平方根--微课设计
平方根教学设计范文
平方根教学设计范文教学设计:平方根教学目标:1.了解平方根的概念,能够解释平方根的定义。
2.掌握平方根的求解方法,能够计算一个数的平方根。
3.能够应用平方根的知识解决实际问题。
教学步骤:第一步:引入知识(10分钟)1.展示一个正方形,并解释平方的含义,即一个数的平方等于它自己乘以自己。
2.引导学生思考:如果将一个数的平方换成这个数,应该怎么表示?引出平方根的概念。
第二步:平方根的定义(20分钟)1.向学生介绍平方根的定义:如果一个数a的平方等于b,那么b叫做a的平方根。
2.通过示例,让学生理解平方根的定义。
第三步:平方根的求解方法(30分钟)1.向学生介绍常见的平方根求解方法:试探法、查表法和算术平方根法。
2.详细讲解试探法的步骤:从0开始逐个尝试,直到找到一个数的平方大于或等于给定数。
3.展示使用计算器或电子设备求解平方根的方法。
第四步:平方根的性质(20分钟)1.向学生介绍平方根的一些基本性质,如:非负数的平方根为正数;负数没有实数平方根等。
2.通过示例,让学生掌握平方根的基本性质。
第五步:练习和应用(30分钟)1.分发练习题,让学生独立或小组完成。
练习题涵盖平方根的求解和应用题。
2.检查学生的练习题答案,讲解解题方法和思路。
3.提出一些实际问题,让学生应用平方根的知识进行求解。
第六步:总结和反思(10分钟)1.反思学生学习平方根的过程,回顾本节课的知识点。
2.鼓励学生提出问题和意见,对本节课的教学进行评价。
3.总结平方根的相关知识,确保学生对平方根的理解和掌握。
教学资源:1.正方形展示物2.操纵计算器或电子设备3.练习题和答案教学评价:1.观察学生的参与情况和表现,评估学生的学习态度和主动性。
2.收集学生的练习题答案,评估学生对于平方根的求解和应用能力。
3.进行课堂讨论和交流,评估学生对于平方根概念和性质的理解程度。
教学延伸:教师可以引导学生探索更高级的平方根问题,如虚数的平方根和无理数的平方根。
七年级下册6.1平方根教案(第二课时)-经典教学教辅文档
6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。
《平方根》教学设计精选文档
《平方根》教学设计精选文档平方根(第1课时)教学设计一、内容和内容解析本节课内容属于全日制义务教育数学课程标准(实验稿)中的“数与代数”领域,是在已学的数的平方运算基础上,通过逆向思维得出算术平方根的定义、意义和求法。
算术平方根是后面学习平方根、二次根式、一元一次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的绝大部分知识做好准备。
学生在七年级上册中已经学习了有理数,而算术平方根的学习,第一次在学生面前展示了无理数的形式,将数的范围由有理数扩充到了实数。
所以,本节课内容在整个数学学科的学习中起到承上启下的重要作用,使得学生对于数的理解实行了一次质的飞跃!二、目标和目标解析(4)-25的算术平方根是-5()5.若,则求的算数平方根。
师生活动:在规定的时间内让学生独立完成,由学生来对题目进行讲解,说明理由,必要时,教师加以引导、补充。
【设计意图】及时的课堂反馈,可以看出学生对于本节课内容的理解和掌握情况,及时发现问题,有助课后进行有针对性的加强训练。
提问:回顾问题4:现在知道面积为2m的正方形边长了吗?师生活动:得到结果cm【设计意图】前后呼应,对于本课知识的再次肯定,又为下节课无理数的讲解做铺垫。
提问:今天你有什么收获?师生活动:自由发言,概括本节课主要内容,教师梳理,并强调本课重点。
【设计意图】教师引导学生归纳本课知识要点,使学生对算术平方根的概念及其应用有一个较为整体、全面的认识,同时,使学生养成良好的学习习惯。
作业:必做题:课本75页习题13.1第1、2题.选做题:(1)3_-4为25的算术平方根,求_的值。
(2)2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a,b的值。
【设计意图】必做题中的作业既是对算术平方根的概念及其应用的一次练习,又是学生对该内容掌握情况的反映。
选做题中的作业有一定的难度,可以让有能力的学生有一个知识的提高。
平方根教案 (4)
平方根教案一、教学目标1.了解平方根的概念和性质;2.学习求解平方根的方法;3.掌握平方根的计算和应用。
二、教学重点和难点1.教学重点:了解平方根的概念和性质,并能够熟练运用求解平方根的方法;2.教学难点:掌握平方根的计算和应用,例如求解平方根的近似值。
三、教学准备1.教学PPT;2.黑板和粉笔;3.平方根的相关练习题。
四、教学过程步骤一:引入知识(5分钟)1.引出问题:你们听过平方根吗?平方根在哪些实际问题中有应用?(学生回答)2.导入新知识:今天我们将学习平方根的概念及其计算方法。
步骤二:讲解平方根的概念(10分钟)1.定义:平方根是指一个数的平方等于给定数的非负实数。
2.符号:平方根用符号√表示。
3.示例:例如,√9=3,因为3的平方等于9。
步骤三:平方根的性质(10分钟)1.性质一:非负数的平方根一定是非负数。
2.性质二:平方根的平方等于原数。
3.示例:例如,(-3)²=9,那么√9=3。
步骤四:求解平方根的方法(15分钟)1.方法一:因数分解法–示例:求解√64。
–解答:64可以分解为2²×2²×2²,所以√64=2×2×2=8。
2.方法二:试探法–示例:求解√20。
–解答:首先我们知道√16=4,然后我们发现20比16大,所以我们可以试探√20≈4.5。
我们可以验证一下:4.5的平方约等于20。
3.方法三:近似法–使用计算器或手持计算器来计算平方根的近似值。
步骤五:平方根的计算和应用(20分钟)1.计算平方根:引导学生进行一些平方根的计算练习题,例如√36,√100,√144等。
2.应用实例:介绍平方根在几何学和物理学中的应用,例如求解三角形的斜边长度、计算圆的半径等。
步骤六:练习与巩固(15分钟)1.给学生分发练习题,让学生进行平方根的计算练习。
2.随堂检查练习题的答案,解答学生提出的问题。
步骤七:总结与作业布置(5分钟)1.总结:请学生总结今天学到的平方根的知识点。
平方根教学设计(教案)
平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。
2. 让学生掌握求一个数的平方根的方法。
教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。
2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。
教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。
2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。
章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。
2. 让学生能够熟练地进行平方根的计算。
教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。
2. 通过例题让学生理解平方根的运算规则,并进行练习。
教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。
2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。
章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。
2. 让学生能够运用平方根解决实际问题。
教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。
2. 通过例题让学生理解平方根的应用,并进行练习。
教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。
2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。
章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。
2. 让学生能够运用平方根的拓展知识解决实际问题。
教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。
2. 通过例题让学生理解平方根的拓展知识,并进行练习。
教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。
平方根(第一课时) 教学设计
平方根(第一课时)教学设计一、教学目标1.理解平方根的概念2.掌握平方根的计算方法3.运用平方根解决实际问题二、教学重点1.平方根的概念和计算方法2.平方根的应用三、教学内容和方法1. 平方根的概念和计算方法1.1 通过定义引入平方根的概念•定义:如果一个数的平方等于另一个数,那么这个数就叫做这个数的平方根。
•举例:如果a² = b,那么a就是b的平方根。
1.2 计算平方根的方法•平方根的符号:√•计算方法:1.列举并观察完全平方数的特点2.借助观察结果计算非完全平方数的近似值2. 平方根的应用2.1 使用平方根解决实际问题•示例:小明要把一个方形园地的面积分成两个等面积的部分,他应该如何划分?–步骤:1.设园地的边长为x,则该园地的面积为x²2.根据题目要求,将x²分成两个等面积的部分3.求解方程x²/2 = x4.解得x = 2的平方根5.将x带回原方程,得到园地的边长四、教学步骤1.引入平方根的概念和计算方法。
通过生活中的例子和学生的实际体验,引导学生理解平方根的含义,并介绍计算平方根的方法。
2.带领学生观察完全平方数的特点,引导学生发现非完全平方数的计算方法。
3.给学生提供一些练习题,让学生进一步熟悉平方根的计算。
4.引入平方根的应用。
通过实际问题的解决过程,让学生理解平方根的实际应用价值。
5.继续给学生提供一些应用题,让学生运用所学知识解决问题。
6.对学生进行巩固练习,检验他们对平方根的理解和应用能力。
五、教学评价1.在引入概念和计算方法环节,观察学生的反应,确保学生理解平方根的概念和计算方法。
2.在应用环节,检查学生对平方根应用的理解和解题能力。
3.给学生一定的巩固练习,检验他们的掌握情况。
六、教学反思1.教学重点和难点:平方根的计算方法和应用,需要通过引导学生观察、思考和实际运用,培养学生的分析解决问题的能力。
2.教学步骤:教学过程设计合理,能够引导学生逐步理解和掌握平方根的概念和应用。
平方根公式优质课教学设计完美版
平方根公式优质课教学设计完美版引言本次教学设计旨在帮助学生理解和运用平方根公式。
通过本节课的研究,学生将能够掌握平方根公式的原理和应用,并能够灵活运用该公式解决相关问题。
教学目标1. 理解平方根公式的定义和性质;2. 学会运用平方根公式求解简单的二次方程;3. 能够将所学知识应用于实际问题的解决。
教学内容1. 平方根公式的定义与性质- 平方根的概念及其意义;- 平方根公式的定义;- 平方根公式的性质。
2. 平方根公式的应用- 运用平方根公式求解一元二次方程的步骤;- 求解简单的一元二次方程的练。
3. 实际问题的解决- 案例分析:通过平方根公式解决实际问题;- 学生合作探究:通过分组研究和讨论,解决一些与平方根公式相关的实际问题。
教学过程1. 导入:呈现一个与平方根公式相关的问题,引发学生思考和讨论。
2. 知识点讲解:由教师讲解平方根公式的定义和性质,加以实例演示,帮助学生理解。
3. 练训练:设计一系列练题,引导学生运用平方根公式求解一元二次方程。
4. 案例分析:给予学生一个实际问题,要求他们运用平方根公式解决,并进行讨论和分享。
5. 合作探究:分组让学生自主探究并解决一些与平方根公式相关的实际问题,鼓励他们展示研究成果。
6. 总结归纳:教师对本节课的内容进行总结概括,并回顾重要知识点和解题技巧。
教学评价1. 在课堂中观察学生的参与度和表现;2. 收集和分析学生在练和探究中的解题过程和答案;3. 通过课后作业检查学生对平方根公式的掌握情况。
教学资源1. 平方根公式教学PPT;2. 练题和案例分析材料;3. 板书和展示工具;4. 合作探究活动的分组材料。
结束语通过本节课的学习,学生将能够掌握平方根公式的原理和应用,并能够运用该公式解决相关问题。
希望本节课能够激发学生对数学的兴趣,提高他们的问题解决能力。
七年级下数学《平方根》公开课教案
七年级下数学《平方根》公开课教案第一章:导入新课1.1 教学目标(1)理解平方根的概念。
(2)学会使用平方根符号表示平方根。
(3)培养学生的数学思维能力。
1.2 教学内容(1)引入平方根的概念:一个数的平方根是指与该数相乘后得到原数的非负数。
(2)平方根的符号表示:若一个数x的平方根为a,则表示为√x = a或a√x。
(3)引导学生思考平方根的性质,激发学生的学习兴趣。
1.3 教学过程(1)复习导入:回顾上一节课学习的内容,如算术平方根的概念。
(2)提问:同学们,你们知道平方根是什么意思吗?它的符号是如何表示的?(3)讲解:讲解平方根的概念,并通过实例解释平方根的符号表示。
(4)练习:让学生尝试计算几个数的平方根,并写出符号表示。
第二章:平方根的性质2.1 教学目标(1)理解平方根的性质。
(2)学会运用平方根的性质解决实际问题。
2.2 教学内容(1)平方根的非负性:一个数的平方根一定是非负数。
(2)平方根的互异性:不同的数有不同的平方根。
(3)平方根的乘除性质:平方根相乘(除)等于它们的乘积(除数)的平方根。
2.3 教学过程(1)讲解:讲解平方根的非负性、互异性以及乘除性质。
(2)示例:给出实例,让学生理解平方根的性质。
(3)练习:让学生运用平方根的性质解决实际问题,如计算表达式的值。
第三章:估算平方根3.1 教学目标(1)学会估算一个数的平方根。
(2)培养学生的估算能力。
3.2 教学内容(1)估算方法:根据平方根的性质,通过估算被开方数的大小来确定平方根的范围。
(2)估算过程:将一个数与已知平方数进行比较,确定平方根的大致范围。
3.3 教学过程(1)讲解:讲解估算平方根的方法和过程。
(2)示例:给出实例,让学生理解并掌握估算平方根的方法。
(3)练习:让学生独立进行平方根的估算,并解释估算过程。
第四章:求平方根的近似值4.1 教学目标(1)学会使用计算器求平方根的近似值。
(2)培养学生的计算能力。
平方根教学设计(教案)
平方根教学设计(教案)第一章:平方根的引入1.1 平方根的概念解释平方根的定义通过实际例子说明平方根的概念1.2 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质第二章:平方根的计算方法2.1 手算法介绍手算法计算平方根的方法通过实际例子演示手算法计算平方根的过程2.2 计算器法介绍如何使用计算器计算平方根通过实际例子演示计算器法计算平方根的过程第三章:平方根的应用3.1 实际问题解决通过实际问题引入平方根的应用引导学生运用平方根的性质和计算方法解决问题3.2 平方根在科学和工程中的应用介绍平方根在科学和工程中的常见应用通过实际例子展示平方根在科学和工程中的重要性第四章:平方根的性质和判定4.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质4.2 平方根的判定介绍如何判定一个数的平方根通过实际例子演示如何判定一个数的平方根第五章:平方根的综合练习5.1 练习题提供一些有关平方根的练习题引导学生通过运用平方根的性质和计算方法来解决练习题5.2 应用题提供一些有关平方根应用的题目引导学生通过运用平方根的性质和计算方法来解决应用题第六章:平方根的图像6.1 平方根的图像特点解释平方根函数的图像特点通过图形展示平方根函数的图像特点6.2 利用图像求解平方根介绍如何利用平方根函数的图像来求解平方根通过实际例子演示如何利用图像求解平方根第七章:平方根的性质和定理7.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质7.2 平方根的定理介绍与平方根相关的定理,如平方根的乘积等于原数的乘积等通过实际例子来展示平方根的定理第八章:平方根在代数中的应用8.1 平方根在解方程中的应用介绍平方根在解方程中的应用通过实际例子演示如何利用平方根来解方程8.2 平方根在证明中的应用介绍平方根在证明中的应用通过实际例子演示如何利用平方根来证明代数式第九章:平方根在实际生活中的应用9.1 平方根在几何中的应用介绍平方根在几何中的应用,如求解三角形的面积等通过实际例子展示平方根在几何中的应用9.2 平方根在其他领域中的应用介绍平方根在其他领域中的应用,如物理学、经济学等通过实际例子展示平方根在其他领域中的应用第十章:平方根的综合练习与拓展10.1 综合练习题提供一些有关平方根的综合练习题引导学生通过运用平方根的性质、计算方法和图像来解决练习题10.2 拓展题目提供一些有关平方根的拓展题目引导学生通过运用平方根的知识来解决拓展题目,提高学生的思维能力重点和难点解析六、平方根的图像:理解平方根函数的图像特点对于学生来说是一个难点,因为它涉及到函数图像的直观理解和数学概念的结合。
平方根第一课时教案
平方根第一课时教案教案标题:平方根第一课时教案教学目标:1. 理解平方根的概念,并能用适当的术语解释平方根的含义。
2. 学会计算简单的平方根。
3. 掌握平方根与平方数的关系。
教学准备:1. 平方根的定义和性质的教学材料。
2. 计算平方根的示例题目。
3. 平方根的练习题目和答案。
4. 黑板、粉笔和擦子。
教学过程:引入:1. 使用一个简单的问题引起学生对平方根的兴趣,例如:“你知道什么是平方根吗?它与平方数有什么关系?”2. 让学生自由讨论并分享他们对平方根的理解。
探究:1. 介绍平方根的定义和性质,解释平方根是一个数的平方的逆运算。
2. 给出一些示例,引导学生计算简单的平方根,例如√4、√9等。
3. 引导学生思考平方根与平方数的关系,例如√4=2,2²=4。
4. 引导学生发现平方根和平方数之间的对应关系,并总结出结论。
实践:1. 分发平方根的练习题目,让学生独立完成并检查答案。
2. 对学生的答案进行讲解和讨论,解决学生可能存在的疑惑和困惑。
总结:1. 让学生总结本节课所学的内容,重点强调平方根的定义、计算方法和与平方数的关系。
2. 检查学生对于平方根的理解程度,可以通过提问或小测验的形式进行。
拓展:1. 鼓励学生进一步探究平方根的性质和应用,例如平方根的近似值、平方根的图像等。
2. 提供更多的练习题目,以巩固学生对平方根的计算能力。
课堂作业:1. 布置相关的课后作业,要求学生继续练习计算平方根的题目。
2. 鼓励学生思考平方根的实际应用,例如计算面积或边长等。
教学反思:1. 回顾本节课的教学过程,总结教学中的亮点和不足之处。
2. 根据学生的反馈和理解情况,调整教学策略和方法,以提高教学效果。
注:教案的具体内容和步骤可以根据教师的实际情况和学生的学习水平进行调整和修改。
2.2平方根-平方根、算术平方根(教案)
3.增强学生的数学建模和数学应用意识:将平方根和算术平方根与现实生活中的问题相结合,让学生在实际情境中运用所学知识解决问题,提高数学建模和数学应用能力。
这些核心素养目标将有助于学生更好地理解和掌握平方根与算术平方根的概念,为后续数学学习打下坚实基础。
-算术平方根的单一性:学生可能会混淆算术平方根和平方根的概念,认为每个正数有两个算术平方根。
-负数没有平方根:学生需要理解为什么负数没有平方根,这涉及到实数范围的拓展。
-实际问题的应用:将平方根和算术平方根应用于实际问题,如何从问题中抽象出数学模型,是学生可能遇到的难点。
举例:针对平方根的双重性,可以让学生通过具体的例子(如4的平方根是2和-2)进行操作和讨论,以加深理解。对于算术平方根的单一性,可以通过强调“非负”一词来帮助学生区分。至于负数没有平方根,可以通过图像(如抛物线y=x²)来展示,说明在实数范围内没有平方后得到负数的点。在实际问题应用方面,可以设计一些与生活相关的题目,如计算正方形边长,让学生学会将实际问题转化为数学模型。
三、教学难点与重点
1.教学重点
-平方根的定义:平方根是解决乘法问题的逆运算,是本节课的核心内容。学生需要理解平方根表示的意义,掌握求一个数的平方根的方法。
-算术平方根的定义:算术平方根是平方根的特殊情况,学生需要明确算术平方根的概念,学会计算一个正数的算术平方根。
-平方根和算术平方根的性质:包括正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根;正数的算术平方根只有一个,为非负数等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根-平方根、算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形场地的面积)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。
平方根教案设计
平方根教案设计一、教学目标1、知识与技能目标理解平方根的概念,能正确地表示一个数的平方根。
掌握平方根的性质,会求一个非负数的平方根。
2、过程与方法目标通过对平方根概念的学习,培养学生的抽象概括能力。
在求平方根的过程中,提高学生的运算能力和逻辑思维能力。
3、情感态度与价值观目标让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。
通过合作学习,培养学生的团队合作精神和交流能力。
二、教学重难点1、教学重点平方根的概念和性质。
求一个非负数的平方根。
2、教学难点对平方根概念的理解,特别是负数没有平方根的理解。
区分平方根与算术平方根的关系。
三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课复习算术平方根的概念:如果一个正数 x 的平方等于 a,即 x²= a,那么这个正数 x 叫做 a 的算术平方根,记作√a 。
提出问题:如果一个数的平方等于 9,这个数是多少?2、讲授新课平方根的概念引导学生思考:因为 3²= 9,(-3)²= 9,所以平方等于 9 的数有两个,3 和-3 。
给出平方根的定义:如果一个数的平方等于 a,那么这个数叫做 a的平方根,也叫做二次方根。
即如果x²=a,那么x 叫做a 的平方根。
平方根的表示方法正数 a 的平方根记作±√a ,读作“正、负根号a ”。
例如,9 的平方根记作±√9 = ±3 。
平方根的性质0 的平方根是 0 。
正数有两个平方根,它们互为相反数。
负数没有平方根。
3、例题讲解例 1:求下列各数的平方根:4906416/81例 2:判断下列说法是否正确:5 是 25 的平方根。
25 的平方根是 5 。
0 的平方根是 0 。
-4 的平方根是-2 。
4、小组讨论组织学生讨论:平方根与算术平方根有什么区别和联系?引导学生从定义、表示方法、个数等方面进行比较。
5、课堂练习课本练习题 1、2、3 。
七年级下数学《平方根》公开课教案
七年级下数学《平方根》公开课教案第一章节:引入平方根的概念1.1 教学目标1. 了解平方根的概念及其与乘方的关系。
2. 学会使用平方根符号表示一个数的平方根。
3. 掌握求一个数的平方根的基本方法。
1.2 教学内容1. 平方根的定义及表示方法。
2. 求一个数的平方根的方法。
1.3 教学步骤1. 通过乘方运算,引导学生思考乘方的逆运算,引出平方根的概念。
2. 讲解平方根的定义,让学生理解平方根与乘方的关系。
3. 演示如何求一个数的平方根,引导学生掌握求平方根的方法。
1.4 练习题1. 求下列各数的平方根:2, 3, 4, 5, 6。
2. 判断下列各数是否有平方根:-2, 0, 1, -1, 2。
第二章节:平方根的性质2.1 教学目标1. 了解平方根的性质。
2. 学会应用平方根的性质解决实际问题。
2.2 教学内容1. 平方根的性质:正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根。
2. 应用平方根的性质解决实际问题。
2.3 教学步骤1. 引导学生通过观察和思考,发现平方根的性质。
2. 讲解平方根的性质,让学生理解并记住这些性质。
3. 举例说明如何应用平方根的性质解决实际问题。
2.4 练习题1. 根据平方根的性质,判断下列各数的平方根是正数还是负数:4, 9, 16, 25。
2. 求下列各数的平方根:√36, √144, √256。
第三章节:平方根的运算3.1 教学目标1. 学会求一个数的平方根。
2. 学会进行平方根的运算。
3.2 教学内容1. 求一个数的平方根的方法。
2. 平方根的运算规则。
3.3 教学步骤1. 讲解求一个数的平方根的方法,让学生掌握求平方根的技巧。
2. 引导学生学习平方根的运算规则,让学生学会进行平方根的运算。
3.4 练习题1. 求下列各数的平方根:8, 27, 64, 121。
2. 进行下列各式的平方根运算:√(4 ×9), √(16 ÷4), √(25 + 16)。
平方根教案_初中数学
教案:平方根教学目标:1. 理解平方根的概念,掌握求一个数的平方根的方法。
2. 能够运用平方根解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 平方根的定义和性质2. 求一个数的平方根的方法3. 平方根在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾乘方的概念,复习正整数的平方根。
2. 提问:那么负数有没有平方根呢?如果有的话,它的平方根是什么?二、新课讲解(15分钟)1. 引入平方根的概念:如果一个非负数x的平方等于a,即x^2 = a,那么这个非负数x叫做a的平方根,记作√a。
2. 讲解平方根的性质:a) 任何正数都有两个平方根,互为相反数。
b) 0的平方根是0。
c) 负数没有平方根。
3. 示范求一个数的平方根的方法:a) 首先确定被开方数是一个非负数。
b) 然后进行开方运算,得到平方根。
三、练习与讨论(15分钟)1. 让学生独立完成一些求平方根的练习题,教师巡回指导。
2. 选取一些学生的作业进行讲解和讨论,解答学生的疑问。
四、应用拓展(15分钟)1. 让学生举例说明平方根在实际问题中的应用。
2. 引导学生思考如何利用平方根解决实际问题。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结平方根的定义、性质和求法。
2. 引导学生思考如何更好地运用平方根解决实际问题。
教学评价:1. 通过课堂讲解、练习和讨论,评价学生对平方根的概念、性质和求法的掌握程度。
2. 观察学生在实际问题中运用平方根的情况,评价学生的应用能力。
教学反思:本节课通过讲解平方根的概念、性质和求法,让学生掌握了平方根的基本知识。
在实际问题中,学生能够运用平方根解决问题,培养了学生的应用能力。
但在教学过程中,可能存在对平方根性质的讲解不够深入,以及学生在实际问题中运用平方根时遇到困难的问题。
在今后的教学中,需要加强对平方根性质的讲解,并通过更多实际例子引导学生运用平方根解决问题,提高学生的数学素养。
平方根的教案
平方根的教案教案标题:探索平方根的概念与计算方法教案目标:1. 通过观察、探索和实践,引导学生理解平方根的概念。
2. 培养学生分析问题、推导解决方法的能力。
3. 培养学生计算平方根的能力,包括用手工方法和计算器工具。
教学内容:1. 平方根的概念:引导学生理解平方根是一个数的平方等于该数的情况下的求根运算。
2. 平方根的符号:介绍平方根的符号,并讲解在数轴上的位置。
3. 平方根的计算方法:手工计算平方根的基本方法和使用计算器工具计算平方根的方法。
4. 平方根的实际应用:探讨平方根在实际问题中的应用,如测量、面积计算等。
教学步骤:一、导入(5分钟)1. 引入问题:你知道什么是平方根吗?有实际应用的例子吗?2. 学生思考并讨论。
3. 教师概念解释:平方根是一个数的平方等于该数的情况下的求根运算。
二、概念讲解与示例说明(10分钟)1. 展示平方根的符号,并讲解其含义。
2. 通过数轴上的位置演示平方根的概念。
3. 给出平方根的实例并解释。
三、手工计算平方根的基本方法(15分钟)1. 教师展示手工计算平方根的基本方法。
2. 学生分组练习计算几个简单的平方根。
3. 学生互相检查答案并讨论。
四、计算器工具的使用(15分钟)1. 教师介绍如何使用计算器计算平方根。
2. 学生尝试使用计算器计算一些平方根。
3. 学生分享并讨论他们的结果。
五、实际应用(10分钟)1. 引入实际应用问题,如测量、面积计算等。
2. 学生个别或小组完成实际问题的计算并报告结果。
六、总结与评价(5分钟)1. 教师引导学生总结所学内容,强调平方根的重要性和实际应用。
2. 教师评价学生在活动中的参与度和表现。
拓展活动:1. 挑战性问题:给定一个数,学生尝试计算其平方根,并验证结果。
2. 扩展讨论:讨论如何使用平方根计算更复杂的问题,如立方根、四次方根等。
3. 制作海报:让学生以图文方式展示平方根的概念与计算方法。
教学资源:1. 平方根实例问题及答案。
平方根教学设计(教案)
平方根教学设计(教案)章节一:平方根的概念介绍教学目标:1. 理解平方根的定义。
2. 学会使用平方根符号。
3. 能够求一个数的平方根。
教学步骤:1. 引入平方根的概念,通过实际例子解释平方根的含义。
2. 讲解平方根的符号表示方法,平方根的数学表达式。
3. 演示如何求一个数的平方根,使用计算器或数学工具进行示范。
4. 引导学生进行平方根的计算练习,解答学生的疑问。
巩固练习:1. 求下列各数的平方根:4, 9, 16, 25。
2. 判断下列各数是否有平方根:-4, 0, 36。
章节二:平方根的性质和运算规则教学目标:1. 理解平方根的性质。
2. 掌握平方根的运算规则。
教学步骤:1. 讲解平方根的性质,如正数的平方根有两个相反数,0的平方根是0等。
2. 介绍平方根的运算规则,如平方根的乘法和除法规则。
3. 演示平方根的运算示例,引导学生进行运算练习。
巩固练习:1. 根据下列各数的平方根,填写表格:a) 8b) 27c) 642. 计算下列各式的平方根:a) (4)^2b) (9)^3章节三:平方根的应用教学目标:1. 学会使用平方根解决实际问题。
2. 能够应用平方根解决几何问题。
教学步骤:1. 引入平方根在实际问题中的应用,如计算面积、解决方程等。
2. 讲解平方根在几何问题中的应用,如求解直角三角形的边长等。
3. 引导学生进行平方根的应用练习,解答学生的疑问。
巩固练习:1. 计算一个边长为6的正方形的面积。
2. 求解方程:x^2 = 25。
章节四:平方根的扩展教学目标:1. 了解平方根的扩展概念。
2. 学会使用平方根的扩展概念解决实际问题。
教学步骤:1. 介绍平方根的扩展概念,如立方根、四次方根等。
2. 讲解平方根的扩展概念在实际问题中的应用,如求解立方方程等。
3. 引导学生进行平方根的扩展概念的应用练习,解答学生的疑问。
巩固练习:1. 求解方程:x^3 = 27。
2. 计算一个边长为8的正方体的体积。
《平方根》微课设计
《平方根》微课设计《《平方根》微课设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容1、教学目标本着以人为本的教育理念,主动地发展学生的个性特长,让学生学会学习,培养学生可持续发展学习的能力,本节课主要采用探究式和启发式的教学方法。
4、教学过程(1):解平方根和算术平方根的概念,了解平方与开平方的关系。
(2)学会平方根、算术平方根的表示法和平方根、算术平方根,并运用以上知识解决实际问题。
(3)学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辨证唯物主义观点。
2、教学重点和难点2.1重点:平方根的概念。
2.2难点:平方根的概念和平方根的表示方法较为抽象,是本节课的难点。
3、教学方法4.1创设情境,设疑引新(媒体展示)做一做:同学们,你能将手中两个相同的小正方形,剪一剪,拼一拼,拼成一个大正方形吗?如果小正方形的边长是1,那大正方形的边长是多少呢?(设疑之后,引导学生解决这个问题的本质,即求平方等于2的数是什么?)随后,设计以下练习一张正方形桌面的边长为1.2m,面积是多少?一张正方形桌面的面积为1.44m2,边长是多少m?第二小题即求一个数的平方等于1.44,这个数是多少?有了以上的铺垫,解决这一问题对于学生来说已是轻而易举,即轻松地引入课题)4.2.1概念引入由具体问题开始讲解:∵(±1.2)2=1.44∴平方得1.44的数有两个是+1.2,又边长不为负,因此为1.2m于是说:∵(±1.2)2=1.44∴±1.2叫做1.44的平方根∵(±2)2=4∴±2叫做4的平方根∵x²=a∴x叫做a的平方根由学生在总结讨论中下定义概念巩固比一比,看谁最聪明如图,在左图和右图中的“?”表示的数xx²在求?的过程中,引导学生明确,左边的数是右边对应的数的平方根,并及时提问“有没有平方得负数的数?为什么?平方根的性质和表示学生通过讨论、交流得出平方根的性质:(展示)一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2分钟
对平方根的
定义和性质
进行归纳
1.平方根与算术平方根
2.平方和开平方的关系
进阶练习
易1. 的平方根是()A、4 B、2 C、-2 D、
中2.若5x+4的平方根为 ,则x=
难3.若 与 是同一个数的平方根,试确定m的值
微课设计表单
教师
学段
学科
教材(版本)
章/单元
课题
初中
数学
华师大
实数
平方根
微课名称
重难点(概念)
关键词(用、隔开)
平方根
平方根的性质
平方根、算术平方根
微课简介
利用平方的知识导入平方根
微课目标
1、通过认知冲突,感受开方运算引进的必要性,从而经历平方根概念的产生过程,感受平方运算与开平方运算的关系。
2、了解平方根和算术平方根的概念,会用根号表示平方根和算术平方根。
3、了解开平方与平方互为逆运算,会用平方运算求实数的平方根和算术平方根。
4、学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辨证唯物主义观点。
微课设计
通过平方的知识导入平方根的定义,理清平方和平方根的关系,探究出平方根的性质.
阶段
时间
内容
旁白
备注
导入
1分钟
复习
乘方、幂的
概念和性质
我们知道了平方的定义,会求一个数的平方运算,
反过来,知道一个数的平方是a,你能知道这个数吗?
过程
5分钟
平方根定义
若一个数的平方等于a,则这个数叫a的平方根
平方根
的性质
一个正数有两个平方根,它们是互为相反数;
零的平方根是(a≥0)的平方根的运算,叫做开平方,
开平方运算是已知指数和幂,求底数。