007-小波分析(第二讲)-多分辨率分析与正交小波变换
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/9985444d4b7302768e9951e79b89680203d86be2.png)
正交小波的多分辨分析的研究正交小波变换是一种基于小波函数的信号分析方法,通过将信号分解成多个不同尺度和频率的小波系数,能够提供更好的时频分辨率和局部特征描述能力。
在实际应用中,使用不同的小波函数可以获得不同的分析效果,因此正交小波的多分辨分析研究是一个重要的课题。
多分辨分析是正交小波变换的基本概念之一,它描述了信号在不同尺度下的分布特征。
在正交小波变换中,信号可以通过级数展开的形式表示为不同尺度和频率的小波函数的线性组合。
多分辨分析通过对小波函数进行尺度和平移变换,将信号分解成不同维度的小波系数。
通过选择适当的小波基函数,可以在不同分辨率下对信号进行分析,从而提取信号的时频信息。
在正交小波的多分辨分析研究中,需要考虑的一个关键问题是小波基函数的选择。
小波基函数的选择直接影响到小波系数的精确度和特征提取能力。
目前常用的小波基函数有Haar小波、Daubechies小波、Symlet小波等。
这些小波基函数具有不同的频域和尺度特性,可以在不同应用中选择合适的小波基函数。
另一个重要的研究方向是正交小波的多分辨分析算法的优化。
正交小波的多分辨分析算法包括离散小波变换(DWT)和连续小波变换(CWT)。
DWT是将信号分解成低频和高频部分,而CWT则是将信号连续地分解成不同尺度和频率的小波系数。
这些算法在计算效率和精度方面存在一定的差异。
目前的研究主要集中在改进DWT和CWT的计算效率,以满足实时信号处理和大规模数据分析的需求。
正交小波的多分辨分析在图像处理、语音识别、生物医学信号处理等领域具有广泛的应用。
在图像处理中,正交小波的多分辨分析可以实现图像的压缩、去噪和边缘检测等功能。
在语音识别中,正交小波的多分辨分析可以提取语音的时频特征,用于语音识别和语音合成。
在生物医学信号处理中,正交小波的多分辨分析可以用于心电图分析、脑电图分析等。
小波分析课件第四章多分辨分析和正交小波变换
![小波分析课件第四章多分辨分析和正交小波变换](https://img.taocdn.com/s3/m/1ce4b37530126edb6f1aff00bed5b9f3f80f7262.png)
其他领域
正交小波变换还广泛应用于金 融、医学、地球物理等领域的 数据分析和处理。
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都是小波分析中的重要概念,共同构成了小波 分析的基础。
多分辨分析为正交小波变换提供了理论框架,正交 小波变换是多分辨分析的具体实现。
正交小波变换可以看作是多分辨分析的一种特例, 其中尺度函数和小波函数都是正交的。
正交小波变换的应用场景
ቤተ መጻሕፍቲ ባይዱ01
02
03
04
信号处理
正交小波变换在信号处理中主 要用于信号去噪、压缩和特征 提取等。
图像处理
正交小波变换在图像处理中主 要用于图像压缩、去噪、增强 和特征提取等。
数据压缩
正交小波变换可用于数据压缩 领域,特别是对于非平稳信号 和图像数据的压缩,具有较好 的压缩效果和重建精度。
多分辨分析与正交小波变换的区别
02
01
03
多分辨分析主要关注的是函数在不同尺度上的表示, 而正交小波变换更注重在不同尺度上的细节信息。
正交小波变换具有更好的灵活性和适应性,可以针对 特定问题设计特定的小波函数和尺度函数。
正交小波变换在信号处理、图像处理等领域的应用更 为广泛,而多分辨分析更多用于理论分析。
正交小波变换的算法与实现
算法
正交小波变换的算法主要包括一维离散正交小波变换和二维离散正交小波变换。一维离散正交小波变换的算法包 括Mallat算法和CWT算法等,而二维离散正交小波变换的算法主要基于图像分块处理。
实现
正交小波变换的实现通常需要使用数字信号处理库或图像处理库,如Python的PyWavelets库或OpenCV库等。
小波分析课件第四章多分辨分析和正交小波变换
![小波分析课件第四章多分辨分析和正交小波变换](https://img.taocdn.com/s3/m/608d03e8294ac850ad02de80d4d8d15abe2300c2.png)
• 多分辨分析概述 • 正交小波变换原理 • 多分辨分析与正交小波变换的关系 • 正交小波变换的实现方法 • 正交小波变换的实例分析
01
多分辨分析概述
定义与特点
定义
多分辨分析是从小尺度到大尺度逼近 研究对象的一种分析方法,它能够同 时揭示研究对象在不同尺度上的特征 。
多分辨分析在信号处理中能够提 供更加准确和全面的信息,有助 于更好地理解和分析信号。
多分辨分析的历史与发展
1 2 3
历史回顾
多分辨分析的思想起源于20世纪80年代,随着 小波理论的不断发展,多分辨分析逐渐成为研究 热点。
当前研究
目前,多分辨分析在理论和应用方面都取得了重 要进展,广泛应用于图像处理、信号处理、数值 计算等领域。
模式识别
正交小波变换可以用于特征提取和 模式分类等任务。
03
02
图像处理
正交小波变换可以用于图像的压缩、 去噪、增强等处理。
数值分析
正交小波变换可以用于求解偏微分 方程、积分方程等数学问题。
04
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都基于多尺度分析思想
多分辨分析和小波变换都是从不同尺度上分析信号,能够捕捉到 信号在不同尺度上的特征。
优点
连续小波变换能够更好地适应信号的突变和非线性特性, 能够更准确地描述信号的局部特征。
缺点
连续小波变换的计算复杂度较高,需要更多的计算资源和 时间,同时对于非连续信号的处理也存在一定的困难。
基于滤波器的小波变换
01 02
定义
基于滤波器的小波变换是一种通过设计特定的滤波器来实现小波变换的 方法,通过滤波器对信号进行卷积操作,可以得到不同尺度上的小波系 数。
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/156ed60442323968011ca300a6c30c225901f09c.png)
正交小波的多分辨分析的研究正交小波的多分辨分析是一个重要的研究领域,它涉及到信号处理、图像处理、数据压缩等多个领域。
在这里,我们将简要介绍正交小波的多分辨分析的相关知识。
一、正交小波的基本概念正交小波是一种基于小波变换的信号处理方法,其核心思想是通过对信号进行分解和重构,提取出信号的局部信息,从而实现信号的压缩和去噪等功能。
正交小波的基本概念包括小波函数、小波系数以及小波分解和重构等。
小波函数是描述小波形状和变换的数学函数,有多种形式,例如Haar小波、Daubechies小波、Symlets小波等。
小波系数指的是信号在小波基函数下的投影系数,通过小波变换可以将信号分解成多个子带,并得到每个子带的小波系数,各个子带之间的关系可以用小波滤波器组来描述。
正交小波的多分辨分析是指将信号分解成多个尺度,每个尺度对应一组小波系数,从而对信号的不同频率和尺度信息进行描述。
多分辨分析的基本思想是通过不同的低通滤波器和高通滤波器对信号进行分解,并得到多个分辨率的信号,从而提取出不同尺度的信号特征。
正交小波的多分辨分析是一种层次结构,从高到低依次是:原始信号、尺度为1的近似系数、尺度为2的近似系数、尺度为4的近似系数,等等。
每个层次都包含了一个近似系数和若干个细节系数,细节系数反映了信号在不同尺度上微小的变化。
三、正交小波的应用正交小波的应用非常广泛,包括信号压缩、图像处理、声音合成和分析、时频分析等多个领域。
其中,正交小波在图像处理中的应用较为广泛,可用于图像的去噪、增强、压缩等操作,以及图像的边缘检测、纹理分析等任务。
总之,正交小波的多分辨分析是一种强大的信号处理方法,具有高效性、可压缩性等特点,已经成为现代信号处理的重要工具。
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/460f276759fb770bf78a6529647d27284b7337d4.png)
正交小波的多分辨分析的研究一、正交小波的基础概念正交小波是一类具有正交性质的小波函数,它可以用来对信号进行分解和重构。
正交小波具有一些重要的性质,比如尺度不变性和平移不变性,这使得它在信号处理中具有广泛的应用价值。
二、正交小波的多分辨分析在多分辨分析中,我们希望能够通过分解信号,得到不同尺度的频率成分,从而更好地理解信号的频率特性。
正交小波可以帮助我们实现这一目标,通过将信号分解成不同频率的成分,从而得到信号的多尺度表示。
正交小波的多分辨分析方法可以分为两种:连续多尺度分析和离散多尺度分析。
在连续多尺度分析中,我们使用正交小波将信号进行连续分解,从而得到信号的各种尺度的频率成分。
而在离散多尺度分析中,我们使用正交小波将信号进行离散分解,通常采用小波变换来实现。
正交小波的多分辨分析理论包括小波变换、尺度函数和小波基函数等重要内容。
小波变换是正交小波多分辨分析的核心,它可以将信号分解成不同尺度的频率成分。
尺度函数是用来描述不同尺度下的小波基函数的性质,它可以帮助我们理解不同尺度下的信号特征。
而小波基函数则是正交小波分解和重构的基础,它可以帮助我们实现信号的多尺度表示。
正交小波的多分辨分析在信号处理、图像处理、数据压缩等领域都有重要的应用。
在信号处理中,正交小波可以用来分析和处理非平稳信号,从而得到信号的时频特性。
在图像处理中,正交小波可以用来进行图像的多尺度分析和特征提取,从而实现图像的压缩和识别。
在数据压缩中,正交小波可以用来对数据进行分解和压缩,从而实现数据的有效存储和传输。
结论:正交小波的多分辨分析是一种重要的信号处理方法,它可以帮助我们实现信号的多尺度表示和分析。
通过对正交小波的多分辨分析的研究,我们可以更好地理解信号的频率特性和时域特性,从而实现对信号的更好处理和分析。
希望通过本文的介绍,可以对正交小波的多分辨分析有一个更全面的了解,从而推动该领域的进一步发展和应用。
多分辨率分析与正交小波变换
![多分辨率分析与正交小波变换](https://img.taocdn.com/s3/m/8b4c2d2e7fd5360cbb1adb48.png)
t 2
(t'k)(t'k')dt'
(t t')
➢ (3)如果在子空间W0中能找到一个带通函
数 (t) ,其整数位移的集合 (t k) kZ 构成
W0中的正交归一基,我们根据二尺度的伸
1,2,…,(这里暂对j和k的范围做了限制)形成了伸 缩平移系统,其中j不同,张成了不同的子空间,如 图:
, 23t k k=0,1,…,7, 张成了 V-3子空间;
22t k ,k=0,…,3, 张成了 V-2子空间; 21t k ,k=0,1,张成了V-1 子空间;
t k ,k=0, 张成了 V0子空间。由图可知:
V-3 V-2 V-1 V0
比喻
➢ 类似于人的视觉系统。例如:人在观察某 一目标时,不妨设他所处的分辨率为j(或 2j),观察目标所获得的信息是Vj,当他走 近目标,即分辨率增加到j-1(或2j-1),他 观察目标所获得的信息为Vj-1,应该比分辨 率j下获得的信息更加丰富,即 Vj Vj1 ,分 辨率越高,距离越近;反之,则相反。
分辨率j下得平滑逼近,x
( k
j)
称为f(t)
在分辨率j下得离散逼近。
➢ Djf(t)是f(t)在Wj中得投影,反映了
Pjf(t)和Pj-1f(t)之间的细节差异。d
( k
j
)
就是 WT f ( j, k) 。
➢ 我们把空间做逐级二分解产生一组逐级包 含的子空间:
,V0 V1 W1,V1 V2 W2 ,,V j V j1 W j1,
22
➢ (2)根据二尺度伸缩性,如果φ(t) ∈V0,
则φ(t/2) ∈V1,而且,如果
是V0中0(kt) kZ
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/c657c7abed3a87c24028915f804d2b160b4e86d8.png)
正交小波的多分辨分析的研究
正交小波的多分辨分析是一种计算机视觉和图像处理技术,它可以将信号分解为多个
不同尺度和频率的子信号,并对这些子信号进行分析和处理。
正交小波是一类正交基函数,可以用于实现多分辨分析。
多分辨分析是一种处理信号或图像的方法,它将信号或图像分解为多层次的子信号或
子图像,每一层次都有不同的频率和尺度。
这样的处理方法有很多好处,比如可以在不同
的尺度上检测图像中的细节信息,从而实现更加精细的图像处理。
此外,多分辨分析还可
以用于压缩和解压缩图像,也可以用于图像增强和特征提取等应用。
正交小波是一种在数学上定义为正交基函数的波形,它可以用于信号和图像的分析和
处理。
正交小波可以通过迭代卷积和下采样的过程来实现多层次的多分辨分析。
具体来说,正交小波的多分辨分析可以分为四个步骤:高通滤波,低通滤波,下采样和重构。
其中高
通滤波和低通滤波用于将信号分解为高频和低频子信号,下采样用于将分解后的子信号进
行降采样,重构则用于将分解后的子信号合并为原始信号。
这样,就可以实现多层次的多
分辨分析。
正交小波的多分辨分析已经被广泛应用于计算机视觉和图像处理领域。
例如,在图像
压缩和解压缩方面,正交小波的多分辨分析可以实现更高效的压缩和更快速的解压缩。
在
图像增强和特征提取方面,正交小波的多分辨分析可以用于提取图像中的纹理特征和边缘
特征,从而实现更加精准的图像增强和特征提取。
小波变换课件 第2章 多分辨分析
![小波变换课件 第2章 多分辨分析](https://img.taocdn.com/s3/m/c1087406b52acfc789ebc9d3.png)
第2章 多分辨分析2.1 多分辨分析-----MRA 2.1.1 多尺度空间[例2-1] 右图由(2)t φ和(21)t φ-的线性组合构成了()t φ,因此,我们说函数1,()k t φ,k =0,1生成了()t φ,或者说1,()k t φ包含了()t φ,即1,()k t φ⊃()t φ。
[例2-2]尺度函数,()(2)j j k t t k φφ=-, j =0,1,2,3;k =0,1,2, (21)-(这里暂对j 和k 的范围做了限制)形成了伸缩平移系统,其中j 不同,张成了不同的子空间,如图:3(2)t k φ-,k=0,1,…,7,张成了3V 子空间; 2(2)t k φ-,k=0,…,3,张成了2V 子空间;1(2)t k φ-,k=0,1,张成了1V 子空间;(2)t k φ-,k=0, 张成了0V 子空间。
由上图可见,3V ⊃2V ,2V ⊃1V ,1V ⊃0V ,即3V ⊃2V ⊃1V ⊃0V 。
0V 函数子空间 是当分辨率0j =,尺度为0221j ==时 ,由尺度函数()t k φ-的平移系统张成的函数子空间。
0V 中的任一函数0()f t 均可用()t k φ-的平移系统的线性组合表示1c紧支撑(有限个,其余为零K C )00) 0()f t =()k k Zc t k φ∈-∑,k c R ∈[例2-2] 下图是一个定义在区间[-1,4]上,所有不连续点仅在整数集中的分段常量函数波形。
(也可能在整数点处连续,但不连续点一定在整数点处。
)满足线性空间定义的两个运。
)而当10123,,,,c c c c c -均为零时,构成零向量),因此构成向量空间。
这个特定的,即由宽度为1=1/2j=01/2的5个基向量组成的基底所张成的向量空间,就是一个0V 子空间。
图示为由尺度函数组成的一组基例中波形给出的函数可表达为0()f t =10,100,010,120,230,3()()()()()c t c t c t c t c t φφφφφ--++++ 当K 遍历-1、0、1、2、3时,0,()k t φ构成了0V 子空间的一组标准正交基。
007-小波分析(第二讲)-多分辨率分析与正交小波变换
![007-小波分析(第二讲)-多分辨率分析与正交小波变换](https://img.taocdn.com/s3/m/b154e624b4daa58da0114a87.png)
ψ m,n构成 一个框架
ψ m,n构成 一个正交基
non-orthogonal orthogonal DWT DWT 冗余 无冗余
北京科技大学 机械工程学院
18/ 73
Haar小波
1, 0 t 1/2 (t) - 1, 1/2 t 1 0 , others
小波进行重构的基本条件
北京科技大学 机械工程学院
6/ 73
信号的重构---如何进行离散小波逆变换?
连续小波变换的逆变换
x(t ) 1 C
0
da 1 t WT (a, ) ( )d a 2 R a a
( w)
w
2
R
dw
只要满足“可容许条件”,即可进行逆变换
dense
j
V
j
{0}
f Vn f V0
f (2 n t ) V0
f (t n) V0 , 对所有n Z
正交基存在性 ψV0 使得{ψ(tn):nZ}是V0的 正交基。
可放宽为Reisz基,因为由Reisz 基可构造出一组正交基来
北京科技大学 机械工程学院 27/ 73
1986年秋,Mallat和Meyer提出了MRA框架
统一了在此之前的小波构造 提供了构造新的小波基方便的工具
北京科技大学 机械工程学院
22/ 73
小结
连续小波离散小波的关键问题:
离散的方式 尺度因子、平移因子 离散后构成框架、Reisz基或正交基 信号的重构 母小波的构造
14/ 71
小波分析中的框架
小波框架 小波母函数,经过平移和伸缩后构成一系列小波函 数,实际中都要将平移和伸缩因子离散化。
小波变换的多分辨率分析原理与应用
![小波变换的多分辨率分析原理与应用](https://img.taocdn.com/s3/m/cf3c9725a9114431b90d6c85ec3a87c240288a21.png)
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。
小波与多分辨分析
![小波与多分辨分析](https://img.taocdn.com/s3/m/e404347eef06eff9aef8941ea76e58fafbb0455a.png)
小波与多分辨分析在物理科学和工程 领域具有广阔的应用前景。例如,在 流体动力学、电磁场等领域中,可以 利用小波与多分辨分析进行高精度数 值模拟和数据分析。未来研究将进一 步拓展其在这些领域的应用,并探索 与其他工程学科的交叉融合。
THANKS FOR WATCHING
感谢您的观看
多分辨分析是构造小波的重要工具,小波变换实质上就是对信号进行多分辨分析。
多分辨分析的构造方法
迭代法
通过迭代的方式对尺度函数进行构造, 进而得到多分辨分析。
矩阵法
利用矩阵的方法对尺度函数进行构造, 进而得到多分辨分析。
多分辨分析的性质
唯一性
对于给定的尺度函数,其对应的多分辨分析是唯一的。
平移不变性
小波变换能够检测到信号的突变和 奇异点,用于故障诊断、语音识别 等领域。
图像处理
01
02
03
图像压缩
利用小波变换对图像进行 多尺度分解,实现图像的 压缩编码,降低存储和传 输成本。
图像增强
通过调整小波系数,突出 图像的细节和特征,改善 图像的视觉效果。
图像去噪
利用小波变换去除图像中 的噪声,提高图像质量。
提升算法效率
随着小波变换应用的广泛,对算法效率的要求也越来越高。未来研究将
致力于优化算法,提高计算速度,以满足实时处理和大规模数据的需求。
02 03
扩展应用领域
小波变换在不同领域具有广泛的应用前景,如信号处理、图像处理、数 据压缩等。未来研究将进一步探索小波变换在不同领域的应用,发掘其 更多潜力。
提升小波性能
多分辨分析在信号处理、图像处理等领域取得了显著成果,未来研究将进一步探索其在其 他领域的应用,如物理、化学、生物等。
小波变换与多分辨率分析
![小波变换与多分辨率分析](https://img.taocdn.com/s3/m/837aa6da3b3567ec102d8ab3.png)
j,k
x
范围变窄,x有较小
➢随j增加 V j 增大,允许有变化较小的变量或较细的细节函数
包含在子空间中。
哈尔尺度函数
考虑单位高度、单位宽度的 尺度函数:
x
1 0
0 x 1 其它
V0展开函数都属于V1, V0是V1的一个子空间。
5.2 多分辨率展开
多分辨率分析是指满足下列性质的一系列子空间{Vj}, j Z
与Fourier变换相比,小波变换是空间(时间)和频率的局部 变换,它通过伸缩平移运算对信号逐步进行多尺度细化, 最终达到高频处时间细分,低频处频率细分,能自动适应 时频信号分析的要求,从而可聚焦到信号的任意细节。
5.1 背景
为什么需要多分辨率分析? 如果物体的尺寸很小或对比度不高 高分辨率 如果物体尺寸很大获对比度很强 低分辨率 通常物体尺寸有大有小,或对比有强有弱同时存在
j
的展开函数的加权和。
1
j,k x an j1,n x
n
其中 j1,n x 2 j1/2 2 j1 x n
an改写成h (n)
j,k x h n 2 j1/2 2 j1 x n
n
j,k置0
x h n 22x n
给定一个基本函数 (x) ,则 (x) 的伸缩和平移公式 可记为:
a,b (x) (ax b)
5.2 多分辨率展开
函数的伸缩和平移
例:给定函数
(
x)
sin(x)
0
0 ≤ x 2
其它
则2, (x)的波形如下图所示
函数的伸缩和平移
5.2 多分辨率展开
序列展开
信号或函数常常可以被很好地分解为一系列展开 函数的线性组合。
1.一致单调性: V0 V1 V2
小波分析第二讲
![小波分析第二讲](https://img.taocdn.com/s3/m/c547b9a0284ac850ad024284.png)
在工程应用中利用小波分析具体信号时,往 往优先采用现成的性质较好的经典小波(例如, Morlet小波、Meyer小波和样条小波等)作为 母小波,也可以通过特定的构造算法(例如, 紧支集正交小波构造算法)生成小波基函数。 1.2 小波母函数特性 (1)带通性质 当 时, ψ (ω ) 必须有意义, 则必有ω → 0 ,可以说信号 ω limψ (ω ) → 0 在零频处为0。因此,它不是一个低通 ω →0 滤波器,它只能是一个带通滤波器或 高通滤波器。
6. 再生核和再生核方程 再生核又称重建核,它定量给出了小波 基的相关性和冗余性。从小波基函数的定 义可以猜想,如果 a , τ 参数连续变化,得 到的小波基将是冗余的。 尺度-位移连续变化的小波基函数 ψ a ,τ (t ) 形成了一组非正交的过度完全基。其中的 “过度”表示这一组基含有冗余性, “完全”表示这一组基可以完全覆盖 整个尺度-位移平面,这样,任意一 个信号都可以用这些基来分解表示。
(III)位移因子 从上式可以看出,平移因子 τ 只影响时窗 中心位置。从时域看,平移不会影响波形 大小。从频域看,函数在时域的平移只会 在频域引入附加的相位,不会影响函数的 幅频特性,也不会影响频窗中心和大小。 (IV)时频窗面积 从严格的数学角度来说,时频窗面 积遵循Heisenberg Heisenberg测不准原理,即 Heisenberg 1 σ ωσ t ≥ 2
5.小波基的自适应时频窗及其度量 小波基的时窗、频窗的波形参量如下: (1)时窗中心:实质上信号在时域的一阶 矩,即
t0
∫ =
+∞
−∞
t ψ a ,τ ( t ) dt
2
ψ a ,τ ( t )
2
∫ = ∫
+∞
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/5675839048649b6648d7c1c708a1284ac9500561.png)
正交小波的多分辨分析的研究正交小波的多分辨分析是一种信号处理技术,它可以将信号分解成多个不同频率的子信号,并对每个子信号进行独立的分析和处理。
正交小波变换是现代信号处理的重要工具,在图像处理、音频压缩、数据压缩等领域有广泛的应用。
在多尺度分析中,常用的方法是通过卷积运算来实现。
卷积运算可以将信号与一个特定的函数进行相乘,从而实现对信号的模糊处理。
通过改变卷积函数的尺度,可以得到不同尺度的模糊信号。
多尺度分析的关键是选择合适的卷积函数,常用的选择包括高斯函数、哈尔函数等。
小波变换是在多尺度分析的基础上进行的,它将信号分解为不同频率的子信号。
小波变换的核心是选择合适的小波函数。
常用的小波函数有哈尔小波、Daubechies小波、Symlet小波等。
小波函数具有良好的局部性质,可以在时域和频域上同时表达信号的时频特性。
在实际应用中,正交小波的多分辨分析可以用于信号去噪、图像压缩、边缘检测等领域。
在信号去噪方面,正交小波变换可以将信号分解为不同尺度的子信号,并对每个子信号进行去噪处理。
在图像压缩方面,正交小波变换可以将图像分解为不同频率的子图像,并对每个子图像进行压缩处理。
在边缘检测方面,正交小波变换可以提取图像中的边缘信息,并进行分析和处理。
正交小波的多分辨分析是一种有效的信号处理技术,具有良好的时频局部性和多分辨特性。
它在许多领域的应用已经得到了广泛的认可和应用。
正交小波的多分辨分析也存在一些问题,如计算复杂性较高、选取合适的小波函数等。
未来的研究可以进一步改进正交小波的多分辨分析算法,使其更适用于实际应用。
小波变换和多分辨率概念
![小波变换和多分辨率概念](https://img.taocdn.com/s3/m/950d300e0a4e767f5acfa1c7aa00b52acfc79c09.png)
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。
而该小波的basis 函数其实就是对这个母小波和父小波缩放和平移形成的。
缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。
小波展开的近似形式是这样:其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。
但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?在这一篇文章里,我们就来讨论一下这些特性背后的原理。
首先,我们一直都在讲小波展开的近似形式。
那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。
但是,母小波并非唯一的原始基。
在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。
它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:另外,为了方便处理,父小波和母小波也需要是正交的。
可以说,完整的小波展开就是由母小波和父小波共同定义的。
其中是母小波,是父小波。
需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。
但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。
引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。
说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。
正交小波的多分辨分析的研究
![正交小波的多分辨分析的研究](https://img.taocdn.com/s3/m/9348a9d1112de2bd960590c69ec3d5bbfd0adaea.png)
正交小波的多分辨分析的研究
正交小波是一种在信号处理和数据压缩领域中广泛应用的数学工具。
多分辨分析是利
用正交小波的特性,将信号分解成不同频率的子信号的过程。
本文将介绍正交小波的概念、多分辨分析的原理以及相关的研究进展。
正交小波是一组具有正交性质的函数,可以用于将信号进行分解和重构。
正交小波的
定义要求每个波形函数在[-∞, +∞]范围内的积分等于0,并且每个波形函数与其他波形
函数的积分等于0。
这样的性质使得正交小波能够对信号进行有效的分解和重构。
多分辨分析是一种利用正交小波进行信号分解的方法。
该方法通过将信号从高频到低
频分解成不同频率的子信号,从而提供了多尺度的信号分析能力。
在每个尺度上,信号的
细节部分和近似部分可以被提取出来。
这种分解过程可以重复多次,从而实现更高分辨率
的频域分析。
在多分辨分析中,常用的正交小波包括哈尔小波、Daubechies小波、Symlet小波等。
这些正交小波具有不同的性质,适用于不同类型的信号。
近年来,多分辨分析在信号处理、图像处理和数据压缩等领域得到了广泛的应用。
它
可以用于信号降噪、图像压缩、特征提取等任务。
研究者们致力于开发新的正交小波函数,研究多分辨分析的理论和算法,并探索其在各个领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波进行重构的基本条件
北京科技大学 机械工程学院
6/ 73
信号的重构---如何进行离散小波逆变换?
连续小波变换的逆变换
x(t ) 1 C
0
da 1 t WT (a, ) ( )d a 2 R a a
( w)
w
2
R
dw
只要满足“可容许条件”,即可进行逆变换
n
北京科技大学 机械工程学院
9/ 71
框架、Riesz基、正交基
g ( x) an en
n
如果基底满足
0, m n en ( x), em ( x) 1, m n
g ( x) g ( x), g ( x)
2
g ( x), e ( x) e ( x), g ( x) 此时基底为标准(规范)正交基 ,此时有:
n n n
g ( x) g ( x), en ( x) en ( x)
n
g ( x), en ( x) , en ( x), g ( x)
n
不为正交基, 不相等,其它 这时才有Parseval等式关系?
g ( x), en ( x)
n
2
g ( x) g ( x), en ( x)
•不丢失原信号的信息 •减小计算量
•对尺度因子和平移 因子进行适当的离散
连续的时间-位移相 平面变成离散的点
0
1 2 3
1
2
3
4
5
6
7
kTs
j ln 2
北京科技大学 机械工程学院 3/ 71
离散小波变换
只对尺度离散 位移仍然连续 尺度和位移都 离散
即A=B=3/2
北京科技大学 机械工程学院 17/ 71
小波变换
CWT
t a, (t ) ( ) a a 1
尺度位移 离散化
DWT
m , n (t ) 2 (2 m t n)
m 2
冗余
多分辨率分析方 法(MRA)可以构 造出正交的小波 母函数 在MRA出现之 前人们已经构造 出了几种正交小 波
无冗余框架 H中的框架,如果去掉其中任一元素不再构成框架,则为 无冗余框架,即为Riesz基 正交基虽然优越,但有时难以得到,且对误差敏感,现实 中常用Riesz基,例如二维平面中任意不平行的二个向量构成 Riesz基,垂直则为正交基
北京科技大学 机械工程学院 11/ 71
Riesz基
定义 令H是Hilbert空间,H中的一个序列{gj}jZ是 Riesz基,如果它满足以下的条件:
北京科技大学 机械工程学院
23/ 73
主要内容
连续小波与离散小波 多分辨率分析与离散正交小波
北京科技大学 机械工程学院
24/ 73
北京科技大学 机械工程学院
25/ 73
把尺度理解为照相机的 镜头,当尺度由小到大 变化时,相当于将镜头 由近及远地远离目标。 在小尺度空间里,可观 测到目标的细微部分; 在大尺度空间里,可观 测到目标大致的概貌。
1986年秋,Mallat和Meyer提出了MRA框架
统一了在此之前的小波构造 提供了构造新的小波基方便的工具
北京科技大学 机械工程学院
22/ 73
小结
连续小波离散小波的关键问题:
离散的方式 尺度因子、平移因子 离散后构成框架、Reisz基或正交基 信号的重构 母小波的构造
满足了框架条件必然满 足了可容许条件
7/ 73
信号的重构---如何进行离散小波逆变换?
若离散小波序列 { m,n (t )}m,nZ 构成一个框架,其上、 下界分别为A和B,则当A=B时(紧框架),由框架 概念可知离散小波变换的逆变换为
f (t ) f , m, n
m, n
m, n (t )
8/ 73
框架、Riesz基、正交基
用基底表示函数的展开 回顾三维矢量空间R3中,任何一个非零矢量M 可表示为
i M [ x, y , z ] j k
将此概念推广到泛函分析中
设 en x 为H中的线性无关的函数序列,若g ( x) H , 有 g ( x) an en 且系数an是唯一的,则称 en 为空间H的一个基
1) span g j (t ) | j Z H ,即f H , 0, 总存在 c j
jZ
l , 使得 f (t )
2
j n
c
2 j
n
j g j (t )
2) 存在常数0 A B , 使得 c j A
jZ
l 2 ,有
j
14/ 71
小波分析中的框架
小波框架 小波母函数,经过平移和伸缩后构成一系列小波函 数,实际中都要将平移和伸缩因子离散化。
显然,当离散相差很近时,分解存在极大冗余(但 带来的好处是显微镜特点和相似性检测能力 ),此时 就不再属于传统的正交分解,而涉及到框架。
定量描述上述冗余性和相关性——再生核(重建核)
K (a1 , 1 , a2 , 2 ) 1 C
R
a , (t ) *a , (t ) d (t )
1 1 2 2
北京科技大学 机械工程学院
15/ 71
小波分析中的框架
小波变换前后能量变化(稳定性 )
尺度和位移离散化后,若使
A g ( x) g ( x), a ,
Haar小波构成了L2(R)上 的完备正交基 时域上不连续 频域上局部性差 常应用于理论研究中
北京科技大学 机械工程学院
19/ 73
Littlewood-Paley
(t) (sin 2t sin t ) / t
Littlewood小波构成了 L2 (R)上的完备正交基 时域上局部性差 频域上局部性好
dense
j
V
j
{0}
f Vn f V0
f (2 n t ) V0
f (t n) V0 , 对所有n Z
正交基存在性 ψV0 使得{ψ(tn):nZ}是V0的 正交基。
可放宽为Reisz基,因为由Reisz 基可构造出一组正交基来
北京科技大学 机械工程学院 27/ 73
1 2 3
证明
北京科技大学 机械工程学院 16/ 71
小波分析中的框架
y
l ex , e y
120° 120°
x
对平面中的任意向量 都有:
2 2
l ex , e y
k 1
3
2
l , ek l y
3 1 3 1 lx l y lx l y 2 2 2 2
3 2 2 = lx l y 2 3 2 = l 2
2 n
2
g ( x)
a2
a1
北京科技大学 机械工程学院 10/ 71
框架、Riesz基、正交基
A g ( x) g ( x), en ( x) B g ( x)
2 2 n
2
框架、紧框架
若A g ( x) g ( x), en ( x)
2 n
n
2
B g ( x)
2
A、B为正常数,称 e x 为H中的一个框架 若A=B,称为紧框架,此时,转换前后能量固定为一放大倍数 若A=B=1,则为正交基,即为Parseval等式
A f
2
f , j B f
2
2
则称 { j }为一个框架,A、B分别为框架的上下界
可以简单理解为:一组基,正交的或非正交的
紧框架
若 A B ,则称此框架为一紧框架, 若 A B 1 ,并且 j 1 ,则此时 j 构成一组正交基
f , j A f
ψ m,n构成 一个框架
ψ m,n构成 一个正交基
non-orthogonal orthogonal DWT DWT 冗余 无冗余
北京科技大学 机械工程学院
18/ 73
Haar小波
1, 0 t 1/2 (t) - 1, 1/2 t 1 0 , others
连续小波
二进小波
离散小波
小波基函 数正交
小波基函数非正交
非正交离散小波
正交离散小波
小波母函数
计算量
光滑性好 对称性好 紧支性好
相对非正交小波更小 无冗余
小波变换系数
北京科技大学 机械工程学院
4/ 73
小波的数学基础---框架
框架与信号的分解、重构密切相关
框架
{ 设H为希尔伯特空间, j } 为H中的一个函数序列,若对于任 意 f H ,存在0 A B ,使得下述不等式成立:
北京科技大学 机械工程学院 26/ 73
多分辨率分析的定义
多分辨率分析是指满足下述性质的一系列闭子 空间 {V j }, j Z
一致单调性
渐近完全性 伸缩规则性 平移不变性
V V1 V0 V1 V
j
V j L2 ( R)
2
2
120° 120°
紧框架 A B 非正交
北京科技大学 机械工程学院