【课时安排】一课时课前延伸(一)全章知识结构梳理①基础知识填空及答案1.投影:一般地,用光线照射物体,在某个平面上得到叫做物体的投影.照射光线叫做,投影所在的平面叫做.不同时刻同一物体的影长是不同的,但同一时刻不同的的物体得影长与光线构成的三角形是相似的.2.平行投影:由形成的投影是平行投影.3.中心投影:由同一点{点光源}发出的光线形成的投影叫做.4.正投影:投影线投影而产生的投影叫做正投影.5.视图:从某一角度观察一个物体时,所看到的图像叫做物体的一个.6.主视图:在正面内得到的观察物体的视图叫做主视图.7.俯视图:在水平面内得到的观察物体的视图叫做俯视图.8.左视图:在侧面内得到的观察物体的视图叫做左视图.9.主视图反映物体的,俯视图反映物体的,左视图反映物体的.10.三视图位置的规定:主视图要在,它的下方应是,左视图坐落在.②预习思考题及答案1.已知:如图1,AB和DE是直立在地面上的两根立标,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图1中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量DE在阳光下的投影长为6m,请你计算DE的长.2.一个物体的俯视图是圆,则该物体的形状是()A.球体B.圆柱C.圆锥D.以上都有可能3.如图2,是由一些相同的小立方块搭成的立体图形的三种视图,则搭成这个立体图形的小立方块的个数是()A.5个B.6个C.7个D.8个课内探究一.本章知识结构框架:问题:什么是正投影,什么是三视图,它是怎么得到的?三视图要注意什么?能根据三视图想象出物体原形,体会平面图形与立体图形之间的联.二、例题选讲(一)根据投影计算1.预习思考1已知:如图1,AB和DE是直立在地面上的两根立标,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图1中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量DE在阳光下的投影长为6m,请你计算DE的长.变式训练:如下图所示,两幅图表示两根标杆在同一时刻的投影,请在图中画出形成投影的光线,它们是平行投影还是中心投影?并说明理由.注意:判断投影是平行投影还是中心投影的方法是看光线是平行的还是相交于一点,如果光线是平行的,所得到的影子就是平行投影;如果光线相交于一点,所得到的投影就是中2.根据三视图用小方块摆出它的立体图形,并确定小正方块的数量.(三)根据三视图计算几何体的面积和体积3.如下图所示是某种型号的正六角螺母毛坯的三视图,根据图示尺寸,求出它的表面积是多少cm²?变式训练如图所示是一个几何体的主视图和左视图,其俯视图是一个等边三角形,求该几何体的体积.课后提升一.选择题.1.下列现象属于平行投影的是()A.皮影B.灯光下的手影C.太阳光下房屋的影子D.台灯下铅笔的影子2.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根杆子的相对位置是()A.两根都垂直于地面B.两根平行斜插在地面上C.两根杆子不平行D.一根倒在地上3.若干桶方便面摆放在桌子上,右图是它们的三视图,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶4.有一实物如图,那么它的主视图是()A.B.C.D.5.如图所示,路灯距地面8米,身高1.6米的小明从距离路灯的底部(点O)24米的点A处,沿OA所在的直线行走18米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大4.5米D.减小4.5米6.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为图中的()A.B.C.D.7.如图所示,身高为1.6米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子的顶端正好与树的影子顶端重合,测得BC=3.2米,CA=0.8米,则树的高度为()A.4.8米B.6.4米C.8米D.10米二.填空:1.高度相等的两个人在路灯下的影子长度相等,影子的长度与其离发光点的距离有关,离发光点越远,其影子越.2.如图所示为一几何体的三视图,那么这个几何体.3.如图所示是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体有个.三.解答下列各题:1.如图所示,中心空白的正六棱柱是技术员设计的六角螺母,请你帮助技术人员画出它的三种视图.2.已知一个几何体由若干个长方体组成,每个长方体的长为2cm,宽、高都为1cm,它的三视图如图所示,描述该几何体的形状,并计算它的表面积.3.如图(1)(2)是小东同学在进行“居民楼高度,楼间距对住户采光影响问题”的研究时画的两个示意图,请你阅读相关文字,解答下面的问题.(1)图(1)是太阳光线与地面所成角度的示意图.冬至日正午时刻,太阳光线直射在南回归线(南纬23.5°)B地上,在地处北纬36.5°的A地,太阳光线与地面水平线l所成的角为α.试借图(1),求α的度数;(2)图(2)是乙楼高度,楼间距对甲楼采光影响的示意图,甲楼地处A地,其二层住户的南面窗户下沿距地面3.4米,现要在甲楼正南面建一幢高度为22.3米的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?4.如图(1)所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,若灯泡距离地面3米,求地面上阴影部分的面积.。

人教版九年级数学下册第29章投影与视图全章教案

人教版九年级数学下册第29章投影与视图全章教案

第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。

2、空间观念的形成是一个长期的过程。

本章是第七章内容的继续和发展。

二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。

2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。

3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。

4、能由三视图想象简单几何体。

难点:几何体与其投影的关系及由三视图想象几何体。

三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。

2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。

3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。

4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。

5、通过三视图的学习,培养学生识图、画图的基本技能。

6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。

四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。

很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。

在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。

(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。

九年级数学《投影与视图-复习》教案

九年级数学《投影与视图-复习》教案

《第29章投影与视图》复习课教学设计10.教学流程安排11..教学过程设计活动3提问检查,归整建构[师生互动] 1、 教师依次提问2、 学生回答,并相互补充完善。

3、 师生共同完成构建知识结构图。

20406080100120一月二月三月四月亚洲区欧洲区北美区[设计意图] 1、对活动2学生自学的基础上,回答问题并相互完善,师生共同完成知识结构图的构建。

[媒体应用析] 1、对学生的思维进行训练,增大课堂容量。

2、揭示知识之间的内在联系。

活动4变式训练,查补缺漏见课件内容[师生互动]1, 教师依次出示问题 2, 学生独立思考,口答前5个小题,并相互评价。

后面习题,学生分小组练习并相互检查。

[课件展示]练习题[设计意图] 通过学生练习,进一步巩固知识,的目的。

[媒体应用析] 1、对学生的思维进行训练,增大课堂容量。

活动5 课堂小结,反思收获对自己:谈本节课有哪些收获?对同伴:谈在学习本节内容时应注意什么? 对老师:谈本节课在学习中还有哪些收获?[师生互动] 学生自主小结,教师应关注学生的表现,包括知识掌握情况、情绪状况等。

[设计意图] 使所学知识条理化、系统化。

一、知识结构图二、变式训练三、小结作业三视图是本章的重点,物体与三视图之间可以从两个不同方向实现转化。

教学中可以引导学生结合具体的例子,认识和总结本章知识结构图,对立体图形和平面图形之间的相互转化进行概括,这样能加深对本章知识结构图的理解。

画三视图和由视图想立体图形是本章的两类主要问题,它们之间相互联系,前者是后者的基础。

这两类问题对于提高空间想象力都有重要作用。

因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

29章投影与视图单元整理分析教案

29章投影与视图单元整理分析教案

《第29章投影与视图》单元教学设计
影的角度对如何用三视图这样的平面图形来表示三维立体图形进行进一步讨论.这有助于将学
生对于图形已有的认识加以提高,增强将平面图形与立体图形相互转化的.
(3)、教学中应重视联系实际问题.帮助学生克服立体几何知识的不足在本章的教学中,不可避免地要涉及立体几何中的一些基础知识,例如空间中直线与直线.简称线线,、直线与平面,简称线面。

、平面与平面,简称面面。

的位置关系、相交、垂直和平行,但是学生此前缺乏对这些知识的系统学习。

只是有一些感性认识。

在学习本章之前先系统补充立体几何基础知识是不合适的、因为这需要增加许多课时、而且扩大了课程标准规定的初中数学学习内容.教科书的编写者认为,解决这个问题的比较好的做法是重视相关内容与实际的联系,在不刻意追求对抽象概念有透彻理解的前提下,选择一些实例,利用直观的、感性的认识.
3.单元知识结构框架:。

投影与视图复习课教案

投影与视图复习课教案

投影与视图一、知识结构二、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投射线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光线。

由平行光线形成的投影是平行投影.(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。

(4)正投影:投射线垂直于投影面产生的平行投影叫做正投影。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

几何体在一个平面上的正投影叫做这个几何体的视图。

三视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果。

(2)三视图的画法必须符合的规律:长对正,高平齐,宽相等。

三、经典例题剖析例1、一个人晚上迎着路灯走时,他影子的变化方式为()A. 由长变短B. 由短变长C. 保持不变D. 不一定分析:利用路灯光线是点光源传播的道理,通过作图,便可得到解题方案。

(答案:A)例2、如图,把正方体的一个顶点朝上立放,在它下面放一张白纸,使纸面与太阳光线垂直,那么,该正方体在纸上的投影影子是()分析:本题需要一定的空间想象能力,当太阳光线垂直照射到正方体的一个顶点上,在纸上的投影是个正六边形.答案:C)点评:在本章的解题中,体现出立体成像的感官.例3、如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是()分析:三视图包括主视图,俯视图,左视图;三视图的位置和度量规定:长对正,高平齐,宽相等。

(答案:D)例4、一个几何体的三视图如图所示,那么这个几何体是()分析:俯视图为三角形说明几何体的底面是个三角形,主视图和左视图是长方形说明是一个柱体,综上知为三棱柱。

九下数学第二十九章《投影与视图》复习教案

九下数学第二十九章《投影与视图》复习教案

的直线的交点就是灯泡的位置.【解】如图2,直线AB 与直线CD 的交点P 就是灯泡的位置.【方法点评] 发光点、物体上的点及其影子上的对应点在一条直线上. 案例2. 图3是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图、左视图. 【思路点拨】主视图应是三列,每列方块数分别是1,3,4;左视图两列,方块数分别是4,2.【解】这个几何体的主视图、左视图如图4所示.【方法点评】主视图看列,俯视图有几列,主视图就有几列;左视图看行,俯视图有几行,左视图就有几列,每行每列中的最大数字是主视图、左视图各列中的层数.案例3. 图5是几个小立方块所搭几何体的三视图,那么,搭成这个立体图形的小立方块有多少块?PACDB图2图3主视图图4图5主视图左视图俯视图112211图6【思路点拨】先确定这个立体图形的大致形状,因此,我们以俯视图为基础,结合主视图和左视图,得到小立方块的个数.【解】由左视图第一列和第三列只有一个小正方形,知俯视图的第一行和第三行的小正方形上的数字必为1,(俯视图中小正方形上的数字表示该位置小立方块的个数(如图6),由主视图第一列只有一个正方形,知俯视图的第一列的小正方形上的数字必为1,由主视图的第2、3列上有2个小正方形,知俯视图的第2列和第3列中至少有一个小正方形上的数字为2,从而只有它的第2行和第3行上的对应位置的小正方形上的数字都为2.所以这个立体图形由:1+1+1+2+2+1=8(个)小立方块搭成.【方法点拨】解答此类问题的依据是:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.案例4.如图7(1),中间是一盏路灯,周围有一圈栏杆,图7(2)是其两幅俯视图(图中只画出了部分情形),其中一幅是白天阳光下的俯视图,另一幅是这盏路灯下的俯视图.你认为哪个是其白天的俯视图?哪个是其晚上的俯视图?【思路点拨】观察两个俯视图,发现左图中的栏杆的影子在栏杆所形成区域外,说明其影子是在灯光照射下形成的,因此左图是夜晚路灯下的俯视图,右图是白天阳光下的俯视图.【解】左图是夜晚路灯下的俯视图,右图是白天阳光下的俯视图.【方法点拨】连接实物的顶点与和其对应的影子的顶点的线段所在的直线应经过点光源.本题中栏杆在路灯下的影子不可能投在栏杆所围成的圆形区域内(二)实践探究探究1. 画出图8中由一些长方体搭成的几何体的三视图探究2. 图9是我国北方某地一棵树在一天不同时刻拍下的五张图片,仔细观察后回答下列问题.(1)说出这五张图片所对应时间的先后顺序.(2)根据生活经验,谈谈由早到晚该地物体影子的长短变化规律. 探究3. 与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图10所示),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?探究4. 根据物体的三视图(如图11所示),求它表示的几何体的表面积和体积.图8图9图10图1140mm20mm30mm。

第29章《投影与视图》复习课教案

第29章《投影与视图》复习课教案

课题投影与视图(练习课)一、教学目标1、进一步体会投影中的平行投影、中心投影和正投影间的相互关系2、加深体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力二、教学过程(一)提问导入前面我们都学习了哪些内容?(让学生进行2~3分钟的梳理,然后让几个学生说说看,最后老师拓展总结)(二)看谁学得好练习设计1.填空题(1)俯视图为圆的几何体是_______,______。

(2)画视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______。

(3)举两个左视图是三角形的物体例子:________,_______。

(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。

(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。

2.选择题(1)圆柱对应的主视图是()。

(A)(B)(C)(D)(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。

(A)长方体(B)圆柱(C)圆锥(D)球(3)下面是空心圆柱在指定方向上的视图,正确的是…()(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()(5)主视图、左视图、俯视图都是圆的几何体是()。

(A)圆锥(B)圆柱(C)球(D)空心圆柱3、解答题(1)根据要求画出下列立体图形的视图。

(画左视图)(画俯视图)(画正视图)(2)画出右方实物的三视图。

(3)如图是一个物体的三视图,请画出物体的形状。

(4)根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体。

第29章《 投影与视图》单元复习教学设计

第29章《 投影与视图》单元复习教学设计

第29章《投影与视图》单元复习教学设计【学习目标】1.进一步理解投影、三视图等概念.2.能画出几何体的三视图,能根据三视图想象物体的形状.【学习重点】进一步加深对本章知识的理解,提高解题技能.【学习难点】利用三视图想象实物形状,并根据相关数据进行计算.情景导入生成问题知识结构我能建:自学互研生成能力知识模块一投影的有关知识【自主探究】1.平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心投影?答:区别在于平行投影是在平行光线下形成的投影,而中心投影在是相交光线下形成的投影.区别这两种投影的关键是抓住光线的特征.2.如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子(C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短【合作探究】如图所示,点 P表示广场上一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5m,照明灯P到灯柱的距离为1.5m,小丽目测照明灯P的仰角为55°,她的目高QB为 1.6m,试求照明灯P到地面的距离(结果精确到0.1m).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)解:(1)如图,线段AC 即是小敏的影子;(2)过点Q 作QE ⊥MO 于E ,过点P 作 PF ⊥AB 于F ,交EQ 于点H.则PF ⊥QE ,在Rt △PHQ 中,∠PQH =55°.HQ =EQ -EH =4.5-1.5=3(m ).∵tan 55°=PH QH,∴PH =HQ·tan 55°≈4.3(m ).∴PF =PH +HF =4.3+1.6=5.9(m ).知识模块二 三视图的有关知识【自主探究】下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A ),),A ) ,B ) ,C ) ,D )【合作探究】如图是某种物体的三视图及相关数据(单位:cm ),求该物体的体积(3≈1.732,π=3.14,精确到0.01cm 3).解:S 底=6×12×0.8×235=24325(cm 2),V =24325×1-π(0.4)2×1=24325-4π25≈1.16032≈1.16(cm 2). 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 投影的有关知识知识模块二 三视图的有关知识检测反馈 达成目标【当堂检测】1.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72.(第1题图) (第2题图)2.如图是一个包装盒的三视图,则这个包装盒的体积是2000πcm 3(结果保留π).【课后检测】见学生用书课后反思 查漏补缺1.这节课的学习,你的收获是:____________________________________________________________2.存在困惑:________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题投影与视图(练习课)
一、教学目标
1、进一步体会投影中的平行投影、中心投影和正投影间的相互关系
2、加深体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力
二、教学过程
(一)提问导入
前面我们都学习了哪些内容?
(让学生进行2~3分钟的梳理,然后让几个学生说说看,最后老师拓展总结)
(二)看谁学得好
练习设计
1.填空题
(1)俯视图为圆的几何体是_______,______。

(2)画视图时,看得见的轮廓线通常画成_______,
看不见的部分通常画成_______。

(3)举两个左视图是三角形的物体例子:________,_______。

(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。

(5)请将六棱柱的三视图名称填在相应的横线上.
(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。

2.选择题
(1)圆柱对应的主视图是()。

(A)(B)(C)(D)
(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。

(A)长方体(B)圆柱(C)圆锥(D)球
(3)下面是空心圆柱在指定方向上的视图,正确的是…()
(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()
(5)主视图、左视图、俯视图都是圆的几何体是()。

(A)圆锥(B)圆柱(C)球(D)空心圆柱
3、解答题
(1)根据要求画出下列立体图形的视图。

(画左视图)(画俯视图)(画正视图)
(2)画出右方实物的三视图。

(3)如图是一个物体的三视图,请画出物体的形状。

(4)根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体。

相关文档
最新文档