上海市复旦附中2020-2021学年高一上学期期末考试数学试卷

合集下载

复旦附中高一上期末(2020.1)

复旦附中高一上期末(2020.1)

综上所述, n [0, 4) ,则 m n 的取值范围是 [0, 4) .
三、解答题 17.(1) f(x) 4x 2 2x 1 4 , 2x 3 或 2x 1(舍)
方程的解为 x log2 3 .
(2)令 t
2x
[1 2
, 2] ,则
t2
2at
1
0

2a
t2
1 t
t
1 t
,因为
t
1 t
f1(4 a) ≤ f(x) | 2x a2 | 在 x [0, ) 上恒成立,求实数 a 的取值范围.
参考答案
一、填空题
1. (,5)
2. y x 1, (x ≥ 2)
3.
a2 2a
4.3
5. (1, )
6.1
7. (3, 0)
8. (1, 2]
9.2
10.[1 , 2] 2
11. (6, 41 5 ) 10
元(总成本=固定成本+生产成本).销售收入 Q(x) (万元)满足
Q(x)
0.5x2
224,
(x
22x, 16)
(0

x
≤16)
,假定该产品产销平衡(即生产的产品都能卖掉),根据
上述统计规律,请完成下列问题: (1)求利润函数 y f(x) 的解析式(利润=销售收入 总成本);
(2)工厂生产多少百台产品时,可使利润最多?
在 [1 ,1] 2
上递减,
[1, 2] 上递增,所以 2a [2, 5], a [1, 5]
2
4
18.(1)
f
(x)
为奇函数,
1 ax x 1
0
的解集关于原点对称,所以

复旦附中高一上期末解析(2020.1)

复旦附中高一上期末解析(2020.1)

复旦附中高一上期末数学试卷2020.01一、填空题1.函数12log (5)y x =-的定义域为 .2.函数2()1(1)f x x x =+-≤的反函数为 . 3.已知2log 3a =,试用a 表示9log 12= . 4.幂函数223()(1)(,)mm f x a x a m --=-∈N 为偶函数,且在(0,)+∞上是减函数,则a m += .5.函数23log ()y x x =-的递增区间为 .6.方程22log (95)log (32)2x x -=-+的解为x = .7.已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 .8.若函数6,2,()3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值范围 .9.已知1()(33)2x x f x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += .10.对于函数(),y f x x D =∈,若对任意,,a b c D ∈,(),(),()f a f b f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”.已知()1x x e tf x e +=+是三角形函数,则实数t 的取值范围是 .11.若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰好有三个相异实根,则实数m 的取值范围是 .12.已知函数2131()1log 12x x k x f x xx ⎧-++⎪=⎨-+>⎪⎩≤,2()lg(2)()1xg x a x a x =⋅++∈+R ,若对任意的 {}12,|,2x x x x x ∈∈>-R ,均有12()()f x g x ≤,则实数k 的取值范围是 .二、选择题13.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件14.下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x = B .2y x -= C .2|log |y x = D .23y x =15.设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x ∈R , 有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在0x ∈R , 使得对任意x ∈R , 且0x x ≠, 有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0x ∈R , 使得对任意x ∈R , 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( )A .0个B .1个C .2个D .3个 16.已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1,4)-C .[3,5]-D .[0,7)三、解答题17.已知函数1()421x x f x a +=-⋅+. (1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18.已知函数21()log 1axf x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4{|1}7A x x=-≥,2={|()log (1)}B x f x x m +-<,若A B ≠∅I ,求实数m 的 取值范围.19.近年来,雾霾日趋严重,我们的工作.生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522,(016)()224,(16)x x x Q x x ⎧-+=⎨>⎩≤≤,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入−总成本); (2)工厂生产多少百台产品时,可使利润最多?20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈, 则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由. 1()21f x x =-,2()21x f x =-;(2)若函数5()2x ag x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上 封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证: 00()f x x =.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩≥,其中a ∈R .(1)若1a =-,解不等式1()4f x ≥;(2)设0a >,21()log ()g x f x =,若对任意的1[,2]2t ∈,函数()g x 在区间[,2]t t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=.若关于x 的不等式:12(4)()|2|f a f x x a --+-≤在[0,)x ∈+∞上恒成立,求实数a 的取值范围.参考答案一、填空题1.(,5)-∞ 2.1,(2)y x x =--≥ 3.22a a+ 4.3 5.(1,)+∞ 6.1 7.(3,0)- 8.(1,2] 9.2 10.1[,2]211.415(6,) 12.3(,]4-∞-【第9题解析】易知()f x 为R 上单调递增的奇函数,从而可知1()f x -也是R 上单调递增的奇函数,1()(1)1F x f x -=-+是由1()f x -向右、向上平移1个单位,∴()F x 在[3,5]x ∈-上单调递增,且关于点(1,1)中心对称,∴122M mM m +=⇒+=.【第10题解析】即min max 2()()f x f x >,111()1111x x x x xe t e t tf x e e e +++--===++++, ①当10t ->,即1t >时,()f x 在R 上单调递减,()(1,)f x t ∈,∴21t ⋅≥,解得(1,2]t ∈; ②当10t -=,即1t =时,()1f x =符合题意;③当10t -<,即1t <时,()f x 在R 上单调递增,()(,1)f x t ∈,∴21t ⋅≥,解得1[,1)2t ∈;综上,1[,2]2t ∈.【第11题解析】记92594,,5054()45141259,509,0x x x x x x xf x x x x x x x x x x x x ⎧⎧-+-+-⎪⎪⎪⎪⎛⎫=+--==⎨⎨ ⎪⎝⎭⎪⎪+-<+<<⎪⎪⎩⎩≥≥,函数图象如图所示,研究函数单调性可得,10,3x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减,125,3x ⎛⎤∈ ⎥ ⎝⎦时,()f x 单调递增,25,x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()f x 单调递减,125,3m f f⎛⎫⎛⎫⎛⎫∈ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时, 原方程在(0,)+∞内恰有三个相异实根,即4156,m ⎛⎫∈ ⎪ ⎪⎝⎭.【第12题解析】121max 2min ()()()()f x g x f x g x ⇒≤≤,而lg(2)x +∈R ,∴0a =,∴2()(2)1x g x x x =>-+,()g x 的值域为11,22⎡⎤-⎢⎥⎣⎦, 当1x >时,()f x 单调递减,1()(1)2f x f <=-,满足满足题设条件;当1x ≤,max 1113()2424f x f k k ⎛⎫==+-⇒- ⎪⎝⎭≤≤;综上,3,4k ⎛⎤∈-∞- ⎥⎝⎦.二、选择题13.A 14.D 15.C 16.A 【第16题解析】 设0x A ∈,则0()0f x =,又A B =,所以0x B ∈,即0[()](0)0f f x f ==,所以0m =,2()f x x nx =+. 由22222[()]()()()()0f f x x nx n x nx x nx x nx n =+++=+++=. 若0n =时,则{0}A B ==,满足题意; 若0n ≠时,由方程()0f x =的根为0和n -. 而0和n -不是方程20x nx n ++=的根,所以方程20x nx n ++=无解,即240n n ∆=-<,解得(0,4)n ∈ 综上所述,[0,4)n ∈,则m n +的取值范围是[0,4).三、解答题17.(1)()42214x x f x =-⋅+=,23x =或21x =-(舍) 方程的解为2log 3x =.(2)令12[,2]2xt =∈,则2210t at -+=,2112t a t t t +==+,因为1t t +在1[,1]2上递减,[1,2]上递增,所以552[2,],[1,]24a a ∈∈18.(1)()f x 为奇函数,101axx ->-的解集关于原点对称,所以1a =-.此时21()log ,(11)1x f x x x x +=><--或,2211()log log ()11x x f x f x x x -+--===---+成立,故1a =-.(2)[3,7)A =22()log (1)log (1)f x x x m +-=+<在[3,7)上有解, 2log (1)[2,3), 2.x m +∈∴>Q解2:2log (1),012m x m x +<<+<,(1,21)m B =-- ,213, 2.m A B m ≠∅∴->>Q I19.(1)由题意得()1210P x x =+,则20.51212,016,()()()21210,16.x x x f x Q x P x x x ⎧-+-=-=⎨->⎩≤≤(2)当16x >时,函数()f x 递减,即有()212101652f x <-⨯=;当016x ≤≤时,函数2()0.5(12)60f x x =--+ 当12x =时,()f x 有最大值6052>综上可知,当工厂生产12百台时,可使利润最大为60万元.20.(1)当(0,1)x ∈时,1()21(1,1)f x x =-∈-,1()f x ∴在D 上不封闭;2()21(0,1)x f x =-∈,2()f x 在D 上封闭. (2)设存在实数a ,使得5()2x ag x x -=+在(1,2)上封闭, 即对一切(1,2)x ∈,5122x ax -<<+恒成立, 20,2524x x x a x +>∴+<-<+Q ,即3442x a x -<<-恒成立,34(1,2)2x a -∈-∴≥Q ;42(2,6)2x a -∈∴≤Q .综上,满足条件的2a =. (3)假设00()f x x ≠,①若00()f x x >,00(),f x x D ∈Q ,()f x 在D 上单调递增, 00(())()f f x f x ∴>,即00()x f x >,矛盾;②若00()f x x <,00(),f x x D ∈Q ,()f x 在D 上单调递增, 00(())()f f x f x ∴<,即00()x f x <,矛盾.所以,假设不成立,00()f x x =.21.(1)1a =-时,|1|,0()2,0x x x f x x -⎧=⎨<⎩≥当0x ≥时,15335()|1|,,[0,][,)44444f x x x x x =-∴∈+∞≥≥或≤U ;当0x <时,1()2,2,[2,0)4x f x x x =-∴∈-≥≥.综上,35[2,][,)44x ∈-+∞U .(2)22110,[,2],()log ()log ()a x t t g x f a x x >∈+∴==+Q 单调递减,max min 2211()()()(2)log ()log ()12g x g x g t g t a a t t -=-+=+-++≤,112()2a a t t +++≤,1222(2)t a t t t t --=++≥ 在1[,2]2t ∈上恒成立, 令32[0,]2m t =-∈,22()(2)(2)(4)68t m m h m t t m m m m -===+---+, 当0m =时,()0h m =,当3(0,]2m ∈时,1()86h m m m =+-,86m m +-Q 在3(0,]2上递减,83165666,()(0,]2365m h m m ∴+-≥+-=∈, 综上,65a ≥.(3)若0a <,则(0)(2)||f f a a =-=;若0a =,则11(1)()22f f -==;若01a <<,则2(0)(log )f f a a ==,1a ∴<时,()f x 没有反函数. 当1a ≥时,,0()2,0x x a x f x x +⎧=⎨<⎩≥ 为增函数,存在反函数,且()f x 的值域为(0,1)[,)a +∞U . 令2()()|2|,[0,)F x f x x a x =+-∈+∞,则222223,2()|2|,2a x a a x F x x a x a a x a a x ⎧-+⎪⎪=++-=⎨⎪-++<⎪⎩≥ , 22min ,()22a a x F x a ==+,所以21(4)2a f a a --+≤,因为()f x 是增函数,所以1()f x -也是增函数,2224()2,680,33224(0,1)[,),(3,4)(,2]1a a a f a a a a a a a a a a ⎧-+=++--+-⎪⎪⎪-∈+∞∈-∞⎨⎪⎪⎪⎩≤≥≥≤≥U U综上,3,2](3,4)a ∈U .。

2020-2021上海复旦初级中学高一数学上期末一模试卷(带答案)

2020-2021上海复旦初级中学高一数学上期末一模试卷(带答案)

2020-2021上海复旦初级中学高一数学上期末一模试卷(带答案)一、选择题1.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A . B . C . D .3.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( ) A .()0,1B .[)0,1C .(]0,1D .[]0,1 4.若函数2()2f x mx mx =-+的定义域为R ,则实数m 取值范围是( ) A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞5.函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞ 6.函数ln xy x =的图象大致是( )A .B .C .D .7.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}8.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .1,02⎛⎫- ⎪⎝⎭ D .1,2⎛⎫-+∞ ⎪⎝⎭10.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,611.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞ 二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______. 15.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 16.如果函数()22279919m m y m m x --=-+是幂函数,且图像不经过原点,则实数m =___________.17.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.18.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.19.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.20.已知函数(2),2()11,22x a x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________. 三、解答题21.已知函数2()()21xx a f x a R -=∈+是奇函数. (1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围.22.设函数()()2log x x f x a b =-,且()()211,2log 12f f ==. (1)求a b ,的值;(2)求函数()f x 的零点;(3)设()x xg x a b =-,求()g x 在[]0,4上的值域. 23.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:①投资A 产品的收益与投资额的算术平方根成正比;②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式;(2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?24.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a 的取值范围.25.求下列各式的值.(1)2121log 23324()(0)a a a a a -÷>; (2)221g 21g4lg5lg 25+⋅+.26.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.C解析:C【解析】函数f (x )=(1212xx -+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx -+)cosx <0,函数的图象在x 轴下方. 排除D .故答案为C 。

上海复旦附中2022年数学高一上期末监测模拟试题含解析

上海复旦附中2022年数学高一上期末监测模拟试题含解析
【详解】向量 =(3,4), =(-1,2)
(1)向量 与 夹角的余弦值 ;
(2)向量 - =(3+λ,4-2λ)与 +2 =(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2
【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题
19、(1) ;(2) .
【解析】(1)利用两个向量的数量积公式,两角和的正弦公式化简函数的解析式,再把点 代入,求得 的值
20、(1)
(2) 或
【解析】(1)先求得函数 的解析式,再整体代入法去求函数 单调递增区间即可;
(2)依据函数 的单调性及零点个数列不等式组即可求得实数b的取值范围.
【小问1详解】
由 ,可得
又函数 的图象关于直线x= 对称,则 ,则

由 ,可得
则函数 的单调递增区间为
【小问2详解】
由(1)可知
当 时, ,
(1)当 时,求 ;
(2)当 时,求实数 的取值范围.
参考答案
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)
1、B
【解析】根据充分条件和必要条件的概念,结合题意,即可得到结果.
【详解】因为 ,所以“ ”是“ ”的必要不充分条件.
C选项:当 时, ,当 时, , 在 上不单调递增,故C错误;
D选项:当 时,若 ,则 ;当 时,若 ,则 ,故 的解集为 ,故D错误;
故选:B.
5、B
【解析】分别求出 在 的值域,以及 在 的值域,令 在 的最大值不小于 在 的最大值,得到 的关系式,解出即可.
【详解】对于函数 ,当 时, ,

上海市2020-2021学年高一上学期期末数学试题人教新课标A版

上海市2020-2021学年高一上学期期末数学试题人教新课标A版

上海市2020-2021学年高一上学期期末数学试题一、填空题1. 已知函数的图象如图所示,则该函数的值域为________.2. 已知集合,,则________.(结果用区间表示)3. 已知函数,则它的反函数________________.4. 已知函数,满足,且当时,,则________.5. 已知是奇函数,满足,且在区间内是严格增函数,则不等式的解集是________.(结果用区间表示)6. 已知,函数是定义在上的偶函数,则的值是________.7. 函数,的最小值是________.8. 设方程的解为,的解为,则________.二、解答题若方程的三个根可以作为一个三角形的三条边的长,则实数的取值范围是________.三、填空题对于实数、,定义,设,且关于的方程为恰有三个互不相等的实数根、、,则的取值范围为________.四、单选题下列四组函数中,同组的两个函数是相同函数的是()A.与B.与C.与D.与函数f(x)=的零点所在的一个区间是A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)已知,则“”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件设函数若,,则关于的方程的解的个数为()A.1B.2C.3D.4五、解答题已知实数,判断函数的奇偶性,并说明理由.已知命题:幂函数的图象过原点;命题:函数在区间上不是单调函数. 若命题和命题只有一个为真命题,求实数的取值范围.已知函数.(1)判断函数的单调性,并证明;(2)用函数观点解不等式:. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.定义:如果函数在定义域内给定区间上存在实数,满足,那么称函数是区间上的“平均值函数”,是它的一个均值点.(1)判断函数是否是区间上的“平均值函数”,并说明理由;(2)若函数是区间上的“平均值函数”,求实数的取值范围;(3)若函数是区间上的“平均值函数”,且是函数的一个均值点,求所有满足条件的有序数对.参考答案与试题解析上海市2020-2021学年高一上学期期末数学试题一、填空题1.【答案】[加加){1,3,4)【考点】函数的值域及其求法函数的定义域及其求法【解析】由图象可得函数值,得值域.【解答】由图象可知函数值有1,3,4,即值域为{1,3,4}故答案为:{1,3,4}2.【答案】I≤加)(1,4)【考点】分式不等式的解法【解析】先求出集合A,B,再根据交集的定义即可求出.【解答】∵A={x||x−1|<3}={x|−2<x<4}B={x|x−1x−5<0}={x|1<x<5}A∩B={x|1<x≤4}=(1,4)故答案为:(1,4)3.【答案】[加加]√x+13【考点】反函数函数的值域及其求法函数奇偶性的性质【解析】由y=x3−1求得后交换xy的位置可得反函数,同时注意求原函数的值域,即反函数的定义域.【解答】由y=x3−1知y∈Rx3=y+1,所以x=√y+13所以f−1(x)=√x+13x∈R故答案为:√x+134.【答案】2【考点】函数的概念及其构成要素伪代码判断两个函数是否为同一函数【解析】根据函数的周期性直接求解.【解答】由函数y=f(x),满足f(x)=f(x+2)即f(x)=f(x−2)得f(92)=f(52)=f(12)=4×12=2故答案为:2.5.【答案】[加加](−1,0)∪(0,1)【考点】奇偶性与单调性的综合函数单调性的性质函数奇偶性的性质【解析】由奇函数性质得f(−1)=0,在(−∞,0)上函数也是递增的,从而可求得不等式的解.【解答】由题意f(−1)=0,且f(x)在(−∞,0)上函数是递增的,f(x)x<0⇒{f(x)<0x>0或{f(x)>0x<0,所以0<x<1或−1<x<0故答案为:(−1,0)∪(0,1)6.【答案】−5【考点】函数的对称性【解析】根据偶函数及绝对值函数性质直接求解即可.【解答】由已知y=|x−n|+2是定义在[4m,m2−5)上的偶函数,故4m+m2−5=0,即m=1,或m=−5,且函数图象关于!轴对称,又4m<m2−5,故m=−5因为y=|x−n|+2关于直线x=n对称,故n=0m+n=−5故答案为:−57.【答案】2【考点】与二次函数相关的复合函数问题【解析】令t=log3x,可得y=t(1+t)=(t+12)2−14,即可求出最小值.【解答】∵y=log3x⋅log33x=log3x⋅(1+log3x)令t=log3x.x∈[3,9],t∈[1,2]则y=t(1+t)=(t+12)2−14当t=1时,y加加=2故答案为:2.8.【答案】【答2.【考点】进位制三角函数值的符号集合的确定性、互异性、无序性【解析】由反函数对称性质即可求解.【解答】由x+log2x=2的解为x1,得log2x1=−x1+2同理x+24=2的解为x2,得2x=−x2+2又函数y=log2x与函数y=2x互为反函数,图象关于直线y=x对称,且y=−x+2与y=x互相垂直,且交点为(1,1)则函数y=log2x与函数y=−x+2的交点A(x1,y1),函数y=2x与函数y=−x+2的交点B(x2,y2),关于直线y=x对称,即A(x1,y1)与B(x2,y2)关于点(1,1)对称,即x1+x2=2故答案为:2.二、解答题【答案】(3,4]【考点】根的存在性及根的个数判断区间与无穷的概念函数的零点与方程根的关系【解析】方程(x−2)(x2−4x+m)=0的三根是一个三角形三边的长,则方程有一根是2,即三角形的一边是2,另两边是方程x2−4x+m=0的两个根,根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.则方程x2−4x+m=0的两个根设是x x和x3,一定是两个正数,且一定有|x1−x3|<2<x2+x3,结合根与系数的关系,以及根的判别式即可确定”的范围.【解答】解::方程(x−2)(x2−4x+m)=0有三根,x1=2x2−4x+m=0有根,方程x2−4x+m=0的Δ=16−4m>0,得m≤4又:原方程有三根,且为三角形的三边和长.有x2+x3>x1=2|x2−x3|<x1=2,而x2+x3=4>2已成立;当|x2−x3|<2时,两边平方得:(x2+x3)2−4x2x3<4即:16−4m<4.解得m>33≤m≤4故答案为:(3,4]三、填空题【答案】【3加加(5−√34,1)【考点】根的存在性及根的个数判断 函数的零点与方程根的关系一元二次方程的根的分布与系数的关系【解析】化简得出函数y =f (x )的解析式,不妨设x 1<x 2<x 3,作出函数y =f (x )的图象,可知当0<m <14时,直线y =m 与函数y =f (x )的图象有三个交点,由对称性可求得x 2+x 3的值,由f (x 1)=(0,14)可解得x 1的取值范围,进而可求得 x 1+x 2+x 3的取值范围. 【解答】当2x −1≤x −1时,即当x ≤0时,f (x )=(2x −1)2−(2x −1)(x −1)=2x 2−x 当2x −1>x −1时,即当x >0时,f (x )=(x −1)2−(2x −1)(x −1)=x −x 2 f (x )={2x 2−x,x ≤0x −x 2,,,,,,作出函数y =f (x )的图象如下图所示:设x 1<x 2<x 3,可知点(x 2,m )与点(x 3,m )关于直线x =12对称,则x 1+x 3=1当x >0时,f (x )=x −x 2=−(x −12)2+14≤14由图象可知,当0∴m <14时,直线y =m 与函数y =f (x )的图象有三个交点,由f (x 1)=2x 12−x 1∈(0,14),可得0<2x 12−x 1∴14∵x 1<0,解得1−√34<x 1<0,所以,5−√34<x 1+x 2+x 3<1因此,x 1+x 2+x 3的取值范围为(5−√34,1)故答案为:(5−√34,1)四、单选题 【答案】 D【考点】对数函数的图象与性质判断两个函数是否为同一函数【解析】判断函数的定义域与对应法则,两者均相同的为同一函数. 【解答】A .两函数定义域都是R ,但对应法则不相同,一个是y =x ,一个是y =|x|,不是同一函数;B .前一函数定义域是[1,+∞), 后一函数定义域是(−∞,−1]∪[1,+∞),不是同一函数;C .前一函数定义域是R ,后一函数定义域是(0,+∞),不是同一函数;D .两函数定义域相同,后一函数,计算x =1时,y =1x =2时,y =1,对应法则相同,值域也相同,是同一函数. 故选:D . 【答案】 B【考点】函数零点的判定定理 【解析】试题分析:因为函数f (x )=223x 在其定义域内是递增的,那么根据f (−1)=12−3=−52<0,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(−1,0),选B . 【解答】此题暂无解答 【答案】 D【考点】必要条件、充分条件与充要条件的判断 充分条件、必要条件、充要条件 运用诱导公式化简求值【解析】分别对充分性和必要性进行判断,对于不能推出的情况举一个反例就可以. 【解答】4a >43⇔a >b充分性:取a =0,b =−1,但是04≤(−1)4,即不能推出a 4>b 4,所以充分性不满足; 必要性:取a =−1,b =0,符合a 4>b 4,但是4−1<4∘,即不能推出4a >4”,必要性不满足.综上:“4a >4y ”是a 4>b 4”的既非充分又非必要条件 故选:D 【答案】 C【考点】 函数的求值 求函数的值运用诱导公式化简求值【解析】由题意求得b 、c 的值,可得函数f (x )的解析式.再分类讨论解方程,从而得到关于》的方程f (x )=x 的解的个数. 【解答】解:由f (−4)=f (0)得16−4b +c =c ,① 由f (−2)=−2得4−2b +c =−2,③ 由①②得b =4c =2所以f (x )={x 2+4x +2(x ≤0),2(x >0),当x ≤0时,由f (x )=x 得方程x 2+4x +2=x ,解得x 1=−1x 2=−2 当x >0时,由f (x )=x 得x =2 故方程共有3个解. 故选:C 五、解答题【答案】【答a =1时,f (x )为奇函数;a ≠1时,f (x )为非奇非偶函数.【考点】函数奇偶性的性质 函数奇偶性的判断 函数单调性的判断与证明【解析】根据定义域讨论a =1和a ≠1时利用定义判断. 【解答】由题可得24−a ≠0当a =1时,x ≠0,即f (x )的定义域为{x|x ≠0},关于原点对称, f (−x )=2−x +12−x −1=1+2x1−2x =−f (x )f (x )为奇函数,当a ≠1时,f (x )的定义域不关于原点对称,则f (x )为非奇非偶函数. 【答案】加加加)0,1]][4,+∞)【考点】命题的真假判断与应用 奇偶性与单调性的综合 复合命题及其真假判断【解析】通过两个命题求出α的范围,然后通过当?真4假时,当Р假♀真时即可求解 【解答】若?为真命题,则a −1>0,解得a >1 若♀为真命题,则{a >0√a <2,解得0<a <4因为命题?和命题4只有一个为真命题,所以a ∈(0,1]∪[4,+∞) 【答案】(1)增函数,证明见解析; (2)(2,+∞)). 【考点】函数单调性的判断与证明 奇偶性与单调性的综合 函数单调性的性质【解析】(1)任取对、x 2∈(0,+x )且x 1>x 2,通过作差、因式分解、判断差值符号,可证得函数f (x )在(0,+x )上的单调性;(2)由已知条件可得出f (x )>f (2),结合(1)中的结论可解原不等式. 【解答】(1)任取x 1,x 2∈(0,+∞)且x 1>x 2,即x 1>x 2>0f (x 1)−f (x 2)=(x 12−2x 1−3)−(x 22−2x 1−3)=(x 12−x 22)+(2x 2−2x 1) =(x 1−x 2)(x 1+x 2)+2(x 1−x 2)x 1x 2=(x 1−x 2)(x 1+x 2+2x 1x 2)因为x 1>x 2>0,则x 1−x 2>0,x 1+x 2+2x 1x 2>0f (x 1)−f (x 2)>0所以函数f (x )=x 2−2x −3在区间(0,+∞)上是严格增函数;(2)由(1)可知函数f (x )=x 2−2x −3在区间(0,+∞)上是严格增函数,且f (2)=0因此由f (x )>0=f (2)可得x >2因此,不等式f (x )>0的解集为(2,+∞) 【答案】(1)y =16−4x+1−x (0≤x ≥a );(2)当a ≥1时,促销费用投入1万元,厂家的利润最大,为16−41+1−1=13万元 ;当a <1时,促销费用投入a万元,厂家的利润最大,为16−4a+1−a 万元. 【考点】函数模型的选择与应用根据实际问题选择函数类型 概率的应用【解析】(1)根据产品的利润三销售额一产品的成本建立函数关系; (2)利用导数可求出该函数的最值. 【解答】(1)由题意知,y =(4+20p)p −x −(10+2p )将p =3−2x+1代入化简得:y =16−4x+1−x (0≤x ≥a ) (2)y ′=−1−−4(x+1)2=−(x+1)2+4(x+1)2=−x 2+2x−3(x+1)2=−(x+3)(x−1)(x+1)2(i)当a ≥1时,①当x ∈(0,1)时,y >0,所以函数y =16−4x+1−x 在(0,1)上单调递增,②当x ∈(1,a )时,y <0,所以函数y =16−4x+1−x 在(1,a )上单调递减,从而促销费用投入1万元时,厂家的利润最大;(ii)当a <1时,因为函数y =16−4x+1−x 在(0,1)上单调递增, 所以在[0,a ]上单调递增,故当x =a 时,函数有最大值,即促销费用投入a万元时,厂家的利润最大综上,当a ≥1时,促销费用投入1万元,厂家的利润最大,为16−41+1−1=13万元; 当a <1时,促销费用投入a万元,厂家的利润最大,为16−4a+1−a 万元.【答案】(1)是,理由见解析; (2)(1,+∞); (3)(4,2)【考点】奇偶性与单调性的综合函数解析式的求解及常用方法 函数恒成立问题【解析】(1)根据平均值函数的定义,由函数解析式,得到f (x 0)=0,求出x 0,即可判断出结果;(2)由题意,根据平均值函数的定义,得到存在0<x 0<1,使m ⋅(2x −1)=4x 3,利用换元法,结合指数函数的性质 ,即可求出结果;(3)先由题意,得到f (1)=k (t −2)+1,推出t =3−4k ,结合题中条件,即可得出结果.【解答】(1)由“平均值函数”的定义, 存在0∈(−1,1),满足f (0)=0=f (1)−f (−1)1−(−1)因此f (x )=x 4是区间[−1,1]上的“平均值函数”.(2)若函数g (x )=m ⋅2x −1是区间[0,1]上的“平均值函数”, 则存在x ∈(0,1),满足m ⋅2x −1=g (1)−g (0)1−0=m即关于》的方程m ⋅24−1=m 在区间(0,1)内有解.参变分离,将方程转化为m =12x −1,x ∈(0,1)函数y =12x −1,x ∈(0,1)的值域为(1,+∞) 因此m ∈(1,+∞)(3)若函数ℎ(x )=kx 2+x −4(k ≥1,k ∈N )是区间[−2,1],t ∈Nt ∈N)上的“平均 值函数”,且1是函数ℎ(x )的一个均值点, 则ℎ(1)=ℎ(t )−ℎ(−2)t−(−2) 即k −3=k+t 2+t−4−(4k−6)t+2=k (t −2)+1得到k =43−t ,其中k ≥1,k ∈N,t,t ∈N 满足条件的解为{k =4t =2即所有满足条件的有序数对(k,t )为(4,2)。

2020-2021学年上海市复旦附中高一(上)期末数学试卷

2020-2021学年上海市复旦附中高一(上)期末数学试卷

2020-2021学年上海市复旦附中高一(上)期末数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果 1.(4分)函数2()(2)f x log x =-的定义域为 .2.(4分)不等式2233(1)(31)x x ->+的解集为 .3.(4分)函数2()log (31)f x x =+,[0x ∈,5]的反函数是 . 4.(4分)对于实数a ,b ,c ,d ,定义&||&a bad bc c d-=.设函数22(1)&1()||&1log x f x log x --=,则方程()1f x =的解为 .5.(4分)若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是 . 6.(4分)已知函数24()1,f x min log x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x =-恰有两个零点,则的取值范围为 .7.(5分)已知函数15()||(0)2f x x x x =+->,则()f x 的递减区间是 . 8.(5分)若函数()232x x f x -=+⋅的图象关于直线x m =成轴对称图形,则m = . 9.(5分)若关于x 的不等式1|2|02x xm --<在区间[0,1]内恒成立,则实数m 的范围 . 10.(5分)已知函数22()(815)()(f x x x ax bx c a =++++,b ,)c R ∈是偶函数,若方程21ax bx c ++=在区间[1,2]上有解,则实数a 的取值范围是 .11.(5分)若函数22()(0)1x x a f x x x ++=+的值域为[a ,)+∞,则实数a 的取值范围是 . 12.(5分)已知集合[A t =,1][4t t ++,9]t +,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑13.(5分)已知()f x 为定义在R 上的奇函数,当0x <时,()3x f x =,则函数()f x 的值域为( ) A .(1,1)-B .[0,1)C .RD .[0,1]14.(5分)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2(1)SC Wlog N=+,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( )A .20%B .23%C .28%D .50%15.(5分)若函数1()f x lnx a x=-+在区间(1,)e (其中 2.71828)e =⋯上存在零点,则常数a 的取值范围( ) A .01a <<B .11a e <<C .111a e -<<D .111a e+<<16.(5分)设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在R α∈且0a ≠,对任意的x R ∈,均有(2)(2)x a x f f f -<+(a )恒成立;1:()q f x 严格递减,且()0f x >恒成立;2:()q f x 严格递增,存在00x <,使得0()0f x =.用这三个陈述句组成了两个命题,命题S :“若1q ,则P ”;命题T :“若2q ,则P ”,则关于S ,T ,以下说法正确的是( ) A .两个命题S ,T 都是真命题 B .只有命题S 是真命题 C .只有命题T 是真命题D .两个命题S ,T 都不是真命题三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知函数21()(51)m h x m m x +=-+为幂函数,且为奇函数. (1)求m 的值;(2)求函数()()g x h x =+在1[1,]2x ∈-的值域.18.(14分)已知函数12()||h x log x =.(1)求()h x 在11[,]()22a a >上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集)使得12()()f x f x =,则称区间A 为()f x 的“Γ区间”.已知121()||([,2])2h x log x x =∈,若1(,)2A a =函数()h x 的“Γ区间”,求a 的最大值. 19.(14分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,21()502p x x x =+;当产量不小于60万箱时,6400()1011860p x x x=+-,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大? 20.(16分)设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()f x -;(2)求函数()()y f x f x =⋅-的最大值(用a 表示);(3)设()()(1)g x f x f x =--.若对任意(x ∈-∞,0],()(0)g x g 恒成立,求a 的取值范围. 21.(18分)已知函数()||f x x x a =-,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性;(3)若在[0,2]上存在2021个不同的实数(1i x i =,2,⋯,2021),122021x x x <<⋯<,使得122320202021|()()||()()||()()|8f x f x f x f x f x f x -+-+⋯+-=,求实数a 的取值范围.2020-2021学年上海市复旦附中高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果 1.(4分)函数2()(2)f x log x =-的定义域为 (2,4) .【解答】解:由函数2()(2)f x log x +-,可得4020x x ->⎧⎨->⎩,求得24x <<, 可得定义域为(2,4), 故答案为:(2,4).2.(4分)不等式2233(1)(31)x x ->+的解集为 (1,0)- . 【解答】解:2233(1)(31)x x ->+,22(1)(31)x x ∴->+,2221961x x x x ∴-+>++, 2880x x ∴+<,即8(1)0x x +<,解得:10x -<<, 故答案为:(1,0)-.3.(4分)函数2()log (31)f x x =+,[0x ∈,5]的反函数是 123y =⨯13x -,[0x ∈,4] .【解答】解:函数2()log (31)f x x =+,[0x ∈,5],所以函数的值域为[0,4],312y x +=,可得123x =⨯13y -,所以函数2()log (31)f x x =+,[0x ∈,5]的反函数是:123y =⨯13x -,[0x ∈,4].故答案为:123y =⨯13x -,[0x ∈,4].4.(4分)对于实数a ,b ,c ,d ,定义&||&a bad bc c d-=.设函数22(1)&1()||&1log x f x log x --=,则方程()1f x =的解为 2x = . 【解答】解:222222(1)&1()||log (1)log ()1&1log x f x x x log x x log x --==-+=-=,即22x x -=,且1x >,解得2x =.故答案为:2x =. 5.(4分)若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是 (0,)+∞ . 【解答】解:设120x x >>, 则1212121212()()()11(1)(1)ax ax a x x f x f x x x x x --=-=++++, 若函数()1axf x x =+在区间(0,)+∞是严格增函数, 则121212()()()0(1)(1)a x x f x f x x x --=>++,110x +>,210x +>,120x x ->,0a ∴>,故答案为:(0,)+∞.6.(4分)已知函数24()1,f x min log x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x =-恰有两个零点,则的取值范围为 (1,2) . 【解答】解设41y x=+,2log y x =, 则41y x=+在(0,)+∞上为减函数,2log y x =在(0,)+∞上为增函数, 当4x =时,41112y x=+=+=,2log 42y ==,此时两个函数值相等, 当04x <时,24log 1x x+,此时2()log (f x x =∈-∞,2], 当4x >时,24log 1x x >+,此时4()1(1,2)f x x =+∈,即函数22,(0.4]4()1,41,(4,)log x x f x min log x x x x∈⎧⎪⎧⎫=+=⎨⎬⎨+∈+∞⎩⎭⎪⎩.若函数()()g x f x =-恰有两个零点, 则()()0g x f x =-=,即()f x =,恰有两个根,作出函数()f x 与y =的图象,由图象知若两个图象有两个不同的交点, 则12<<,故实数的取值范围是(1,2), 故答案为:(1,2).7.(5分)已知函数15()||(0)2f x x x x =+->,则()f x 的递减区间是 1(0,)2,(1,2) .【解答】解:画出函数()f x 的图象,如图示:,结合图象,函数()f x 在1(0,)2,(1,2)递减,故答案为:1(0,)2,(1,2).8.(5分)若函数()232x x f x -=+⋅的图象关于直线x m =成轴对称图形,则m = 212log . 【解答】解:由题意可知0>,因为函数()232x x f x -=+⋅的图象关于直线x m =成轴对称图形, 则()f x m +为偶函数,图象关于y 轴对称, 故()()f m x f m x -=+恒成立, 所以220m m --⋅=,解得212m log =.故答案为:212log .9.(5分)若关于x 的不等式1|2|02x xm --<在区间[0,1]内恒成立,则实数m 的范围 322m << . 【解答】解:由1|2|02x x m --<,得1|2|2xxm -<, ∴11222xx xm -<-<, 即112222x x x x m -<<+在区间[0,1]内恒成立, 函数1()22x x f x =-在区间[0,1]内单调递增,()f x ∴的最大值为32; 令1()22x x g x =+,2(12)x t t =, 则1y t t =+在[1,2]上为增函数,由内函数2x t =为增函数,1()22x xg x ∴=+在区间[0,1]内单调递增,()g x 的最小值为2. ∴322m <<. 故答案为:322m <<. 10.(5分)已知函数22()(815)()(f x x x ax bx c a =++++,b ,)c R ∈是偶函数,若方程21ax bx c ++=在区间[1,2]上有解,则实数a 的取值范围是 11[,]83 .【解答】解:22()(815)()f x x x ax bx c =++++是偶函数,图象关于y 轴对称,令28150x x ++=可得,3x =-或5x =-,根据偶函数图象的对称性可知,3,5是20ax bx c ++=的两个根, 815b ac a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴158c a b a =⎧⎨=-⎩,由21ax bx c ++=可得,28151ax ax a -+=, [1x ∈,2]时,2815[3x x -+∈,8],2111[,]81583a x x ∴=∈-+ 故答案为:11[,]83.11.(5分)若函数22()(0)1x x af x x x ++=+的值域为[a ,)+∞,则实数a 的取值范围是 (-∞,2] .【解答】解:函数222(1)11()1111x x a x a a f x x x x x ++++--===+++++, ①当10a -时,函数()f x 在[0,)+∞上单调递增,所以()(0)min f x f a ==, 此时函数的值域为[a ,)+∞, 所以1a ;②当10a ->时,1()(1)211a f x x a x -=++-+,当且仅当111a x x -+=+,即1x 时取等号,又(0)f a =,若()f x 的值域为[a ,)+∞10,即2a , 所以12a <,综上,实数a 的取值范围为(-∞,2], 故答案为:(-∞,2].12.(5分)已知集合[A t =,1][4t t ++,9]t +,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 1或3- .【解答】解:当0t >时,当[a t ∈,1]t +时,则[4t aλ∈+,9]t +,当[4a t ∈+,9]t +时,则[t aλ∈,1]t +,即当a t =时,9t aλ+;当9a t =+时,t aλ,即(9)t t λ=+; 当1a t =+时,4t aλ+,当4a t =+时,1t aλ+,即(1)(4)t t λ=++,(9)(1)(4)t t t t ∴+=++,解得1t =.当104t t +<<+时,当[a t ∈,1]t +时,则[t aλ∈,1]t +.当[4a t ∈+,9]t +,则[4t aλ∈+,9]t +,即当a t =时,1t aλ+,当1a t =+时,t aλ,即(1)t t λ=+,即当4a t =+时,9t aλ+,当9a t =+时,4t aλ+,即(4)(9)t t λ=++,(1)(4)(9)t t t t ∴+=++,解得3t =-.当90t +<时,同理可得无解. 综上,t 的值为1或3-. 故答案为:1或3-.二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑13.(5分)已知()f x 为定义在R 上的奇函数,当0x <时,()3x f x =,则函数()f x 的值域为( ) A .(1,1)-B .[0,1)C .RD .[0,1]【解答】解:根据题意,()f x 为定义在R 上的奇函数,则(0)0f =, 当0x <时,()3x f x =,有0()1f x <<, ()f x 为奇函数,则当0x >时,有1()0f x -<<,综合可得:1()1f x -<<, 即函数的值域为(1,1)-, 故选:A .14.(5分)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2(1)SC Wlog N=+,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( )A .20%B .23%C .28%D .50%【解答】解:将信噪比SN从1000提升至5000时, C 大约增加了222(15000)(11000)(11000)Wlog Wlog Wlog +-++ 222500010005001100122100010012lg lg log log lg lg lg log lg --=≈120.2323%3lg -=≈=. 故选:B .15.(5分)若函数1()f x lnx a x=-+在区间(1,)e (其中 2.71828)e =⋯上存在零点,则常数a 的取值范围( ) A .01a <<B .11a e <<C .111a e -<<D .111a e+<<【解答】解:函数1()f x lnx a x=-+在区间(1,)e 上为增函数,f (1)110ln a =-+<,f (e )10lne a e =-+>,可得111a e -<<故选:C .16.(5分)设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在R α∈且0a ≠,对任意的x R ∈,均有(2)(2)x a x f f f -<+(a )恒成立;1:()q f x 严格递减,且()0f x >恒成立;2:()q f x 严格递增,存在00x <,使得0()0f x =.用这三个陈述句组成了两个命题,命题S :“若1q ,则P ”;命题T :“若2q ,则P ”,则关于S ,T ,以下说法正确的是( ) A .两个命题S ,T 都是真命题 B .只有命题S 是真命题 C .只有命题T 是真命题D .两个命题S ,T 都不是真命题【解答】解:对于命题S :“若1q ,则P ”; 当()f x 单调递减且()0f x >恒成立时,存在0a <,此时22x a x ->,而()f x 单调递减,所以(2)(2)x a x f f -<, 又因为()0f x >恒成立时,则f (a )0>, 则有(2)(2)x a x f f f -<+(a )恒成立, 命题S 为真命题;对于命题T :“若2q ,则P ”,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 存在0a >,则0a x >,则f (a )0>,由于0a >,则22x a x -<,而()f x 严格递增,则(2)(2)x a x f f -<, 故(2)(2)x a x f f f -<+(a )恒成立, 命题T 也为真命题, 两个命题S ,T 都是真命题; 故选:A .三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知函数21()(51)m h x m m x +=-+为幂函数,且为奇函数. (1)求m 的值;(2)求函数()()g x h x =+在1[1,]2x ∈-的值域.【解答】解:(1)函数21()(51)m h x m m x +=-+为幂函数, 2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =是奇函数,符合题意, 当5m =时,6()h x x =是偶函数,不符合题意, 所以m 的值为0.(2)由(1)可得()g x x =,令t ,则212t x -=,112x -,0123x ∴-, 03t∴,22111()222t g t t t t -∴=+=-++(03)t,()g t 在[0,1]上单调递增,在[1上单调递减, ()max g t g ∴=(1)1=,又1(0)2g =,112g =>,1()2min g t ∴=,∴函数()()g x h x =+在1[1,]2x ∈-的值域为1[2,1].18.(14分)已知函数12()||h x log x =.(1)求()h x 在11[,]()22a a >上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集)使得12()()f x f x =,则称区间A 为()f x 的“Γ区间”.已知121()||([,2])2h x log x x =∈,若1(,)2A a =函数()h x 的“Γ区间”,求a 的最大值. 【解答】解:(1)由题意知,1()2h h =(2)1=,①若112a <,则()h x 在1[2,]a 上单调递减, 可得()h x 的最大值为1()12h =;②若12a <,则()h x 在1[2,1]上单调递减,在[1,]a 上单调递增,可得h (a )h (2)1()12h ==,所以()h x 的最大值为 1;③若2a >,则()h x 在1[2,1]上单调递减,在[1,]a 上单调递增,可得h (a )h (2)1()2h =,所以()h x 的最大值为h (a )2|log |a =, 综上,若122a <,则()h x 的最大值为 1; 若2a >,则()h x 的最大值为2|log |a ; (2)由(1)知 ①当112a <时,()h x 在1(2,)a 上的值域为2(|log |a ,1), ()f x 在1{}[2a ⋃,2]上的值域为[0,1],由任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集)使得12()()f x f x =, 可得2(|log |a ,1)[0⊆,1], 即有2|log |0a ,即为112a <; ②当12a <时,()h x 在1(2,)a 上的值域为(0,1),()h x 在1{}[2a ⋃,2]上的值域为2[|log |a ,1],由任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集)使得12()()f x f x =, 可得2(|log |a ,1][0⊆,1], 即有2|log |0a ,即为12a <.综上可得,a 的最大值为2.19.(14分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,21()502p x x x =+;当产量不小于60万箱时,6400()1011860p x x x=+-,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?【解答】解:(1)当060x <<时,2211100(50)4005040022y x x x x x =-+-=-+-;当60x 时,64006400100(1011860)4001460()y x x x x x=-+--=-+. ∴2150400,060264001460(),60x x x y x x x ⎧-+-<<⎪⎪=⎨⎪-+⎪⎩;(2)当060x <<时,221150400(50)85022y x x x =-+-=--+,∴当50x =时,y 取得最大值,最大值为850万元;当60x 时,640064001460()146021300y x x x x=-+-=. 当且仅当6400x x=,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得的利润最大,最大利润为1300万元. 20.(16分)设0a >,函数1()12xf x a =+⋅.(1)若1a =,求()f x 的反函数1()f x -;(2)求函数()()y f x f x =⋅-的最大值(用a 表示);(3)设()()(1)g x f x f x =--.若对任意(x ∈-∞,0],()(0)g x g 恒成立,求a 的取值范围.【解答】解:(1)当1a =时,1()12xf x =+, 112x y∴+=, 即1121x yy y-=-=,则01y <<, 21log ()yx y-∴=;故()f x 的反函数121()log ()xf x x --=,(0,1)x ∈(2)2111()()12121(22)x x x x y f x f x a a a a --=⋅-=⋅=+⋅+⋅+++, 设22x x y -=+,易知,函数22x x y -=+在(,0)-∞上单调递减,在(0,)+∞上单调递增, 则当0x =时,22x x y -=+有最小值,最小值为2, ∴当0x =时,()()y f x f x =⋅-有最大值,221112(1)max y a aa ∴==+++;(3)111()()(1)1212x x g x f x f x a a -=--=-+⋅+⋅,令2x t a =⋅,(x ∈-∞,0],0a >,0t a ∴<.21()2323t h t t t t t--∴==++++,当2a时()h t 在(0,]a 上单调递减,所以2()()32min ah t h a a a -==++对任意(x ∈-∞,0],()(0)g x g 恒成立,且11(0)1112g a a=-++, ∴211132112a a a a a--++++恒成立,02a∴<当a >1()223223g x t --⋅+,令2113113212a a a aa --=++++不恒成立,舍去综上,a 的取值范围是(0.21.(18分)已知函数()||f x x x a =-,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性;(3)若在[0,2]上存在2021个不同的实数(1i x i =,2,⋯,2021),122021x x x <<⋯<,使得122320202021|()()||()()||()()|8f x f x f x f x f x f x -+-+⋯+-=,求实数a 的取值范围. 【解答】解:(1)当1a =时,()|1|f x x x =-, 当1x >时,2()2f x x x =-<,解得12x -<<, 所以12x <<,当0x =时,()02f x =<恒成立,当1x <时,2()2f x x x =-+<,解得1x <, 综上,不等式()2f x <的解集为(,2)-∞;(2)因为函数()f x 是奇函数,所以()()f x f x -=-, 令1x =,解得0a =,所以当0x 时,2()f x x =,显然函数在(0,)+∞单调递增, 当0x <时,2()f x x =-,在(,0)-∞上单调递增, 综上,函数()f x 在x R ∈时单调递增.(3)①当0a 时,()f x 在[0,2]上单调递增,所以122320202021|()()||()()||()()|f x f x f x f x f x f x -+-+⋯+- 213220212020(()())(()())(()())f x f x f x f x f x f x =-+-+⋯+-20211()()f x f x f =-(2), 所以f (2)2(2)8a =-,解得2a -.②当4a 时,()()f x x a x =-是[0,2]上的增函数, 所以122320202021|()()||()()||()()|f x f x f x f x f x f x -+-+⋯+- 20211()()f x f x f =-(2), 所以f (2)2(2)8a =-,解得6a . ③当04a <<时,()f x 在[0,2]上不单调,所以122320202021|()()||()()||()()|f x f x f x f x f x f x -+-+⋯+-20211()()2()max f x f x f x =-,所以2()424a a f =<,f (2)2|2|4a =-<,在[0,2]上,(){()2max af x f =,f (2)}4<,所以当4a 时,()()f x x a x =-是[0,2]上的增函数,所以122320202021|()()||()()||()()|2()8max f x f x f x f x f x f x f x -+-+⋯+-<, 求实数a 的取值范围(-∞,2][6-⋃,)+∞.。

上海复旦附中2022年高一数学第一学期期末考试模拟试题含解析

上海复旦附中2022年高一数学第一学期期末考试模拟试题含解析

(2)若函数 y 2sin(2x ) 1 的最小正周期为
3
2
(3)函数
y
1 sin2
x
4 cos2
x
的最小值为
9
(4)已知函数 f (x) 2sin(x )( 0) ,在[ , ] 上单调递增,则 (0, 2]
6
63
16.已知集合
A
{x
||
x
1 |
3},
B
x
|
x 1 x5
0
综上可得所求直线方程为 x 2 y 0或 x y 3 0
故答案为 x 2 y 0或 x y 3 0
【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表 示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原 点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用
3a
b)
解之得
a b
6 8
则 f x x2 2x x2 6x 8 ,满足 f x f 2 x
故 f 3 32 2332 638 15
故答案 : 15
12、 2,2
为 【解析】根据幂函数所过的点求出 f x 解析式,利用奇偶性和单调性去掉 f 转化为关于 a 的不等式即可求解.
【详解】(1)当直线过原点时,可设直线方程为 y kx ,
∵点 2,1 在直线上,
∴k
1, 2
∴直线方程为 y 1 x ,即 x 2 y 0 2
(2)当直线不过原点时,设直线方程
∵点 2,1 在直线上,
x y 1, aa
为 ∴ 2 1 1, aa

2020-2021上海市高一数学上期末试卷(及答案)

2020-2021上海市高一数学上期末试卷(及答案)

2020-2021上海市高一数学上期末试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>5.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,6.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.下列函数中,在区间(1,1)-上为减函数的是A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______. 18.若函数()242xx f x aa =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 23.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少? 25.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭;(2)6log 332log log 2log 36⋅-- 26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.5.D解析:D试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A8.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

上海市复旦大学附属中学2020-2021学年高一上学期期末数学试题(解析版)

上海市复旦大学附属中学2020-2021学年高一上学期期末数学试题(解析版)
【详解】因为 为定义在 上的奇函数,当 时, ,所以当 时, ,
【详解】由题意 ,
当 ,即 时,函数 在 单调递增,
故 ,值域为 恒成立;
当 ,即 时, ,
当且仅当 ,即 时取等,
又 在 单调递增,且 ,
若值域为 ,则有 ,解得 ,
综上所述, 的取值范围为 ,
故答案为: .
12.已知集合 , ,存在正数 ,使得对任意 ,都有 ,则 的值是____________
一方面 在 上恒成立,即 ,因为函数 在 上为增函数,要想 在 上恒成立,只需 大于函数 在 上的最大值即可,即 ;
另一方面 在 上恒成立,即 ,因为 (当且仅当 取等号),因此有 ,所以实数 的取值范围为 .
故答案为;
【点睛】本题考查了不等式恒成立问题,考查了函数单调性 性质,考查了基本不等式的应用.
【答案】
【解析】
【分析】
先求原函数的值域,再利用反函数的求法求解.
【详解】因为 ,
所以 ,
所以 ,
转化为指数式得: ,
所以函数的反函数是
故答案为:
4.对于实数a,b,c,d,定义 .设函数 ,则方程 的解为____.
【答案】
【解析】
【分析】
由题意可得 ,再代值求解即可,但注意定义域.
【详解】 新定义运算 ,
【详解】因为函数 的图像关于直线 成轴对称图形,
所以 恒成立,
即 恒成立,
即 恒成立,
所以 ,即 ,
解得 ,
故答案为:
9.若关于 的不等式 在区间 内恒成立,则实数 的取值范围为____.
【答案】
【解析】
【分析】
令 ,解这个绝对值不等式,结合函数的单调性,最后求出实数 的取值范围.

2020-2021学年上海市某校高一(上)期末数学试卷

2020-2021学年上海市某校高一(上)期末数学试卷

2020-2021学年上海市某校高一(上)期末数学试卷一、填空题(每小题3分,共36分)1. 已知f(x −2)=2x −5,且f(a)=5,则a 的值为________.2. 若m ,n ∈R ,则“m +n ≥0”是“m ≥0且n ≥0”的________条件.3. 设集合,则A ∩B =________.4. 设lg 2=a ,lg 7=b ,则log 714=________(用含a ,b 的式子表示).5. 已知集合A ={x ∈N|y =lg (4−x)},则A 的子集个数为________.6. 已知全集为R ,A ={x|x 2+px −6=0},B ={x|x 2+qx +2=0},且,则p +q =________.7. 幂函数f(x)的图象过点(2,√2),则函数g(x)=af(x −3)+1(a ∈R, a ≠0)的图象经过定点________.8. 已知函数f(x)=2log 2(x +1),,则y =f(x)的反函数为y =________.9. 方程在x ∈(0, +∞)上有解,则实数a 的取值范围是________.10. 已知函数f(x)={log 2(−x +5),x ≤12x −m,x >1 在R 上存在最小值,则m 的取值范围是________.11. 已知x 1是函数f(x)=x log 2x −3的一个零点,x 2是函数f(x)=x ⋅2x −3的一个零点,则x 1⋅x 2=________.12. 设二次函数f(x)=ax 2+bx +c (a ,b ,c 为常数).若不等式f(x)≥2ax +b 的解集为R ,则的最大值为________.二、选择题(本大题共4题,满分20分,每题5分)如果x +y <0,且y >0,那么下列不等式成立的是( ) A.y 2>x 2>xy B.x 2>y 2>−xy C.x 2<−xy <y 2 D.x 2>−xy >y 2已知函数g(x)=3x +t 的图象不经过第二象限,则t 的取值范围为( )A.t ≤−1B.t <−1C.t ≤−3D.t ≥−3对于函数①,②f(x)=(x −2)2,③f(x)=2|x−2|,判断下列三个命题的真假:命题甲:f(x +2)是偶函数;命题乙:f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数;命题丙:f(x +2)−f(x)在(−∞, +∞)上是严格增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①②B.②③C.②D.①③已知函数f(x)满足f(x +1)=1+√2f(x)−f 2(x)(x ∈R),则f(1)+f(2020)的最大值是( ) A.2−√2B.2C.2+√2D.4三、解答题(本大题共5题,满分76分)已知函数f(x)=x 2−(a +b)x +a .(1)若关于x 的不等式f(x)<0的解集为(1, 2),求a ,b 的值;(2)当b =1时,解关于x 的不等式f(x)>0.已知函数f(x)=log 21+ax x−1(a 为常数)是奇函数.(Ⅰ)求a 的值与函数 f(x)的定义域;(Ⅱ)若当x ∈(1, +∞) 时,f(x)+log 2(x −1)>m 恒成立.求实数m 的取值范围.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当t ∈(0, 14]时,曲线是二次函数图象的一部分,当t ∈[14, 40]时,曲线是函数y =log a (t −5)+83(a >0,且a ≠1)图象的一部分.根据专家研究,当注意力指数p 大于等于80时听课效果最佳.(1)试求p =f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.设f(x)是定义在[−1, 1]上的奇函数,且对任意的a ,b ∈[−1, 1],当a +b ≠0时,都有f(a)+f(b)a+b>0.(1)若a >b ,试比较f(a)与f(b)的大小;(2)解不等式f(x −12)<f(x −14);(3)如果g(x)=f(x −c)和ℎ(x)=f(x −c 2)这两个函数的定义域的交集是空集,求c 的取值范围.已知x ∈R ,定义:f(x)表示不小于x 的最小整数,例如:f ()=2,f(−0.6)=0(1)若f(x)=2018,求实数x 的取值范围;(2)若x >0,且f (3x +f(x))=f(6+),求实数x 的取值范围;(3)设g(x)=x +a •−2,ℎ(x)=,若对于任意的x 1、x 2、x 3∈(2, 4],都有g(x 1)>|ℎ(x 2)−ℎ(x 3)|,求实数a 的取值范围.参考答案与试题解析2020-2021学年上海市某校高一(上)期末数学试卷一、填空题(每小题3分,共36分)1.【答案】3【考点】函数解析式的求解及常用方法【解析】根据题意,令t=x−2,利用换元法可得f(x)的解析式,则有f(a)=2a−1=5,求出a的值,即可得答案.【解答】根据题意,令t=x−2,则x=t+2,则有f(t)=2t−1,则f(a)=2a−1=5,解可得a=3,2.【答案】必要不充分【考点】充分条件、必要条件、充要条件【解析】结合不等式的性质,利用充分条件和必要条件的定义进行判断即可.【解答】当m=−1,n=2时,满足m+n≥0但“m≥0且n≥0”不成立,当“m≥0且n≥0”时,m+n≥0一定成立,即m+n≥0是m≥0且n≥0成立的必要不充分条件,3.【答案】={x|−1<x<2}【考点】交集及其运算【解析】先分别求出集合A,B,由此能求出A∩B.【解答】∵集合,∴A={x|x>−1},B={x|−1≤x<2},∴A∩B={x|−1<x<2}.4.【答案】【考点】对数的运算性质【解析】进行对数的运算,得出,代入lg2=a,lg7=b即可.【解答】∵lg2=a,lg7=b,∴.5.【答案】16【考点】子集与真子集【解析】可以求出集合A,根据集合A的元素个数即可得出A的子集个数.【解答】∵A={x∈N|x<4}={0, 1, 2, 3},∴A的子集个数为24=16.6.【答案】【考点】交集及其运算【解析】由,知2∈A,求出p=1,从而集合A={x|x2+x−6=0}={2, −3},进而得−3∈B,求出q=,由此能求出结果.【解答】由,知2∈A,代入得:4+2p−6=0,解得p=1,所以集合A={x|x2+x−6=0}={2, −3},从而得−3∈B,代入得,所以.7.【答案】(3, 1)【考点】幂函数的概念、解析式、定义域、值域【解析】由题意求出幂函数f(x)的解析式,再化简函数g(x),求出g(x)的图象经过的定点.【解答】设幂函数y=f(x)=xα,图象过点(2,√2),则2α=√2,α=12;∴f(x)=x12,x≥0;∴函数g(x)=af(x−3)+1=a(x−3)12+1=a√x−3+1,其中a∈R,且a≠0;令x−3=0,得x=3,此时y=1;∴函数g(x)的图象经过定点(3, 1).8.【答案】【考点】反函数【解析】由y=f(x)反解出x,然后求出原函数的值域,得到反函数的定义域,从而得到y=f(x)的反函数.【解答】因为y=2log2(x+1),所以,即,又因f(x)在上单调递增,所以f(x)∈[−2, 2],所以y=f(x)的反函数为y=−1,x∈[−2, 2].9.【答案】[4, +∞)【考点】函数与方程的综合运用函数的零点【解析】设f(x)=4x+x,原问题等价于当x>0时,函数f(x)=4x+x与直线y=a有交点,求出f(x)的值域,即可得答案.【解答】根据题意,设f(x)=4x+x,方程即a=4x+x∈(0, +∞)上有解,则当x>0时,函数f(x)=4x+x与直线y=a有交点,当x>0时,f(x)=4x+≥2=4,当且仅当x=时等号成立,即f(x)的值域为[4, +∞),则必有a≥4,即a的取值范围为[4, +∞),10.【答案】(−∞, 0].【考点】函数的最值及其几何意义【解析】利用函数的单调性,分别求出两段的值域即可.【解答】函数y=log2(−x+5)在(−∞, 1]单调递减,即可得x≤1时,f(x)≥f(1)=2.当x>1时,f(x)>2−n.要使函数f(x)={log2(−x+5),x≤12x−m,x>1在R上存在最小值,只需2−m≥2,即m≤0.11.【答案】3【考点】函数的零点与方程根的关系【解析】利用函数的对称性,设出A、B坐标,转化求解即可.【解答】由题意得,又y=log2x和y=2x图象关于y=x对称,且图象也关于y=x对称,不妨设,所以A,B也关于y=x对称,所以log2x1=x2,又log2x1=,所以x1x2=3.12.【答案】【考点】二次函数的性质二次函数的图象【解析】由已知结合二次函数的性质b2≤4ac−4a2,然后对已知不等式进行赋值可得c≥a>0,然后进行换元,结合基本不等式即可求解.【解答】由f(x)≥2ax+b的解集为R,可得ax2+(b−2a)x+c−b≥0恒成立,∴a>0且△=(b−2a)2−4a(c−b)≤0,即b2≤4ac−4a2,令x=1可得a+b−2a+c−b≥0,即c≥a>0,∴=,令t=−1,则t≥0,∴====,当且仅当t=即t=2时取等号,二、选择题(本大题共4题,满分20分,每题5分)【答案】D【考点】不等式的基本性质【解析】由x+y<0,且y>0,可得x<−y<0.再利用不等式的基本性质即可得出x2>−xy,xy<−y2.【解答】解:∵x+y<0,且y>0,∴x<−y<0.∴x2>−xy,xy<−y2,因此x2>−xy>y2.故选:D.【答案】A【考点】指数函数的图象与性质【解析】根据指数函数的性质,求出恒过坐标,即可得出t的取值范围.【解答】由指数函数的性质,可得函数g(x)=3x+t恒过点坐标为(0, 1+t),函数g(x)是增函数,图象不经过第二象限,∴1+t≤0,解得:t≤−1.【答案】B【考点】命题的真假判断与应用【解析】求复合函数判断命题甲,用复合函数法判断命题乙丙.【解答】对命题甲,分别求出f(x+2),①,②f(x+2)=(x)2,③f(x+2)=2|x|,则命题甲均真;对命题乙,由复合函数单调性知,①f(x)在(−∞, 2)上是严格增函数,在(2, +∞)上是严格减函数,②f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数,③f(x)在(−∞, 2)上是严格减函数,在(2, +∞)上是严格增函数,所以①命题乙为假,②和③命题乙为真;此时排除AD,由于B②③,C②,所以只需判断③命题丙是否为真;对命题丙,③f(x+2)=2|x|−2|x−2|==,用复合函数单调性判断法知,f(x+2)在每个区间断都严格增加,且在端点处不间断,所以在R上严格增加,则命题丙为真;【答案】C【考点】函数的最值及其几何意义 【解析】将条件进行平方,利用作差法构造函数g(x)=2f(x)−f 2(x),然后利用基本不等式的性质,转化为关于f(1)+f(2020)的一元二次不等式,进行求解即可. 【解答】由f(x +1)=1+√2f(x)−f 2(x)(x ∈R), 得2f(x)−f 2(x)≥0,得0≤f(x)≤2,平方得f 2(x +1)=1+2√2f(x)−f 2(x)+2f(x)−f 2(x),① ∴ 2f(x +1)=2+2√2f(x)−f 2(x) ②②-①得2f(x +1)−f 2(x +1)=2+2√2f(x)−f 2(x)−[1+2√2f(x)−f 2(x)+2f(x)−f 2(x)] =1−[2f(x)−f 2(x)],即2f(x +1)−f 2(x +1)+2f(x)−f 2(x)=1,③ 设g(x)=2f(x)−f 2(x),则③等价为g(x +1)+g(x)=1,即g(x +2)+g(x +1)=g(x +1)+g(x)=1, ∴ g(x +2)=g(x),则g(0)=g(2)=g(4)=...=g(2020),g(1)=g(3)=g(5)=...=g(2021), 则g(1)+g(2020)=g(1)+g(0)=1,∴ 2f(1)−f 2(1)+2f(2020)−f 2(2020)=1, 即2[f(1)+f(2020)]−[f 2(1)+f 2(2020)]=1即2[f(1)+f(2020)]−{[f(1)+f(2020)]2−2f(1)f(2020)]}=1 2f(1)f(2020)=1+[f(1)+f(2020)]2−2[f(1)+f(2020)]≤2×[f(1)+f(2020)2]2=12[f(1)+f(2020)]2,设t =f(1)+f(2020), 则不等式等价为1+t 2−2t ≤12t 2, 整理得t 2−4t +2≤0,得2−√2≤t ≤2+√2,即2−√2≤f(1)+f(2020)≤2+√2, 则f(1)+f(2020)的最大值为2+√2, 故选:C .三、解答题(本大题共5题,满分76分)【答案】由函数f(x)=x 2−(a +b)x +a ,不等式f(x)<0化为x 2−(a +b)x +a <0, 由不等式的解集为(1, 2),所以方程x 2−(a +b)x +a =0的两根为1和2,由根与系数的关系知:,解得a =2,b =1;b =1时不等式f(x)>0可化为x 2−(a +1)x +a >0, 即(x −a)(x −1)>0;当a >1时,解不等式得x <1或x >a ; 当a =1时,解不等式得x ≠1;当a <1时,解不等式得x <a 或x >1.所以a >1时,不等式的解集为{x|x <1或x >a}; a =1时,不等式的解集为{x|x ≠1};a <1时,不等式的解集为{x|x <a 或x >1}.【考点】一元二次不等式的应用 【解析】(1)由不等式f(x)<0的解集得出对应方程的实数根,利用根与系数的关系求出a 、b 的值; (2)b =1时不等式可化为(x −a)(x −1)>0,讨论a 与1的大小,从而求出不等式的解集. 【解答】由函数f(x)=x 2−(a +b)x +a ,不等式f(x)<0化为x 2−(a +b)x +a <0, 由不等式的解集为(1, 2),所以方程x 2−(a +b)x +a =0的两根为1和2,由根与系数的关系知:,解得a =2,b =1;b =1时不等式f(x)>0可化为x 2−(a +1)x +a >0, 即(x −a)(x −1)>0;当a >1时,解不等式得x <1或x >a ; 当a =1时,解不等式得x ≠1;当a <1时,解不等式得x <a 或x >1.所以a >1时,不等式的解集为{x|x <1或x >a}; a =1时,不等式的解集为{x|x ≠1}; a <1时,不等式的解集为{x|x <a 或x >1}. 【答案】(1)∵ 知函数f(x)=log 21+ax x−1是奇函数,∴ f(−x)=−f(x), ∴ log 21−ax−x−1=−log 21+ax x−1,即log 2ax−1x+1=log 2x−11+ax ,∴ a =1.令1+xx−1>0,解得:x <−1或x >1.∴ 函数的定义域为:{x|x <−1或x >1}; (2)f(x)+log 2(x −1)=log 2(1+x), 当x >1时,x +1>2, ∴ log 2(1+x)>log 22=1,∵ x ∈(1, +∞),f(x)+log 2(x −1)>m 恒成立, ∴ m ≤1,m 的取值范围是(−∞, 1]. 【考点】函数的定义域及其求法 函数恒成立问题【解析】(Ⅰ)直接由奇函数的定义列式求解a 的值,然后由对数式的真数大于0求解x 的取值集合得答案; (Ⅱ)化简f(x)+log (x −1)为log 2(1+x),由x 的范围求其值域得答案.【解答】(1)∵知函数f(x)=log21+axx−1是奇函数,∴f(−x)=−f(x),∴log21−ax−x−1=−log21+axx−1,即log2ax−1x+1=log2x−11+ax,∴a=1.令1+xx−1>0,解得:x<−1或x>1.∴函数的定义域为:{x|x<−1或x>1};(2)f(x)+log2(x−1)=log2(1+x),当x>1时,x+1>2,∴log2(1+x)>log22=1,∵x∈(1, +∞),f(x)+log2(x−1)>m恒成立,∴m≤1,m的取值范围是(−∞, 1].【答案】当t∈(0, 14]时,设p=f(t)=c(t−12)2+82(c<0),将点(14, 81)代入得c=−14,∴当t∈(0, 14]时,p=f(t)=−14(t−12)2+82;当t∈(14, 40]时,将点(14, 81)代入y=loga (t−5)+83,得a=13,所以p=f(t)={−14(t−12)2+82,t∈(0,14] log13(t−5)+83,t∈(14,40];当t∈(0, 14]时,−14(t−12)2+82≥80,解得12−2√2≤t≤12+2√2,所以t∈[12−2√2, 14],当t∈(14, 40]时,log_13(t−5)+83≥80,解得5<t≤32,所以t∈(14, 32],综上t∈[12−2√2, 32]时学生听课效果最佳,此时△t=32−(12−2√2)=20+2√2>22,所以,教师能够合理安排时间讲完题目.【考点】根据实际问题选择函数类型【解析】(1)利用待定系数法求函数第一段的解析式,代入特殊点求函数第二段的解析式即可;(2)分段求出效果最佳的t的范围,验证即可.【解答】当t∈(0, 14]时,设p=f(t)=c(t−12)2+82(c<0),将点(14, 81)代入得c=−14,∴当t∈(0, 14]时,p=f(t)=−14(t−12)2+82;当t∈(14, 40]时,将点(14, 81)代入y=loga(t−5)+83,得a=13,所以p=f(t)={−14(t−12)2+82,t∈(0,14]log13(t−5)+83,t∈(14,40];当t∈(0, 14]时,−14(t−12)2+82≥80,解得12−2√2≤t≤12+2√2,所以t∈[12−2√2, 14],当t∈(14, 40]时,log_13(t−5)+83≥80,解得5<t≤32,所以t∈(14, 32],综上t∈[12−2√2, 32]时学生听课效果最佳,此时△t=32−(12−2√2)=20+2√2>22,所以,教师能够合理安排时间讲完题目.【答案】解:(1)设−1≤x1<x2≤1,由奇函数的定义和题设条件,得f(x2)−f(x1)=f(x2)+f(−x1)=f(x2)+f(−x1)x2+(−x1)(x2−x1)>0,∴f(x)在[−1, 1]上是增函数.∵a,b∈[−1, 1],且a>b,∴f(a)>f(b).(2)∵f(x)是[−1, 1]上的增函数,∴不等式f(x−12)<f(x−14)等价于{−1≤x−12≤1−1≤x−14≤1x−12<x−14⇔{−12≤x≤32−34≤x≤54解得−12≤x≤54∴原不等式的解集是{x|−12≤x≤54}.(3)设函数g(x),ℎ(x)的定义域分别是P和Q,则P={x|−1≤x−c≤1}=x|c−1≤x≤c+1},Q={x|−1≤x−c2≤1}={x|c2−1≤x≤c2+1}.由P∩Q=⌀可得c+1<c2−1或c2+1<c−1.解得c的取值范围是(−∞, −1)∪(2, +∞).【考点】奇偶性与单调性的综合集合关系中的参数取值问题【解析】(1)由题意,可先证明函数的单调性,由奇定义和题设条件易得函数是增函数,由单调性比较两个函数值的大小即可;(2)(1)由(1)函数f(x)是[−1, 1]上的增函数上的增函数,可将不等式f(x −12)<f(x −14)转化为{−1≤x −12≤1−1≤x −14≤1x −12<x −14,解出它的解集即可得到不等式的解集; (3)由题意,要先解出两个函数的定义域,得P ={x|−1≤x −c ≤1}=x|c −1≤x ≤c +1},Q ={x|−1≤x −c 2≤1}={x|c 2−1≤x ≤c 2+1}. 由于此两个集合的解集是空集,比较两个集合的端点,得到关于参数c 的不等式,解出c 的取值范围.【解答】 解:(1)设−1≤x 1<x 2≤1,由奇函数的定义和题设条件,得 f(x 2)−f(x 1)=f(x 2)+f(−x 1)=f(x 2)+f(−x 1)x 2+(−x 1)(x 2−x 1)>0,∴ f(x)在[−1, 1]上是增函数. ∵ a ,b ∈[−1, 1],且a >b , ∴ f(a)>f(b).(2)∵ f(x)是[−1, 1]上的增函数, ∴ 不等式f(x −12)<f(x −14)等价于{−1≤x −12≤1−1≤x −14≤1x −12<x −14⇔{−12≤x ≤32−34≤x ≤54解得−12≤x ≤54 ∴ 原不等式的解集是{x|−12≤x ≤54}.(3)设函数g(x),ℎ(x)的定义域分别是P 和Q ,则P ={x|−1≤x −c ≤1}=x|c −1≤x ≤c +1}, Q ={x|−1≤x −c 2≤1}={x|c 2−1≤x ≤c 2+1}. 由P ∩Q =⌀可得c +1<c 2−1或c 2+1<c −1. 解得c 的取值范围是(−∞, −1)∪(2, +∞). 【答案】f(x)表示不小于x 的最小整数,可得f(x)=2018的x 的范围是(2017, 2018];若x >0,可得0<<,又f (3x +f(x))=f(6+),则f(6+)=7,即有6<3x +f(x)≤7,即6−3x <f(x)≤7−3x ,x =1时,f(x)=4;x =2时,f(x)=8, 显然不成立;由1<x <2,可得f(x)=2, 则6−3x <2≤7−3x ,解得<x ≤;ℎ(x)===−4+在(2, 2.5)递增,在[2.5, 4]递减,可得ℎ(x)的最小值为ℎ(4)=−4+2=−2; 最大值为ℎ(2.5)=4,则|ℎ(x 2)−ℎ(x 3)|≤4+2=6,由题意可得g(x 1)>6在(2, 4]恒成立, 即有a ⋅f(x)>x(8−x)在(2, 4]恒成立,当x ∈(2, 3]时,3a >−(x −4)2+16恒成立, 可得x(8−x)的最大值为3×5=15, 即有a >5;当x ∈(3, 4]时,4a >−(x −4)2+16恒成立, 可得x(8−x)的最大值为4×4=16, 即有a >4,综上可得,a 的范围是(5, +∞).【考点】函数与方程的综合运用 【解析】(1)由f(x)表示不小于x 的最小整数,可得x 的范围是(2017, 2018];(2)由指数函数的单调性,可得0<<,则f(6+)=7,即有6<3x +f(x)≤7,考虑1<x <2,解不等式即可得到所求范围;(3)化简ℎ(x)=−4+在(2, 2.5)递增,在[2.5, 4]递减,求得ℎ(x)的最值,可得g(x 1)>6在(2, 4]恒成立,讨论当x ∈(2, 3]时,当x ∈(3, 4]时,由新定义和二次函数的最值求法,即可得到所求a 的范围.【解答】f(x)表示不小于x 的最小整数,可得f(x)=2018的x 的范围是(2017, 2018];若x >0,可得0<<,又f(3x+f(x))=f(6+),则f(6+)=7,即有6<3x+f(x)≤7,即6−3x<f(x)≤7−3x,x=1时,f(x)=4;x=2时,f(x)=8,显然不成立;由1<x<2,可得f(x)=2,则6−3x<2≤7−3x,解得<x≤;ℎ(x)===−4+在(2, 2.5)递增,在[2.5, 4]递减,可得ℎ(x)的最小值为ℎ(4)=−4+2=−2;最大值为ℎ(2.5)=4,则|ℎ(x2)−ℎ(x3)|≤4+2=6,由题意可得g(x1)>6在(2, 4]恒成立,即有a⋅f(x)>x(8−x)在(2, 4]恒成立,当x∈(2, 3]时,3a>−(x−4)2+16恒成立,可得x(8−x)的最大值为3×5=15,即有a>5;当x∈(3, 4]时,4a>−(x−4)2+16恒成立,可得x(8−x)的最大值为4×4=16,即有a>4,综上可得,a的范围是(5, +∞).。

2020-2021上海所在地区高一数学上期末试题带答案

2020-2021上海所在地区高一数学上期末试题带答案

2020-2021 上海所在地域高一数学上期末试题带答案一、选择题1.已知 f ( x) 在 R 上是奇函数,且 f ( x 4) f ( x),当 x(0, 2)时, f ( x) 2x 2 ,则 f (7)A . -2B . 2C . -98D . 98log 2 x , x ,2. 已知函数 f ( x)f ( x) m, m R ,有四个不一样的实数x 2 2x, x 对于 x 的方程0.解 x 1 , x 2 , x 3 , x 4 ,则 x 1 x 2 +x 3 x 4 的取值范围为( )A .(0,+ )1 3 D . (1,+ )B . 0,C . 1,223. 已知 a 42123 ,b 33 , c 253,则A . b a cB . a b cC . bc aD . ca b4. 函数 y a |x|( )= (a>1) 的图像是A .B .C .D .5. 已知二次函数f x的二次项系数为 a ,且不等式 fx2x 的解集为 1,3 ,若方程f x6a 0 ,有两个相等的根,则实数 a ()1B . 1C . 1或-11 A .-5D . 1或- 556. 若 x 0= cosx 0,则( )A . x 0∈(3 , ) B . x 0∈(4 , ) C . x 0 ∈( , ) D . x 0∈( 0, )236 467. 依占有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观察宇宙中一般物质的原子总数 N 约为 1080. 则以下各数中与M最靠近的是N(参照数据: lg3 ≈0.48 )33B .10 53A . 107393C . 10D . 108. 已知 0 a 1 ,则方程 a x log a x 根的个数为()A .1 个B .2 个C .3 个D .1个或 2个或 3根f x )是定义在 R 上的偶函数,在 ∞ 0 ] 上是减函数且 f 2 ) =0 f x ) 9.函数 (( - , ( ,则使 ( <0 的 x 的取值范围( )A .(- ∞, 2)B .( 2, +∞)C .( -∞, - 2)∪( 2,+∞)D .( -2, 2)10. 函数 y =1 , 3] 上的最小值为 ()在 [2 x1A . 21B .211C .D .-3211. 已知全集 U={1, 2, 3,4, 5, 6},会合 P={1, 3,5}, Q={1,2, 4},则 (e U P) Q =A . {1}B . {3,5}C . {1, 2, 4,6}D . {1, 2 , 3, 4, 5}12. 已知定义在 R 上的函数 f x 在, 2 上是减函数,若g xf x2 是奇函数,且 g 2 0 ,则不等式 xf x0 的解集是()A . , 2 2,B . 4, 2 0,C ., 42,D .,40,二、填空题144)13f ( x),( x.若对于 x 的方程, f ( x)k 有两个不一样的实.已知函数log 2 x,(0 x 4)根,则实数 k 的取值范围是 ____________.14. 已知函数 f x知足 2 fx 1fx 11x ,此中 xR 且 x 0 ,则函数 f xxx的分析式为 __________15. 若对于 x 的方程 4x 2xa 有两个根,则 a 的取值范围是 _________16. 设 x, y, z R,知足 2x3y6z,则 2x1 1 的最小值为 __________.z y17. 若函数 f xa 2x4a x2 ( a 0 , a1)在区间 1,1 的最大值为 10,则a ______.18. 已知函数 f ( x)x 1 , x 0 f ( x)m( m R) 恰有三个不一样的实数解1,x,若方程ln x 0a 、b 、 c(a bc) ,则 ( a b)c 的取值范围为 ______;19. 已知函数fx log 1 mx 2m 2 x m 2 ,若 fx 有最大值或最小值,则 m2的取值范围为 ______.20. 高斯是德国的有名数学家,近代数学奠定者之一,享有 “数学王子 ”的称呼,他和阿基米德 ?牛顿并列为世界三大数学家,用其名字命名的“高斯函数 ”为:设 x R ,用 x 表示 不超出 x 的最大整数,则 y x 称为高斯函数,比如: [ 3,4]4 , [2,7]2 已知函数.f ( x)2e x1,则函数 y[ f (x)] 的值域是_________.1 e x5三、解答题21.已知函数f ( x)ln( x2ax3).(1) 若 f (x) 在(,1] 上单一递减,务实数 a 的取值范围;(2) 当a 3 时,解不等式 f (e x )x .22.已知函数f x lg x1x2.(1)判断函数f x的奇偶性;(2)若 f 1m f2m 10 ,务实数m的取值范围.23.已知函数f ( x)log 2 (3x)log 2 ( x1) .(1)求该函数的定义域;(2)若函数 y f (x)m 仅存在两个零点x1 , x2,试比较x1x2与 m 的大小关系. 24.设函数f x log 2 a x b x,且 f11, f 2 log2 12.(1)求a,b的值;(2)求函数f x的零点;(3)设g x a x b x,求 g x 在 0,4上的值域 .25.“”“”活水围网养鱼技术拥有养殖密度高、经济效益好的特色.研究表示:活水围网养鱼时,某种鱼在必定的条件下,每尾鱼的均匀生长速度v (单位:千克/年)是养殖密度x/x 不超出4/立方米)时,v 的值为2(千克/年);当(单位:尾立方米)的函数.当(尾/v 的值4 x 20 时,v是x的一次函数;当x达到 20 (尾立方米)时,因缺氧等原由,为 0 (千克 /年).(1)当0 x20时,求函数 v( x) 的表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/ 立方米)f ( x) x v( x)能够达到最大,并求出最大值.26.设全集U R,会合A x 1 x 3 , B x 2 x 4 x 2.(1)求A C U B ;(2)若函数f (x)lg(2 x a) 的定义域为会合C,知足 A C ,务实数a的取值范围.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.A分析:A【分析】 ∵f(x+ 4) = f(x),∴ f(x)是以 4 为周期的周期函数,∴ f(2 019) =f(504 ×4+3) = f(3)=f(-1).又f(x)为奇函数,∴f(-1) =- f(1)=- 2×12=-2,即f(2 019) =- 2.应选 A2.B分析: B【分析】【剖析】由题意作函数 yf ( x) 与 ym 的图象,从而可得 x 1 x 2 2 , 0 log 2 x 4, 2 ,x 3 gx 4 1 ,从而得解【详解】log 2 x , x ,解:因为 f ( x) 0 ,可作函数图象以下所示:x 22x, x 0.依题意对于 x 的方程 f ( x) m, m R ,有四个不一样的实数解 x 1, x 2 , x 3 , x 4 ,即函数y f (x) 与 y m 的图象有四个不一样的交点,由图可知令x 11 x 21 x 3 1 x 42 ,2则 x 1x 22 , log 2 x 3log 2 x 4 ,即 log 2 x 3 log 2 x 4 0 ,因此 x x1,则3 4 x 311,2, x 4x 4因此 x 1x 2 x 3 x 42 1x 4 , x 4 1,2x 4因为 y1 1,2 上单一递加,因此 y5 1 x 4 5 x ,在 x 2,,即2,x2x 42x 1 x 2 x 3x 42 1x 40,1x 42应选: B【点睛】此题考察了数形联合的思想应用及分段函数的应用.属于中档题3.A分析: A【分析】【剖析】【详解】42222在 (0,) 上单一递加,因此 b<a<c.因为 a23 =4 3 , b 33 , c 53 ,且幂函数 y x 3 应选 A.点睛:此题主要考察幂函数的单一性及比较大小问题,解答比较大小问题,常有思路有两个:一是判断出各个数值所在区间(一般是看三个区间,0 , 0,1 , 1,);二是利用函数的单一性直接解答;数值比许多的比大小问题也能够两种方法综合应用;三是借助于中间变量比较大小 .4.B分析: B 【分析】因为 | x | 0 ,因此 ax) 上曲线向下曲折的单一递加函数,应选答案B .1,且在 (0,5.A分析: A【分析】【剖析】设 f xax 2bxc ,可知1、 3 为方程 f x2x0 的两根,且a0 ,利用韦达定理可将b 、c 用 a表示,再由方程f x6a0 有两个相等的根,由0 求出实数a 的值.【详解】因为不等式f x2x 的解集为 1,3,即对于 x 的二次不等式ax2b2x c0 的解集为1,3,则 a0 .由题意可知,1、 3为对于x 的二次方程ax2b 2 x c0 的两根,由韦达定理得b23 4 ,c13 3 ,b4a 2 , c3a,1aaf x ax24a 2 x3a,由题意知,对于x 的二次方程f x6a0 有两相等的根,24a 2 x9a0 有两相等的根,即对于 x 的二次方程ax则4a2236a210a222a0 ,Q a0,解得 a1,应选: A.5【点睛】此题考察二次不等式、二次方程有关知识,考察二次不等式解集与方程之间的关系,解题的重点就是将问题中波及的知识点进行等价办理,考察剖析问题和解决问题的能力,属于中等题 .6.C分析: C【分析】【剖析】画出 y x, y cos x 的图像判断出两个函数图像只有一个交点,结构函数f x x cosx ,利用零点存在性定理,判断出 f x 零点x0所在的区间【详解】画出 y x, y cosx 的图像以以下图所示,由图可知,两个函数图像只有一个交点,结构函数 f x x cosx , f30.866 0.343 0 ,60.52362f20.7850.7070.078 0 ,依据零点存在性定理可知, f x的独一424零点 x0在区间,.64应选: C【点睛】本小题主要考察方程的根,函数的零点问题的求解,考察零点存在性定理的运用,考察数形联合的数学思想方法,属于中档题.7.D分析: D【分析】试题剖析:设M3361Nx1080,两边取对数,lg x lg 3361lg3 361 lg10 80 361 lg3 80 93.28 ,因此 x1093.28 ,即M最靠近1080N10 93 ,应选 D.【名师点睛】此题考察了转变与化归能力,此题以实质问题的形式给出,但实质就是对数3361的运算关系,以及指数与对数运算的关系,难点是令x,并想到两边同时取对数进8010行求解,对数运算公式包括log a M log a N log a MN , log a M log a N log a M,Nlog a M n n log a M .8.B分析: B【分析】【剖析】在同一平面直角坐标系中作出f xa x 与 g xlog a x 的图象,图象的交点数量即为xlog a x 根的个数 .方程 a【详解】作出 f xx log a x 图象以以下图:a , g x由图象可知: f x , g x 有两个交点,因此方程 a x log a x 根的个数为2.应选: B.【点睛】此题考察函数与方程的应用,侧重考察了数形联合的思想,难度一般.(1) 函数h x f x g x 的零点数方程f x g x 根的个数 f x 与 g x 图象的交点数;(2)利用数形联合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题 .9.D分析: D【分析】【剖析】依据偶函数的性质,x 0∞ 0] 上的解集 , 再依据对称性即可得出答案 .求出函数 f在(-,【详解】由函数 f,2 f 20,∞ 0]是减函数 ,所x 为偶函数因此 f又因为函数 f x 在(-,以函数 f x0 在(-∞,0]上的解集为2,0, 由偶函数的性质图像对于y 轴对称,可得在(0,+∞x0 的解集为(0,2),综上可得 ,f x 0 的解集为(-2,2). ) 上f应选 :D.【点睛】此题考察了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题 . 10.B分析: B【分析】y=1在[2 , 3] 上单一递减,因此x=3 时取最小值为1,选 B.x1211.C分析: C【分析】试题剖析:依据补集的运算得痧UP2,4,6 ,( UP)Q2,4,61,2,41,2,4,6.应选 C.【考点】补集的运算.【易错点睛】解此题时要看清楚是求“ ”仍是求“”,不然很简单出现错误;必定要注意会合中元素的互异性,防备出现错误.12.C分析: C【分析】【剖析】由 g x f x2是奇函数,可得f x 的图像对于 2,0中心对称,再由已知可得函数 f x的三个零点为-4 -20.,,,画出 f x 的大概形状,数形联合得出答案【详解】由 g x f x2是把函数 f x向右平移 2 个单位获得的,且g 2g 00 ,f4g2g 20 , f2g 0 0 ,画出 f x 的大概形状联合函数的图像可知,当x 4 或 x 2 时, xf x0 ,应选 C.【点睛】此题主要考察了函数性质的应用,作出函数简图,考察了学生数形联合的能力,属于中档题.二、填空题13.【分析】作出函数的图象以下图当时单一递减且当时单一递加且因此函数的图象与直线有两个交点时有分析: (1,2)【分析】作出函数 f (x) 的 象,如 所示,当 x4 1 14 x 4 , f ( x) log 2 x4 , f (x) 1减,且2,当 0xx增,且 f ( x) log 2 x2 ,因此函数f ( x) 的 象与直 y k 有两个交点 ,有1 k2 .14.【分析】【剖析】用代 可得 立方程 求得再 合 元法即可求解【解】由 意用代 分析式中的可得⋯⋯(1)与已知方程⋯⋯( 2) 立( 1)( 2)的方程 可得令 因此因此故答案 :【点睛】本 主要考 了函11分析: fx ( x 1)【分析】 【剖析】用x 1 x 1 1 x , 立方程 ,求得x 代 x ,可得 2 ffxxfx 1 1 .xx ,再 合 元法,即可求解3【 解】由 意,用x 代 分析式中的x ,可得 2 fx 1x1xf1 x , ⋯⋯.( 1)x与已知方程 2 fx1fx 1 , ⋯⋯ (2)xx 1 x立( 1)( 2)的方程 ,可得x1 1 x ,f3x令 tx 1, t 1, x = 1 ,因此 ft1 t 1 ,xt - 13 1因此 f11( x 1) .xx3 1故答案 : fx1 1 ( x 1) .3 x 1【点睛】此题主要考察了函数分析式的求解,解答顶用x 代换 x ,联立方程组,求得x 11f x 是解答的重点,侧重考察了函数与方程思想,以及换元思想的应用,属x3于中档试题 .15.【分析】【剖析】令可化为从而求有两个正根即可【详解】令则方程化为 : 方程有两个根即有两个正根解得 :故答案为 :【点睛】此题考察复合函数所对应的方程根的问题重点换元法的使用难度一般分析:( 1 ,0) 4【分析】【剖析】令t2x0, 4x2x a ,可化为t2t a0 ,从而求 t 2t a0 有两个正根即可.【详解】令t2x0,则方程化为 : t2t a0Q 方程4x2x a有两个根 , 即t2t a0 有两个正根,14a0x1x210x1x2a0故答案为 : ( 1 ,0)4【点睛】1, 解得 :a0 .4.此题考察复合函数所对应的方程根的问题,重点换元法的使用,难度一般 .16.【分析】【剖析】令将用表示转变为求对于函数的最值【详解】令则当且仅当时等号成立故答案为 :【点睛】此题考察指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题分析:22【分析】【剖析】令 2x3y6z t,将 x, y, z 用t表示,转变为求对于t 函数的最值.【详解】x, y, z R ,令 2x3y6z t 1,则 x log 2 t, y log 3 t , z log 6 t ,1log t 3,1log t 6 ,y z112log 2 t log t 2 2 2 ,2xyz当且仅当x2时等号成立 . 2故答案为 :2 2 .【点睛】此题考察指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题. 17.2 或【分析】【剖析】将函数化为分和两种状况议论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或 2【点睛】此题考察已知函数最值求参答题时需要联合指数函数与二次函数性质求解分析: 2或12【分析】【剖析】将函数化为 f ( x)a x26,分0 a 1和a1,1 上的21两种状况议论 f ( x) 在区间最大值 ,从而求a .【详解】f x a2 x4a x2a x22 6 ,Q 1 x 1,0 a 1时,a a x a 1,f ( x) 最大值为f (1) a 12610 ,解得a122 a1时,a1 a x a ,f x 最大值为 f (1) a 2210 ,解得a2,6故答案为 :1或 2. 2【点睛】此题考察已知函数最值求参,答题时需要联合指数函数与二次函数性质求解.18.【分析】【剖析】画出的图像依据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像以以下图所示由图可知令令因此因此故答案为:【点睛】本小题主要考察分段函数的图像与性质考察数形联合的数学思想方法属分析:2e2 ,2e【分析】【剖析】画出 f x 的图像,依据图像求出 a b以及c的取值范围,由此求得(a b)c 的取值范围.【详解】函数 f x 的图像以以下图所示,由图可知a b1,a b 2 .令 ln x 1 1, x e2,令2ln x 10, x e ,因此 e c e2,因此 (a b)c2c2e2 , 2e.故答案为:2e2 , 2e【点睛】本小题主要考察分段函数的图像与性质,考察数形联合的数学思想方法,属于基础题.19.或【分析】【剖析】分类议论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数如有最大值或最小值则函数有最大值或最小值且取最值时当时因为没有最值故也没有最值不知足题意当时函数有最小值没分析: { m | m 2或 m2}3【分析】【剖析】分类议论 m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数f xlog 1 mx2m 2 x m2,若 f x有最大值或最小值,2则函数 y mx2( m2) x m 2 有最大值或最小值,且y 取最值时,y 0.当 m0时, y2x 2 ,因为y没有最值,故f x也没有最值,不知足题意 .当 m0 时,函数y有最小值,没有最大值,f x有最大值,没有最小值 .故 y 的最小值为4m(m2) (m2)2,且 4m( m2)( m2) 20,4m4m求得 m 2 ;当 m0时,函数 y 有最大值,没有最小值,f x有最小值,没有最大值 .故 y 的最大值为4m(m 2) (m2)2,且 4m( m 2) ( m 2)20,4m4m求得 m 2 . 3综上, m 的取值范围为{ m | m2 2 或 m} .3故答案为: { m | m22或 m} .3【点睛】此题主要考察复合函数的单一性,二次函数、对数函数的性质,二次函数的最值,属于中档题 .20.【分析】【剖析】求出函数的值域由高斯函数的定义即可得解【详解】因此故答案为:【点睛】此题主要考察了函数值域的求法属于中档题分析:1,0,1【分析】【剖析】求出函数 f (x) 的值域,由高斯函数的定义即可得解.【详解】Q f ( x)2(1e x ) 2 12 1 92,1 e x21 e x 5 5 1 e x5Q 1 e x 1 ,01 1 ,e x1220 ,1 e x19119 ,55e x5因此 f ( x) 1 , 9,55[ f ( x)]1,0,1,故答案为:1,0,1【点睛】此题主要考察了函数值域的求法,属于中档题.三、解答题21. (1) 2 a 4 ;(2)x x0 或x ln3【分析】【剖析】(1)依据复合函数单一性的性质,联合二次函数性质即可求得 a 的取值范围.(2)将a 3 代入函数分析式,联合不等式可变形为对于e x的不等式,解不等式即可求解.【详解】(1)Q f ( x) 在 (,1] 上单一递减,依据复合函数单一性的性质可知y x2ax 3需单一a1递减则21a30解得2a 4 .(2)将a 3 代入函数分析式可得 f (x) ln( x23x3)则由f (ex )x,代入可得ln e2 x3e x3x同取对数可得e2x3e x3e x即(e x)24e x30 ,因此 (e x1) e x30即 e x1或e x3x0或 x ln 3 ,因此原不等式的解集为x x0或 x ln3【点睛】此题考察了对数型复合函数单一性与二次函数单一性的综合应用,对数不等式与指数不等式的解法,属于中档题.22.( 1)奇函数;(2), 2【分析】【剖析】(1)依据函数奇偶性的定义,求出函数的定义域及f (2)由( 1)知函数 f x 是奇函数,将原不等式化简为x 与 ff 1 mx 的关系,可得答案;f 2m 1 ,判断出f x 的单一性,可得对于m的不等式,可得m的取值范围.【详解】1f x 的定义域是 R ,因为 f x lg x1x2解:()函数,因此 f x f x lg x1x2lg x1x2lg10,即 f x f x,因此函数f x是奇函数 .(2)由( 1)知函数 f x 是奇函数,因此 f 1m f2m1 f 2m 1 ,设y lg u ,u x 1 x2, x R .因为y lg u是增函数,由定义法可证u x 1 x2在 R 上是增函数,则函数 f x 是R 上的增函数.因此 1 m 2m1,解得 m 2,故实数 m 的取值范围是, 2 .【点睛】此题主要考察函数的单一性、奇偶性的综合应用,属于中档题.23.( 1)( 1,3)(2)x1x2m【分析】【剖析】(1)依据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简 f x 表达式为对数函数与二次函数联合的形式,联合二次函数的性质,求得x1x2以及m 的取值范围,从而比较出x1x2与 m 的大小关系.【详解】(1)依题意可知3x01x 3 ,故该函数的定义域为( 1,3) ;x10(2) f ( x)log 2 (x22x3)log 2 (( x 1) 24) ,故函数对于直线 x 1 成轴对称且最大值为log2 4 2 ,∴ x1 x2 2 , m 2 ,∴x1x2m .【点睛】本小题主要考察函数定义域的求法,考察对数型复合函数对称性和最值,属于基础题.14,b 2log 215g x0,24024.()a 2 ()x2( 3)【分析】【剖析】(1)由f 11, f2log 2 12 解出即可(2)令 f (x) = 0得 4x2x1,即 2x22x 10 ,而后解出即可(3) g x4x2x,令2x t ,转变为二次函数【详解】(1f1log2a b1a b2)由已知得f2log2a2b2,即a2b2,log 2 1212解得 a 4,b 2 ;(2)由( 1)知f x log24x2x,令f (x) = 0 得4x2x1,即 2x2 2x 1 0 ,解得 2x12 5 ,又 2x0, 2x12 5,解得 xlog 2 12 5 ;(3)由( 1)知 g x4x2x ,令 2xt,21, t则g tt 2tt 11,16 ,2 4因为 g(t ) 在 t1,16 上单一递加 因此 g x0,240 ,2, 0 x4, x N *1={ 1 5*25.( ),4 x 20, xN8x2( 2 )当养殖密度为 10 尾 /立方米时,鱼的年生长量能够达到最大,最大值约为 12.5千克/立方米.【分析】【剖析】【详解】( 1 )由题意:当 0 x 4 时, v x2 ;当 4 x 20 时,设,明显在 [4,20] 是减函数,20aba 18由已知得 {b2 ,解得 {54ab2故函数2,0 x4, x N *= { 1 x 5 ,4 x20, x N *822x,x 4, xN *( 2)依题意并由(1{15)可得x 2 x,4 x 20, x N *.82当 0 x 4时,为增函数,故fmaxxf (4) 4 2 8 ;当4 x20 时, f x1 x2 5 x 1 (x 2 20x) 1 ( x 10)2 100 2 ,82888f max x f (10) 12.5.因此,当 0 x20时,的最大值为 12.5.当养殖密度为 10尾 /立方米时,鱼的年生长量能够达到最大,最大值约为12.5千克/立方米.26.( 1)x 2x 3 ()2,2【分析】【剖析】(1)先化简会合 B ,再依据会合的交并补运算求解即可;(2)函数f (x)lg(2 x a) 定义域对应会合可化简为 C x x a,又 A C ,故2由包括关系成立不等式即可求解;【详解】(1)由题知,B x x 2 , C U B x x2Q A x 1 x3A C UB x 2 x3(2)函数f (x)lg(2 x a) 的定义域为会合 C x x a ,2Q AaC ,1,2a 2 .故实数 a 的取值范围为2,.【点睛】此题考察会合的交并补的混淆运算,由会合的包括关系求参数范围,属于基础题。

2020复旦附中高一上期末试卷

2020复旦附中高一上期末试卷

复旦附中高一期末数学试卷一. 填空题1. 函数12log (5)y x =-的定义域为2. 函数2()1f x x =+(1x ≤-)的反函数为3. 已知2log 3a =,试用a 表示9log 12=4. 幂函数223()(1)mm f x a x --=-(,a m ∈N )为偶函数,且在(0,)+∞上是减函数,则a m +=5. 函数23log ()y x x =-的递增区间为6. 方程22log (95)log (32)2x x -=-+的解为x =7. 已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2, 则实数k 的取值范围为8. 若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值 范围是 9. 已知1()(33)2x x f x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+ 的最大值为M ,最小值为m ,则M m += 10. 对于函数()y f x =,x D ∈,若对任意,,a b c D ∈,()f a 、()f b 、()f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”,已知()1x x e t f x e +=+是三角形函数,则实数t 的 取值范围是11. 若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个实数根,则实数m 的取值 范围是 12. 已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()log(2)1x g x a x x =⋅+++(a ∈R ),若对 任意的12,{|,2}x x x x x ∈∈>-R ,均有12()()f x g x ≤,则实数k 的取值范围是二. 选择题13. 若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A. 1||y x = B. 2y x -= C. 2|log |y x = D. 23y x = 15. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x ∈R ,有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在0x ∈R ,使得对任意x ∈R 且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0x ∈R ,使得对任意x ∈R ,有0()()f x f x ≤,则0()f x 是函数()f x 的最大值; 这些命题中,真命题的个数是( )A. 0个B. 1个C. 2个D. 3个16. 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7)三. 解答题17. 已知函数1()421x x f x a +=-⋅+.(1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18. 已知函数21()log 1ax f x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=≥-,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19. 近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,然后改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生成某型号的空气净化器,根据以往的生产销售经验得到下面有关生成销售的统计规律:每生产该型号空气净化器x (百台),其 总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生成成本为10万 元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足:20.522016()22416x x x Q x x ⎧-+≤≤=⎨>⎩,假定该产品销平衡(即生产的产品都能卖掉),根据 上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入—总成本);(2)工厂生产多少百台产品时,可使利润最多?20. 若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由, 1()21f x x =-,2()21x f x =-;(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2) 上封闭?若存在,求出所有a 的值,并给出证明,若不存在,请说明理由;(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且00(())f f x x =,求 证:00()f x x =.21. 已知函数||0()20x x a x f x x +≥⎧=⎨<⎩,其中a ∈R . (1)若1a =-,解不等式1()4f x ≥; (2)设0a >,21()log ()g x f x =,若对任意的1[,2]2t ∈,函数()g x 在区间[,2]t t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --≤+-在[0,)x ∈+∞上恒成立,求实数a 的取值范围.参考答案一. 填空题1. (,5)-∞2. 2)y x =≥3. 22a a+ 4. 3 5. (1,)+∞ 6. 1 7. (3,0)- 8. (1,2]9. 2 10. 1[,2]2 11. (6,10 12. 3(,]4-∞-二. 选择题13. A 14. D 15. C 16. A三. 解答题17.(1)2log 3x =;(2)5[1,]4a ∈.18.(1)1a =-;(2)2m >. 19.(1)20.51212016()2121016x x x f x x x ⎧-+-≤≤=⎨->⎩;(2)生产12百台,利润最大60万元. 20.(1)1()f x 在D 上不封闭,2()f x 在D 上封闭;(2)2a =;(3)证明略.21.(1)35[2,][,)44x ∈-+∞U ;(2)65a ≥;(3)3,2](3,4)a ∈U .。

2019-2020学年上海市复旦附中高一(上)期末数学试卷

2019-2020学年上海市复旦附中高一(上)期末数学试卷

2019-2020学年上海市复旦附中高一(上)期末数学试卷一.填空题1.(3分)函数12log (5)y x =-的定义域为 .2.(3分)函数21(1)y x x =+-„的反函数为 . 3.(3分)已知2log 3a =,试用a 表示9log 12= . 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m += .5.(3分)函数23log ()y x x =-的递增区间为 . 6.(3分)方程22log (95)log (32)2x x -=-+的解是 .7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 .8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 .9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += .10.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e t f x e +=+是“可构造三角形函数”,则实数t 的取值范围是 .11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 . 二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .316.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 18.已知函数21()log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-. (2)若函数5()2x ag x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈.(1)若1a =-,解不等式1()4f x …;(2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.2019-2020学年上海市复旦附中高一(上)期末数学试卷参考答案与试题解析一.填空题1.(3分)函数12log (5)y x =-的定义域为 (,5)-∞ .【解答】解:由50x ->,得5x <. ∴函数12log (5)y x =-的定义域为(,5)-∞.故答案为:(,5)-∞.2.(3分)函数21(1)y x x =+-„的反函数为2)y x =… . 【解答】解:由21(1)y x x =+-„,得21x y =-,2)x y ∴=…, x ,y互换得:2)y x =…, ∴函数21(1)y x x =+-„的反函数为2)y x =…,故答案为:2)y x =…. 3.(3分)已知2log 3a =,试用a 表示9log 12=22a a+ . 【解答】解:22292212342129232log log log a log log log a++===, 故答案为:22a a+. 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m +=3 .【解答】解:Q 幂函数223()(1)(,)m m f x a x a m N --=-∈,在(0,)+∞上是减函数,11a ∴-=,且2230m m --<, 2a ∴=,13m -<<,又m N ∈Q ,0m ∴=,1,2, 又Q 幂函数()f x 为偶函数,1m ∴=, 3a m ∴+=,故答案为:3.5.(3分)函数23log ()y x x =-的递增区间为 (1,)+∞ .【解答】解:函数23log ()y x x =-的定义域为(-∞,0)(1⋃,)+∞, 令2t x x =-,则3log y t =, 3log y t =Q 为增函数,2t x x =-在(,0)-∞上为减函数;在(1,)+∞为增函数,∴函数23log ()y x x =-的单调递增区间为(1,)+∞,故答案为:(1,)+∞.6.(3分)方程22log (95)log (32)2x x -=-+的解是 1x = . 【解答】解:222log (95)log (32)2log [4(32)]x x x -=-+=-Q ,954(32)x x ∴-=-, 令3x t =,则2430t t -+=, 解得1t =或3t =.由式子有意义可知950320x x ⎧->⎨->⎩,解得3x >t >3t ∴=. 1x ∴=.故答案为:1x =.7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 (3,0)- .【解答】解:令22()4f x x kx k k =+++-,由题意可得f (2)0<, 即:222240k k k +++-<,整理:230k k +<,解得:30k -<<, 所以实数k 的取值范围为(3,0)-; 故答案为:(3,0)-.8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 (1,2] .【解答】解:由于函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞, 故当2x „时,满足()64f x x =-….①若1a >,()3log a f x x =+在它的定义域上单调递增,当2x >时,由()3log 4a f x x =+…,log 1a x ∴…,log 21a ∴…,12a ∴<„. ②若01a <<,()3log a f x x =+在它的定义域上单调递减, ()3log 3log 23a a f x x =+<+<,不满足()f x 的值域是[4,)+∞.综上可得,12a <„, 故答案为:(1,2].9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += 2 .【解答】解:由题意可得1()(33)()2x x f x f x --=-=-,即函数()f x 在R 上为奇函数,当[3x ∈-,5],令1[4t x =-∈-,4],则1(1)()(33)2t t f x f t --==-为奇函数且单调递增所以反函数1()f t -也是单调递增的奇函数,所以1()()F x f t -=是1()y f t -=向上平行移动1个单位也为单调递增,对称中心(0,1), 由互为反函数的性质可得352M m +=-+=, 故答案为:210.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是 1[2,2] .【解答】解:由题意可得f (a )f +(b )f >(c )对于a ∀,b ,c R ∈都恒成立,由于1()111x x xe t tf x e e +-==+++, ①当10t -=,()1f x =,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长, 满足条件.②当10t ->,()f x 在R 上是减函数,1f <(a )11t t <+-=, 同理1f <(b )t <,1f <(c )t <,由f (a )f +(b )f >(c ),可得2t …,解得12t <„. ③当10t -<,()f x 在R 上是增函数,t f <(a )1<, 同理t f <(b )1<,t f <(c )1<,由f (a )f +(b )f >(c ),可得21t …,解得112t >….综上可得,122t 剟,故实数t 的取值范围是1[2,2],故答案为:1[2,2]11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .【解答】解:当x 450x x-…,Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x ∴+--=,即9x m x -+=;m ∴„当0x <<时,450x x -<, Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x∴++-=,即19x m x+=; 196x x+Q …;∴当6m <时,方程19x m x+=无解; 当6m =时,方程19x m x+=有且只有一个解; 当610m <<时,方程19x m x+=在(0,1)上有两个解; 当10m =时,方程19x m x+=的解为1,19;综上所述,实数m的取值范围为.故答案为:. 12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 3(,]4-∞- .【解答】解:对函数()f x ,当1x „时,11()()24max f x f k ==+;当1x >时,1()(1)2max f x f ==-,()f x ∴在(2,)-+∞上的最大值11(){,}42max f x max k =+-;对函数()g x ,函数()g x 若有最小值,则0a =,即2()1xg x x =+, 当(2x ∈-,0)(0⋃,)+∞时,1()1g x x x=+,易知函数1()2min g x =-; 又对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „, ()()(2)max min f x g x x ∴>-„,即111{,}422max k +--„,∴1142k +-„, ∴34k -„,即实数k 的取值范围为3(,]4-∞-.故答案为:3(,]4-∞-.二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件【解答】解:若命题甲:10x -=,命题乙:20lg x lgx -=, ①若命题甲:10x -=,则1x =,22110lg x lgx lg lg -=-=, 则命题甲:10x -=,能推出命题乙:20lg x lgx -=,成立;②若命题乙:20lg x lgx -=,则(1)0lgx lgx -=,所以0lgx =或1lgx =,即1x =或10x =; 命题乙:20lg x lgx -=,不能推出命题甲:10x -=成立, 根据充分条件和必要条件的定义分别进行判断. 命题甲是命题乙的充分非必要条件; 故选:A .14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =【解答】解:A .函数为偶函数,当0x >时,1()f x x=,为减函数,不满足条件. B .函数为偶函数,当0x …时,()f x 为减函数,不满足条件. C .函数的定义域为(0,)+∞,定义域关于原点不对称,为非奇非偶函数,不满足条件.D .函数为偶函数且在区间(0,)+∞上为增函数,满足条件故选:D .15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .3【解答】解:①错.原因:M 不一定是函数值,可能“=”不能取到.因为函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值 所以②③对 故选:C .16.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)【解答】解:设1{|()0}{|(())0}x x f x x f f x ∈===, 11()(())0f x f f x ∴==,(0)0f ∴=,即(0)0f m ==, 故0m =; 故2()f x x nx =+,22(())()()0f f x x nx x nx n =+++=, 当0n =时,成立;当0n ≠时,0,n -不是20x nx n ++=的根, 故△240n n =-<, 解得:04n <<; 综上所述,04n m +<…; 故选:A . 三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 【解答】解:(1)当1a =时,()4221x x f x =-+g .()4f x =Q ,42214x x ∴-+=g , 23x ∴=或21x =-(舍),2log 3x ∴=.(2)当[1x ∈-,1]时,令2x t =,则1[,2]2t ∈, ∴由()0f x =,得2210t at -+=,∴2112t a t t t+==+. Q 1y t t =+在1[,1]2上单调递减,在[1,2]上单调递增, ∴当1x =时,1()2min t t +=;当2x =或12时,15()2max t t +=, ∴52[2,]2a ∈,∴5[1,]4a ∈. 18.已知函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围. 【解答】解:(1)Q 函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. ∴222111()111ax ax x f x log log log x x ax +---==-=----, ∴1111ax x x ax+-=---, 解得1a =±.当1a =时,11111ax x x x --==---,与条件矛盾,舍去. 1a ∴=-; (2)Q 集合4{|1}7A x x=-…解不等式得{|37}A x x =<„. 由(1)知,2221()log (1)log log (1)1x f x x x m x ++-=+-<-; ∴21(1)x log x m>⎧⎨+<⎩,且A B ≠∅I ,解得121m x <<-; 由于A B ≠∅I ,所以213m ->,解得,2m >.故m 的取值范围是(2,)+∞.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本);(2)工厂生产多少百台产品时,可使利润最多?【解答】解:(1)由题意得()1210P x x =+,⋯(1分)则20.5221210,016()()()2241210,16x x x x f x Q x P x x x ⎧-+--=-=⎨-->⎩剟 即为20.51212,016()21210,16x x x f x x x ⎧-+-=⋯⎨->⎩剟(4分) (2)当16x >时,函数()f x 递减,即有()(16)21216052f x f <=-=万元6⋯ 分 当016x 剟时,函数2()0.51212f x x x =-+-20.5(12)60x =--+,当12x =时,()f x 有最大值60万元.9⋯ 分所以当工厂生产12百台时,可使利润最大为60万元.10⋯ 分20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-.(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.【解答】解:(1)在1()21f x x =-中,对于定义域D 内的任意一个自变量0x ,都有函数值10()(1f x ∈-,11)D ∉,故函数1()21f x x =-在1D 上不封闭;在2()21x f x =-中,21(0,1)x -∈,在1D 上封闭.(2)5()2x a g x x -=+的定义域为(1,2),对称中心为(2,5)-, 当100a +>时,函数5()2x a g x x -=+在2D 上为增函数, 只需(1)1(2)210f f a ⎧⎪⎨⎪>-⎩…„,解得2a =当100a +<时,函数5()2x a g x x -=+在2D 上为减函数, 只需(1)2(2)110f f a ⎧⎪⎨⎪<-⎩„…,解得a ∈∅ 综上,所求a 的值等于2.证明:(3)Q 函数()f x 在其定义域D 上封闭,且单调递增.0x D ∈且00(())f f x x =,∴根据单调函数性质0()f x D ∈,则有唯一的0x D ∈,00()f x x ∴=.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈. (1)若1a =-,解不等式1()4f x …; (2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.【解答】解:(1)当1a =-,|1|,0()2,0x x x f x x -⎧=⎨<⎩…, 当0x …时,1()|1|4f x x =-…,解得54x …或34x „,所以304x 剟或54x …;当0x <时,1()24x f x =…,解得2x -…,所以20x -<„; 综上所述,不等式的解为35[2,][,)44x ∈-+∞U . (2)0a >Q ,1[2t ∈,2],[x t ∈,2]t +,()f x x a ∴=+,2211()log ()()g x f log a x x==+, 由复合函数的单调判断原则,可知()g x 在[x t ∈,2]t +上单调递减,2211()()()(2)()()12max min g x g x g t g t log a log a t t ∴-=-+=+-++„, 化简得,2(2)t a t t -+…在1[2t ∈,2]上恒成立, 令32[0,]2m t =-∈,则22()(2)(2)(4)68t m m h m t t m m m m -===+---+, 当0m =时,()0h m =, 当3(0,]2m ∈时,1()86h m m m=+-, 由对勾函数性质可知,86m m +-在3(0,]2上单调递减,∴8316566236m m +-+-=…,即60()5h m <„, 故实数a 的取值范围为65a …; (3)Q 函数()y f x =存在反函数,()y f x ∴=单调,又()f x Q 在(,0)-∞上单调递增,()y f x ∴=在R 上必须单调递增,0021a ∴+=…即1a …,12,(),01x a x a f x log x x --⎧∴=⎨<<⎩…, 令2()()|2|F x f x x a =+-,[0x ∈,)+∞, 则222223,2()|2|,2a x a a x F x x a x a ax a a x ⎧-+⎪⎪=++-=⎨⎪-++<⎪⎩…, ∴22()()22min a a F x F a ==+, 12(4)()|2|f a f x x a --+-Q „在[0x ∈,)+∞上恒成立,∴当041a <-<即34a <<时,22(4)2a log a a -+„恒成立,34a ∴<<,当4a a -…即2a „时,242a a a a --+„32a 剟,综上所述,实数a 的取值范围为3,2](3,4)a ∈U .。

2020-2021年上海市各区高中高一上数学期末考试试卷含答案

2020-2021年上海市各区高中高一上数学期末考试试卷含答案

复旦附中2020学年第一学期高一年级数学期末考试试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数()2()log 2f x x =+−的定义域为____________. 【答案】()2,4【解析】由已知得,2420x x ⎧⎪⇒<<−>>2.不等式()()2233131x x −>+的解集为____________. 【答案】()1,0−【解析】()()2233131x x −>+>的解, 解得10x −<<3.函数2()log (31),[0,5]f x x x =+∈的反函数是____________.【答案】21,[0,4]3x y x −=∈【解析】由已知得,[][]312,0,5,0,4yx x y +=∈∈所以()f x 的反函数是21,[0,4]3x y x −=∈4.对于实数,,,a b c d ,定义a b ad bc c d−=. 设函数22log (1)1()log 1x f x x −−=,则方程()1f x =的解为 .【答案】2x =【解析】由已知得,222()log (1)log log (1),(1)f x x x x x x =−+=−> 令方程()1f x =,即(1)2x x −=,2,1x x ==−(舍) 故答案为2x = 5.若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是___ _____.【答案】0a >【解析】由已知得,()1()111a x a ax af x a x x x +−===−+++ 因为函数()1axf x x =+在区间(0,)+∞是严格增函数 所以实数a 的取值范围是0a >6.已知函数24()min 1,log f x x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x k =−恰有两个零点,则k 的取值范围为_______________. 【答案】(1,2)【解析】由已知得,当04x <≤时,241log x x +≥,当4x >时,241log x x+< 故241,4()log ,04x f x xx x ⎧+>⎪=⎨⎪<≤⎩ 因为函数()()g x f x k =−恰有两个零点等价于函数()f x 与y k =的图像有两个交点, 作出函数图像可知,k 的取值范围为(1,2)7.已知函数15()||(0)2f x x x x =+−>,则()f x 的递减区间是_______. 【答案】1(0,)2,(1,2)【解析】由已知得,151,021522()||5112222x x x x f x x x x x x ⎧+−<≤≥⎪⎪=+−⎨⎪−−<<⎪⎩=或,则()f x 的递减区间是1(0,)2,(1,2)8.若函数()232x x f x −=+⋅的图像关于直线x m =成轴对称图形,则m =___ . 【答案】3log 212=m 【解析】对任意的R x ∈,)()(x m f m x f −=+成立,故m x x m m x m x −−−−+⋅+=⋅+232232,整理得0)232)(22(=⋅−−−−mmxx,所以0232=⋅−−m m ,即3log 212=m9.若关于x 的不等式1202x x m −−<在区间[0,1]内恒成立,则实数m 的取值范围为_____.【答案】⎪⎭⎫ ⎝⎛223,【解析】题源选自【2017年浦东一模10】 由1|2|02x x m −−<,得122x x m −<,∴11222xx xm −<−<, 即112222xx x xm −<<+在区间[0,1]内恒成立, 函数1()22xx f x =−在区间[0,1]内单调递增,()f x ∴的最大值为32;令1()22x x g x =+,2(12)x t t =≤≤, 则1y t t=+在[1,2]上为增函数,由内函数2x t =为增函数,1()22x xg x ∴=+在区间[0,1]内单调递增,()g x 的最小值为2.∴322m <<.故答案为:322m <<. 10.已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】题源选自【2020年普陀一模10】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =−,15158c b a =−=,所以21ax bx c ++=可整理:281510ax ax a −+−=.令()28151g x ax ax a =−+−,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a −+−⋅−+−≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦11.若函数()221++=+x x af x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是_____.【答案】(],2−∞【解析】由已知得,()22(1)11(1)(0)1121x x a f x x a a x x x x x +−++++=+−==+≥++因为(0)f a =,所以①当10a −≤ 时,即1a ≤时,1()(1)1a f x x x −=+++在[)0,+∞上的增函数, 所以min ()(0)f x f a ==满足值域为[),a +∞,此时1y x =+为增函数,11a y x −=+也为增函数,因此()y f x =为增函数,②当11a −>时,即2a >时,1()(1)1a f x x x −=+++在1)−上单调递减,在单调递增,min ()1)f x f ∴=−且(0)1)f f >不满足值域为[),a +∞,舍去 ③当011a <−≤时,即12a <≤时,()y f x =在[)0,+∞上单调递增, 所以min ()()(1)f x f x f a ∴≥==满足的值域为[),a +∞ 综上所述,a 的取值范围为2a ≤,即(,2]a ∈−∞12.已知集合[][],14,9A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是____________. 【答案】1或3−【解析】题源选自【2019年上海春考12】 【法一】当0t >时,当[],1a t t ∈+,则[]4,9t t aλ∈++,当[]4,9a t t ∈++,则[],1t t aλ∈+,即当a t =时,9t aλ≤+;当9a t =+时,t aλ≥,即()9t t λ=+;即当1a t =+时,4t aλ≥+,当4a t =+时,1t aλ≤+,即()()14t t λ=++,所以()()()914t t t t +=++,解得1t =.当104t t +<<+时, 当[],1a t t ∈+,则[],1t t aλ∈+,当[]4,9a t t ∈++,则[]4,9t t aλ∈++,即当a t =时,1t aλ≤+,当1a t =+时,t aλ≥,即()1t t λ=+;即当4a t =+时,9t aλ≤+,当9a t =+时,4t aλ≥+即()()49t t λ=++,所以()()()149t t t t +=++,解得3t =−.当90t +<时,同理可得,无解【法二】存在正数λ,使得对任意1a A ∈,都存在2a A ∈,使得12a a λ=, 当0t >时, 思考 当1a t =时,()()124,9a a t t t t λ=∈++⎡⎤⎣⎦ 当11a t =+时,()()()()1214,19a a t t t t λ=∈++++⎡⎤⎣⎦ 当14a t =+时,()()()124,14a a t t t t λ=∈+++⎡⎤⎣⎦ 当19a t =+时,()()()129,19a a t t t t λ=∈+++⎡⎤⎣⎦二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知()f x 为定义在R 上的奇函数,当0x <时,()3xf x =,则函数()f x 的值域为( )A .()1,1−B .[)0,1C .RD .[]0,1 【答案】A【解析】因为()f x 为定义在R 上的奇函数,所以(0)0f = 又因为0x <时,()3xf x =,所以()(0,1)f x ∈当0x >时,则0x −<所以()()3x f x f x −=−−=−,所以()(1,0)f x ∈− 综上所述,函数的值域为()1,1−,故选A14.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比. 按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( ) A .20% B .23%C .28%D .50%【答案】B 【解析】将信噪比SN从1000提升至5000时,C 大约增加了 222log (15000)log (11000)log (11000)W W W +−++2225000lg1000log 5001log 10012lg 2lg1000log 1001lg 2lg lg −−=≈120.2323%3lg −=≈= 故选B15.若函数1()ln f x x a x=−+在区间(1,)e 上存在零点,则常数a 的取值范围( ) A. 01a << B.11a e << C. D. 【答案】C【解析】因为1()ln ,(1,)f x x a x e x=−+∈ 1e -1<a <11e+1<a <1所以()()10f f e ⋅<因为1(1)ln110,()ln 0f a f e e a e=−+<=−+> 所以常数a 的取值范围16.设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有(2)(2)()x a x f f f a +<+恒成立;1q :()f x 严格递减,且()0f x >恒成立;2q :()f x 严格递增,存在00x <,使得0()0f x =;用这三个陈述句组成了两个命题,命题S :“若1q ,则p ”;命题T :“若2q ,则p ”,则关于S,T ,以下说法正确的是( )A. 两个命题S,T 都是真命题B. 只有命题S 是真命题C. 只有命题T 是真命题D. 两个命题S,T 都不是真命题 【答案】A【解析】本题考察函数的性质1q :当0a >时,()0f a >,()f x 单调递减,且()0f x >而()()()222()22x a x x axx f f f f a ''++>⇒<<+ ,()()22()x a x f f f a +⇒<+,符合p所以1q 可推得p ,“若1q ,则p ”成立,所以S 为真2q :当00a x =<时,()0f a =,()f x 单调递增而,22x a x x a x ++<<()()()()22202()x a x x x f f f f f a +⇒<=+=+ ()()222()x a x f f f a +⇒<+所以2q 可推得p ,“若2q ,则p ”成立,所以T 为真 综上所述,命题S ,T 均为真命题,故选A1e-1<a <1三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()()2151m h x m m x+=−+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()=+g x h x 在11,2x ⎡⎤∈−⎢⎥⎣⎦的值域.【解析】(1)2511m m −+=, 解得0m =或5m =. 即()h x x =或()6h x x =.又因为函数()h x 为奇函数,所以()h x x =,0m =.(2)()()g x h x x ==+设t =11,2x ⎡⎤∈−⎢⎥⎣⎦,所以t ⎡∈⎣,212tx −=. 所以()22111122t y t t −=+=−−+(此处可用单调性代替)当1t =时,max 1y =,当0t =时,min 12y =,故值域为1,12⎡⎤⎢⎥⎣⎦.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()12|log |h x x =. (1)求()h x 在11,22a a ⎡⎤⎛⎫> ⎪⎢⎥⎣⎦⎝⎭上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集),使得()()12f x f x =,则称区间A 为()f x 的“Γ区间”.已知12()|log |h x x =(1,22x ⎡∈⎤⎢⎥⎣⎦),若1,2A a ⎡⎫=⎪⎢⎣⎭是函数()h x 的“Γ区间”,求a 的最大值.【解析】(1)()1212h h ⎛⎫==⎪⎝⎭,① 若112a <≤,则()h x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ② 若12a <≤,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增,因此此时()()1212h a h h ⎛⎫≤==⎪⎝⎭,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ③ 若2a >,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增, 因此此时()()122h a h h ⎛⎫≥= ⎪⎝⎭,所以()h x 的最大值为()12|log |h a a =; 综上知:若122a <≤,则()h x 的最大值为1;若2a >,则()h x 的最大值为12|log |a ;(2)由已知: ①当112a <≤时,()f x 在1[,)2a 上的值域为12(|log |,1]a , ()f x 在[,2]a 上的值域为[0,1],因为[]12(|log ,1|]0,1a ⊆, 满足条件,所以此时1,2a ⎡⎫⎪⎢⎣⎭是()f x 的“Γ区间”; ②当12a <≤时,()f x 在1,2a ⎡⎫⎪⎢⎣⎭上得到值域为[]0,1,()f x 在[],2a 上的值域为12|log |,2a ⎡⎤⎣⎦,此时,120|log |,2a ⎡⎤∉⎣⎦所以此时1,2a ⎡⎫⎪⎢⎣⎭不是()f x 的“Γ区间”; 故所求a 的最大值为1. 19.(本题满分14分,第1小题满分6分,第2小题满分8分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献. 生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+−. 若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大? 【解析】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=−+−=−+− ⎪⎝⎭;当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=−+−−=−+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060,264001460,60,,x x x x N y x x x N x ⎧−+−<<∈⎪⎪=⎨⎛⎫⎪−+≥∈ ⎪⎪⎝⎭⎩(2)当060x <<时,221150400(50)85022y x x x =−+−=−−+, 当50x =时,y 取得最大值,最大值为850万元; 当60x ≥时,6400146014601300y x x ⎛⎫=−+≤−= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()f x −;(2)求函数()()y f x f x ⋅−=的最大值(用a 表示) ;(3)设()()(1)g x f x f x =−−.若对任意(,0]x ∈−∞,)(()0g x g ≥恒成立,求a 的取值范围.【解析】(1)()f x 值域(0,1)21log yx y−= 121()log (01)xf x x x−−=<<(定义域可不写) (2)21(1)(22)x x y a a −=+++2121a a ≤=++当0x =时,等号成立 所以最大值为2121a a ++ (3)2()2232x xag x a a −=⋅++, 令2(0,1]xt =∈,因此223ay a t a t−=++ 在1t =时取得最小值,即22a t t+ 在1t =时取得最小值 由函数22y a t t =+在严减,在)+∞严增得1≥整理得,0a <≤另解,222()(2)322xx x a g x a a −⋅=+⋅+令2(0,1]x t =∈,则2232aty a t at −=++,由已知,当(0,1]t ∈时,2223232at aa t at a a −−≥++++恒成立,整理得,2(1)(2)0t a t −−≥恒成立,由10t −<得,220a t −≤恒成立,得0a <≤21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()f x x x a =−,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性; (3)若在[0,2]上存在2021个不同的实数(1,2,,2021)i x i =,122021x x x <<<,使得122320202021()()()()()()8f x f x f x f x f x f x −+−++−=,求实数a 的取值范围.解:(1) 当1x ≥时,220x x −−<,即12x ≤< 当1x <时,220x x −+>,即1x <综上,该不等式的解集为(,2)−∞− (2)0a = 在R 上严增(分0x ≥和0x <两种情况写不给分) 证明略 (3)①当0a ≤时,()()f x x x a =−在[0,2]上是严格增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−,取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:2a ≤−②当4a ≥时,()()f x x a x =−在[0,2]上是增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:6a ≥③当24a ≤<时,由三角不等式,122312()()()()()()()(0)(2)224(4)44242n n f x f x f x f x f x f x a a af f f a a −−+−++−≤−−=⨯−+=−+<不满足条件 ④当02a <<时,由三角不等式,122312()()()()()()2()(0)()(2)24(4)44222n n f x f x f x f x f x f x a a af f f a f a a −−+−++−≤−−+=−+=−+<,不满足条件综上,a 的取值范围为(,2][6,)−∞−+∞虹口区2020学年第一学期高一年级数学期末考试试卷2021.01一. 填空题1. 已知集合{1,1,2}A =−,2{|0}B x x x =+=,则A B =【答案】{1}−2. 不等式301x x +≤−的解集为 【答案】[3,1)−3. 函数4()f x x x =+,1[,4]2x ∈的值域为【答案】17[4,]24. 计算:7log 222220log 2log 3log 579+−+= 【答案】45. 用“二分法”求方程340x x +−=在区间(1,2)内的实根,首先取区间中点 1.5x =进行判断,那么下一个取的点是x = 【答案】1.256. 已知条件:211p k x k −≤≤−,:33q x −≤<,且p 是q 的必要条件,则实数k 的取 值范围为 【答案】(,2]−∞−7. 不等式|2||1|5x x ++−≤的解集为 【答案】[3,2]−8.(A 组题)已知函数()3x f x a =+的反函数为1()y f x −=,若函数1()y f x −=的图像过 点(3,2),则实数a 的值为 【答案】6−(B 组题)已知函数||()2x a f x −=在区间[1,)+∞上是严格增函数,则实数a 的取值范围为 【答案】(,1]−∞9.(A 组题)已知集合1{|||3A x x m m =−<+,其中,x m ∈Z ,且0}m >,1{|||3B x x =+< 2m ,其中,x m ∈Z ,且0}m >,则AB 的元素个数为 (用含正整数m 的式子表示) 【答案】2m(B 组题)若集合2{|560}A x x x =+−=,{|30,}B x ax a =+=∈R ,且B A ⊂,则满足条件的实数a 的取值集合为 【答案】1{3,0,}2−10.(A 组题)已知函数2230()30x x x f x x x x ⎧+≥=⎨−<⎩,若2(3)(2)0f a f a −+>,则实数a 的 取值范围为【解析】画图可知,可知()y f x =是R 上的奇函数,严格增函数,由2(3)(2)0f a f a −+>得2(3)(2)(2)f a f a f a −>−=−,所以232a a −>−,解得(,3)(1,)a ∈−∞−+∞.(B 组题)已知函数()y f x =是定义在实数集R 上的偶函数,若()f x 在区间(0,)+∞上 是严格增函数,且(2)0f =,则不等式()0f x x≤的解集为 【答案】(,2](0,2]−∞−二. 选择题11. 已知a 、b 都是实数,那么“a b >”是“33a b >”的( C )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12. 函数412x xy +=的图像的对称性为( B ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 关于直线y x =对称 13. 已知全集U =R 及集合21{|284a A a −=≤<,且}a ∈Z ,2{|3100Bb b b =+−>, 其中}b ∈R ,则AB 的元素个数为( B )A. 4B. 3C. 2D. 114. 已知函数2x y x =+,ln y x x =+,lg y x x =+的零点依次为1x 、2x 、3x ,则1x 、2x 、3x 的大小关系为( D )A. 123x x x <<B. 213x x x <<C. 231x x x <<D. 132x x x <<【解析】转化为123()2,()ln ,()lg xf x f x x f x x ===与y x =−交点的横坐标的大小关系,易得132x x x <<,故选D.15.(A 组题)设()y f x =是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意 的[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( A )A. )+∞B. [2,)+∞C. (0,2]D. [1][2,3]−【解析】当0x ≥时,2()f x x =满足2())f x f =,易得在R 上,2())f x f =,则对任意[,2]x t t ∈+,不等式())f x f t +≥恒成立,易得()y f x =是定义在R 上的严格增函数,所以x t +≥恒成立,所以1)t x ≥恒成立,所以1)(2)t t ≥−+,解得)t ∈+∞. (B 组题)若函数||y x a =−−与1ay x =+在区间[1,2]上都是严格减函数,则实数a 的 取值范围为( D )A. (,0)−∞B. (1,0)(0,1]−C. (0,1)D. (0,1]三. 解答题16. 已知a 、b 是任意实数,求证:4433a b a b ab +≥+,并指出等号成立的条件.【解析】因为()()()()44334343a b a b ab a a b b ab +−+=−+− ()3333()()()a a b b b a a b a b =−+−=−−()22222213()()24a b a ab b a b a b b ⎡⎤⎛⎫=−++=−++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故()()44330a b a b ab +−+≥,即4433a b a b ab +≥+,当且仅当a b =时,等号成立.17. 某居民小区欲在一块空地上建一面积为12002m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少? 【解析】设矩形停车场的南北侧边长为x 米,则其东西侧边长为1200x 米, 人行通道占地面积为12007200(6)81200848S x x x x ⎛⎫=++−=++⎪⎝⎭,由平均值不等式,得7200848482244896S x x =++≥+=⨯+=, 当且仅当72008x x =,即30x =时,min 96S =,此时120040x=, 设计矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是2528m .18. 已知函数23||1x y x −=+. (1)作出这个函数的大致图像; (2)讨论关于x 的方程23||1x t x −=+的根的个数. 【解析】(1)因为235211x y x x −==−++, 故先将5y x=−的图像向左平移1个单位,再向上平移2个单位,得到函数521y x =−+的图像,再将函数521y x =−+的图像在x 轴下方部分 翻折到x 轴上方,便得到函数23||1x y x −=+的大致图像; (2)当0t <时,方程23||1x t x −=+的根的个数为0, 当0t =或2t =时,方程23||1x t x −=+的根的个数为1, 当02t <<或2t >时,方程23||1x t x −=+的根的个数为2.19. 已知函数16()1x f x a a+=−+(0a >,1a ≠)是定义在R 上的奇函数.(1)求实数a 的值及函数()y f x =的值域;(2)若不等式()33x t f x ⋅≥−在[1,2]x ∈上恒成立,求实数t 的取值范围. 【解析】(1)由()f x 是定义在R 上的奇函数得6(0)0,10f a a=−=+,解得3a =, 此时31()31x x f x −=+,故对于任意的x R ∈,有3131()()03131x x x x f x f x −−−−+−=+=++,即()f x 是定义在R 上的奇函数,所以3a =,令31()31x x f x y −==+,则1301x y y +=>−,解得11y −<<, 即函数()y f x =的值域为(1,1)−;(2)法一:由(1)得31()31x x f x −=+,于是不等式()33x t f x ⋅≥−可化为()23(2)3(3)0xx t t −+⋅+−≤,令3[3,9]x u =∈(因为[1,2]x ∈),则不等式2(2)(3)0u t u t −+⋅+−≤在[3,9]u ∈上恒成立,令2()(2)(3)g u u t u t =−+⋅+−,则()0g u ≤在[3,9]u ∈上恒成立,等价于(3)0(9)0g g ≤⎧⎨≤⎩,即(3)93(2)(3)0(9)819(2)(3)0g t t g t t =−++−≤⎧⎨=−++−≤⎩151522t t t ≥⎧⎪⇔⇔≥⎨≥⎪⎩,所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 法二:由(1)得31()31x x f x −=+,当[1,2]x ∈时,()0f x >,于是不等式()33x t f x ⋅≥−可化为 ()()()()2333131433431()313131x x x xx x x xt f x −+−−−≥===−−−−−, 令31[2,8]x v −=∈(因为[1,2]x ∈),则由函数4()φv v v =−在[2,8]上是严格增函数知max 15()(8)2φv φ==, 所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 20.(A 组题)已知函数212log (1)0()log (1)0x x f x x x +≥⎧⎪=⎨−<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>; (3)若关于x 的方程23[()]()04f x af x a +−+−=有两个不相等的正根,求实数a 取值范围. 【解析】(1)2(0)log (10)0f =+=,当0x >时,0x −<,有122()log [1()]log (1)()f x x x f x −=−−=−+=−,即()()f x f x −=−,当0x <时,0x −>,有212()log [1()]log (1)()f x x x f x −=+−=−−=−,即()()f x f x −=−,综上,函数()y f x =在R 上是奇函数;(2)因为函数2log y x =在(0,)+∞上是严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数, 由(1)得函数()y f x =在R 上是奇函数,由奇函数的单调性得, 函数12log (1)y x =−在(,0)−∞上也是严格增函数,从而函数()y f x =在R 上是严格增函数,由120x x +>,得12x x >−,所以()()()122f x f x f x >−=−, 即()()120f x f x +>;(3)由(1)得函数()y f x =在R 上是奇函数,故原方程可化为23[()]()04f x af x a −+−=, 令()f x t =,则当0x >时,()0t f x =>,原方程有两个不相等的正根等价于:关于t 的方程2304t at a ⎛⎫−+−= ⎪⎝⎭有两 个不相等的正根,即23401343001,343344a a a a a a a a a a ⎧⎛⎫⎧∆=−−> ⎪⎪⎪<>⎝⎭⎪⎪⎪>⇔>⇔<<>⎨⎨⎪⎪⎪⎪−>>⎩⎪⎩或或,所以实数a 取值范围为3,1(3,)4⎛⎫+∞ ⎪⎝⎭.(B 组题)设a 是正常数,函数2()log )f x ax =满足(1)(1)0f f −+=. (1)求a 的值,并判断函数()y f x =的奇偶性;(2)是否存在一个正整数M ,使得()M f x >对于任意x ∈恒成立?若存在,求出M 的最小值,若不存在,请说明理由.【解析】(1)由(1)(1)0f f −+=得22log )log )0a a +=,即()22log 20a −=,注意到0a >,解得1a =,于是)2()log f x x =+,对于任意实数x ||0x x x x >=+≥,0x +>恒成立,故()y f x =的定义域是R ,在R 中任取一个实数x ,都有x R −∈,并且))22()log log f x x x −=−=)22log log ()x f x ==−+=−,故()()f x f x −=−,因此)2log y x =是奇函数;(2)设12,x x 是区间上任意给定实数,且12x x <,易知2212011x x <+<+,故120x x <+<,因为2log y x =在(0,)+∞上是严格增函数,故))2122log log x x +<+,从而)2log y x =在上是严格增函数,此时函数的最大值为2log (2,由()M f x >对于任意x ∈恒成立,得2log (2M >+, 又M 是正整数,故M 的最小值是2.附加题对于定义在D 上的函数()y f x =,设区间[,]m n 是D 的一个子集,若存在0(,)x m n ∈,使得函数()y f x =在区间0[,]m x 上是严格减函数,在区间0[,]x n 上是严格增函数,则称函数()y f x =在区间[,]m n 上具有性质P .(1)若函数2y ax bx =+在区间[0,1]上具有性质P ,写出实数a 、b 所满足的条件; (2)设c 是常数,若函数3y x cx =−在区间[1,2]上具有性质P ,求实数c 的取值范围. 【解析】(1)当函数2y ax bx =+在区间[0,1]上具有性质P 时,由其图像在R 上是抛物线, 故此抛物线的开口向上(即0a >),且对称轴是(0,1)2bx a=−∈, 于是实数a 、b 所满足的条件为20a b −<<;(2)记3()f x x cx =−,设12,x x 是区间[1,2]上任意给定的两个实数,总有()()()()2212121122f x f x x x x x x x c −=−++−,若3c ≤,当12x x <时,总有120x x −<且2211220x x x x c ++−>, 故()()120f x f x −<,因此3y x cx =−在区间[1,2]上是严格增函数,舍去,若12c ≥,当12x x <时,总有120x x −<且2211220x x x x c ++−<, 故()()120f x f x −>,因此3y x cx =−在区间[1,2]上是严格减函数,舍去,若312c <<,当12x x <且12,x x ⎡∈⎢⎣时,总有120x x −<且2211220x x x x c ++−<,因此3y x cx =−在区间⎡⎢⎣上是严格减函数,当12x x <且12,x x ⎤∈⎥⎦时,总有120x x −<且2211220x x x x c ++−>,故()()120f x f x −<,因此3y x cx =−在区间⎤⎥⎦上是严格增函数,因此,当(3,12)c ∈时,函数3y x cx =−在区间[1,2]上具有性质P .控江中学2020学年度第一学期期终考试高一数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________. 【答案】[]7,102.设实数a 满足2log 4a =,则a =_________. 【答案】163.已知幂函数235()(1)m m f x m x −−=−的图像不经过原点,则实数m =_________.【答案】24.函数2()21f x x ax =−−在区间[]1,3上为严格减函数的充要条件是_________. 【答案】3a ≥5.函数22()log (1)f x x =−的定义域为_________. 【答案】(1,1)− 6.设函数2,0(),,0x x f x x x −≤⎧=⎨>⎩若()9f α=,则α=_________. 【答案】3或9−7.若函数()(1)xf x a a =>在[]1,2−上的最大值为4,则其最小值为_________.【答案】128.在同一平面直角坐标系中,函数()y g x =的图像与3xy =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =−,则a 的值是______.【解析】3()log g x x =,3()log ()()1g a a f a −=−==−,所以13a =−. 9.如果关于x 的方程53x x a −++=有解,则实数a 的取值范围是_________. 【解析】=53(5)(3)8a x x x x −++≥−−+=.10.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f −=,则使得()0xf x >成立的x 的取值范围是_________.【解析】()0xf x >,所以,()x f x 同号,又()f x 在(0,)+∞上是严格增函数且为奇函数,(4)0f −=,所以()f x 在(,0)(0,)−∞+∞和上是严格增函数, (4)(4)(0)0f f f −===画出大致图像,()x f x 和在(,4)(4,)−∞−+∞和上同号, 所以(,4)(4,)x ∈−∞−+∞.11. 函数()lg(221)x xf x a −=++−的值域是R ,则实数a 的取值范围是___________.【解析】2211x xa a −++−≥+,所以101a a +≤⇒≤−.12. 若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()f x 的图像上;②,P Q 关于原点对称,则对称点(,)P Q 是函数()f x 的一个“匹配点对”(点对(,)P Q 与(,)Q P 看作同一个“匹配点对”),已知函数2241,0()2,0x x x x f x x e ⎧++<⎪=⎨≥⎪⎩,则()f x 的“匹配点对”有____个.【解析】根据题意:画出两函数的图像,并把2241(0)y x x x =++>的图像关于原点对称的图像,如图:观察图像可得, 他们的交点个数是:2二、选择题13.函数111y x =−+的值域是( C ) A.(,1)−∞ B.(1,)+∞ C.(,1)(1,)−∞+∞ D.(,)−∞+∞ 14.若,0a b c a b c >>++=,则下列各式正确的是( D ) A.ab bc > B.ac bc > C.a b b c > D.ab ac >15.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪−<⎩,若2()()F x x f x =⋅,则()F x 是( B )A.奇函数,在(,)−∞+∞上为严格减函数B.奇函数,在(,)−∞+∞上为严格增函数C.偶函数,在(,0)−∞上严格减,在(0,)+∞上严格增D.偶函数,在(,0)−∞上严格增,在(0,)+∞上严格减16.设0a b c >>>,则221121025()a ac c ab a a b ++−+−取得最小值时,a 的值为( A )2 C. 4D.【解析】2222111121025(5)()()a ac c a c a ab ab ab a a b ab a a b ++−+−+−+++−=− 211(5)()0224()a c ab a a b ab a a b =−+++−+≥++=−, 当且仅当50,1,()1ac ab a a b −==−=,即25a b c ===时取等号, 故选A.三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程); (2)已知函数()y f x =在区间[3,2]−上的最大值为2,求实数a 的值. 【解析】(1)当1a =时,222(())11333xx x f x y +++===,严格增区间是(1,)−+∞,严格减区间是(,1)−∞−; (2)①当0a >时,对称轴1[3,2]x =−∈−,所以(2)4412f a a =++=,解得18a =, ②当0a =时,()1f x =不合题意, ③当0a <时,对称轴1[3,2]x =−∈−, 所以(1)212f a a −=−+=,解得1a =−,综上,18a =或1a =−. 18.设函数()|2|,()2f x x a g x x =−=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【解析】(1)当1a =时,不等式()()f x g x ≤即|21|2x x −≤+,所以12212x x x ⎧≤⎪⎨⎪−+≤+⎩或12212x x x ⎧≥⎪⎨⎪−≤+⎩,解得133x −≤≤, 故解集为1,33⎡⎤−⎢⎥⎣⎦;(2)反证法,假设1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则111111,,1222222a b a b a −<+<−<−<−<−<,前两式相加,得1122a −<<,由最后一个式子得1322a <<,矛盾,所以1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.19. 研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈ 时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时, 称学生处于“欠佳听课状态”. (1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态” 的时间有多长?(精确到1分钟)【解析】(1)当[0,16]x ∈时,设2()(12)84(0)f x b x b =−+<由(16)80f =,得:2(1612)84=80b −+,故14b =−...............2分 当[16,40]x ∈时,由(16)80f =,得:0.8log (16)8080a ++=, 故15a =−.................4分所以20.81(12)84,[0,16]()4log (15)80,(16,40]x x f x x x ⎧−−+∈⎪=⎨⎪−+∈⎩...........................6分(2)当[0,16]x ∈时,由21(12)84684x −−+≤,得:[0,4]x ∈......................3分当[16,40]x ∈时,由0.8log (15)8068x −+≤,得:12150.829.6x −≥+≈所以[30,40]x ∈...........................3分因此,在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有14分 钟..............8分.20. 已知1()log 1amxf x x −=−(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈−时,()f x 的值域是(1,)+∞,求实数a 与n 的值. 【解析】(1)因为函数()f x 是奇函数,所以()()0f x f x −+=在定义域内恒成立,所以11log log 011aa mx mx x x +−+=−−−,即11111mx mxx x +−⋅=−−−, 即22211m x x −=−在定义域内恒成立,所以21m =,又当1m =时,111mxx −=−−矛盾,所以1m =−; (2)由(1)得1()log 1a x f x x +=−,设11221111x x t x x x +−+===+−−−, 设12,1,)x x ∈+∞,且12x x >,则()()()211212122221111x x t t x x x x −−=−=−−−−, 因为12,1,)x x ∈+∞,且12x x >,所以122110,10,0x x x x −>−>−<, 所以120t t −<,即12t t <,当1a >时,12log log a a t t <,()()12f x f x <,()f x 严格减, 同理,当01a <<时,()f x 严格增;(3)函数()f x 的定义域为(,1)1,)−∞−+∞,①当21n a <−≤−时,01a <<,所以()f x 在(,2)n a −上严格增,要使得()f x 的值域是(1,)+∞,则1log 1121an n a +⎧=⎪−⎨⎪−=−⎩,无解; ②当12n a ≤<−时,3a >,所以()f x 在(,2)n a −上严格减,要使得()f x 的值域是(1,)+∞,则1,1log 13a n a a =⎧⎪−⎨=⎪−⎩,解得2a =+或2a =,综上,1,2n a ==+.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t −增长函数.(1)已知函数()g x x =,判断()g x 是否为区间[]1,0−上的32−增长函数,并说明理由; (2)已知函数()f x x =,且()f x 是区间[4,2]−−上的n −增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =−−,且()f x 为R 上的4−增长函数,求实数a 的取值范围.【解析】(1)()g x x =是;因为[]1,0x ∀∈−,()3330222g x g x x x ⎛⎫⎛⎫+−=+−=> ⎪ ⎪⎝⎭⎝⎭; (2)由题意得,x n x +>对[4,2]x ∈−−恒成立等价于2222x nx n x ++>,即220nx n +>对[4,2]x ∈−−恒成立 因为0n >,所以22nx n +是关于x 的一次函数且单调递增,于是只需280n n −+>,解得8n >,所以满足题意的最小正整数n 为9.(3)由题意得2222222,(),2,x a x a f x x a x a x a x a ⎧+≤−⎪=−−<<⎨⎪−≥⎩已知任意x ∈R ,(4)()f x f x +≥,因为()f x 在22[,]a a −上递减,所以,4x x +不能同时在区间22[,]a a −上,因此2224()2a a a >−−=,注意到()f x 在2[2,0]a −上非负,在2[0,2]a 上非正若22244a a <≤,当22x a =−时,24[0,2]x a +∈,此时(4)()f x f x +≤,矛盾,因此244a >,即(1,1)a ∈−.当244a >时,下证()f x 为R 上的4-增长函数: ①当24x a +≤−,(4)()f x f x +>显然成立,②当224a x a −<+<时,2243x a a <−<−,此时2(4)(4)f x x a +=−+>−,22()2f x x a a =+<−,(4)()f x f x +>③当24x a +≥时,22(4)422()f x x a x a f x +=+−>+≥ 因此()f x 为R 上的4-增长函数综上,为使得()f x 为R 上的4-增长函数a 的取值范围是()1,1−.长宁区2020学年第一学期高一年级数学期末考试试卷(考试时间90分钟,本卷满分100分)一、填空题(本大题共12小题,每小题3分,共36分.答案填在答题纸相应位置). 1.已知全集为R ,集合{}32A x x =−≤<,则A = . 【答案】()[),32,−∞−+∞2.函数y =的定义域为 .【答案】[)1+∞,3.若幂函数a y x =在区间()0,+∞上是严格减函数,则实数a 的取值范围是 . 【答案】(),0−∞4.设一元二次方程2630x x −−=的两个实根为1x 、2x ,则2212x x += . 【答案】425.已知:31x m α<−,:2x β<,若α是β充分条件,则m 的取值范围是 . 【答案】1m ≤6.若()2log 10x −>,则x 的取值范围是 . 【答案】2x >7.设a 、b 都为正数,且4a b +=,则11a b+的最小值为 . 【答案】18.设关于x 的不等式21110a x b x c ++>与22220a x b x c ++>的解集分别为A 、B ,则不等式组2111222200a xb xc a x b x c ⎧++≤⎪⎨++>⎪⎩的解集可以用集合A 、B 的运算表示为 . 【答案】A B9.已知lg 2a =,103b =,试用a 、b 表示12log 25= . 【答案】()212a a b−+10.已知函数[]()220,1y x ax x =+∈的最小值为2−,则实数a = . 【答案】32−11.设关于x 的方程()223,x x ax b a b −+−=+∈R 解集为M ,关于x 的不等式()()2230x x −−≥的解集为N ,若集合M N =,则a b ⋅= .【答案】15−12.若函数()121log 1,1021,0x x x y x m−−−≤<⎧⎪=⎨⎪−≤≤⎩的值域为[]1,1−,则实数m 的取值范围为 .【答案】12m ≤≤二、选择题(本大题共4小题,每小题3分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)13.下列四组函数中,两个函数相同的是( C ). .A y =2y =;.B 1y =和0y x =;.C {}()0,1y x x =∈和{}()20,1y x x =∈;.D 2log a y x =和2log a y x =.14.函数1312xy x ⎛⎫=− ⎪⎝⎭的零点所在区间为( B )..A 10,3⎛⎫ ⎪⎝⎭;.B 11,32⎛⎫⎪⎝⎭;.C 12,23⎛⎫⎪⎝⎭;.D 2,13⎛⎫ ⎪⎝⎭.15.在同一直角坐标系中,二次函数2y ax bx =+与幂函数()0b ay x x =>图像的关系可能为( A ).A .B .C .D 16.已知“非空集合M 的元素都是集合P 的元素”是假命题.给出下列四个命题: ①M 的元素不都是P 的元素; ②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( B )..A 1个;.B 2个;.C 3个.D 4个;【解析】①④正确.三、解答题(本大题共5小题,共52分.解答要写出文字说明、证明过程或演算步骤). 17.(本题满分6分)已知集合{}23A x x =−<,集合1207x B xx −⎧⎫=>⎨⎬−⎩⎭.求集合A B .【解析】{}()231,5A x x =−<=−,1210,772x B xx −⎧⎫⎛⎫=>=⎨⎬ ⎪−⎩⎭⎝⎭,所以()1,7A B =−18.(本题满分8分,共有2小题,第(1)小题4分,第(2)小题4分). 化简下列代数式(1)())1620a aa +<;(2)010a <<.【解析】(1)()163332a aa a a a a a a +=++=−−+=−;(21lg a ===−.19.(本题满分10分,共有2小题,第(1)小题5分,第(2)小题5分)甲、乙两城相距100km ,某天然气公司计划在两地之间建天然气站P 给甲、乙两城供气.设P 站距甲城km x ,为保证城市安全,天然气站距两城市的距离均不得少于10km .已知建设费用y (万元)与甲、乙两地的供气距离()km 的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P 距甲城的距离为40km 时,建设费用为1300万元. (1)把建设费用y (万元)表示成P 站与甲城的距离()km x 的函数,并求定义域; (2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.【解析】(1)设比例系数为k ,则22(100)(1090)y k x x x ⎡⎤=+−≤≤⎣⎦又40,1300x y ==,所以()2213004060k =+,即14k =, 所以()22211(100)1005000(1090)42y x x x x x ⎡⎤=+−=−+≤≤⎣⎦(2)由(1)可得()22211(100)100500042y x x x x ⎡⎤=+−=−+⎣⎦, 所以()22111005000(50)125022y x x x =−+=−+, 所以当50x =时,y 有最小值为1250万元,所以天然气供气站建在距甲城50km 时费用最小,最小费用的值为1250万元.20.(本题满分14分,共有3小题,第(1)小题4分,第(2)小题5分,第(3)小题5分).设()2121x x f x −=+.(1)判断函数()y f x =的奇偶性,并说明理由; (2)求证:函数()y f x =在R 上是严格增函数; (3)若()()2110f t f t −+−<,求t 的取值范围. 【解析】(1)函数()y f x =为奇函数,证明如下:易知()2121x x f x −=+的定义域为(),−∞+∞,关于原点对称,()()()()22121122112221x xx xx xx x f x f x −−−−−−−−====−+++,所以()y f x =为奇函数; (2)任取12,x x R ∈,且12x x <易知()212122=1212121x x x x xf x −+−==−+++,()()()()()1212212212222222211212121212121x x x x x x x x f x f x −⎛⎫−=−−−=−= ⎪++++++⎝⎭因为12x x <,所以2112210,0,10,22212022x x x x x x >>−<+>+>,所以()()120f x f x −<,即()()12f x f x <, 所以函数()y f x =在R 上是严格增函数; (2)因为()y f x =在R 上是奇函数且严格增,所以()()()()()222110111f t f t f t f t f t −+−<⇔−<−−=−()()221120210t t t t t t ⇔−<−⇔+−>⇔+−>,解得1t >或2t <−,所以t 的取值范围是1t >或2t <−.21.(本题满分14分,共有3小题,第1小题4分,第2小题4分,第3小题6分)设()()2af x x a x=−+∈R . (1)求不等式()()11f x f x −−>的解集M ; (2)若函数()y f x =在()0,+∞上最小值为114a −+,求实数a 的值;。

2020-2021上海复旦大学第二附属中学高一数学上期末一模试卷(及答案)

2020-2021上海复旦大学第二附属中学高一数学上期末一模试卷(及答案)

2020-2021上海复旦大学第二附属中学高一数学上期末一模试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>3.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>4.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.已知131log 4a =,154b=,136c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .b c a >>6.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >8.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.函数y =的定义域是( ) A .(-1,2] B .[-1,2]C .(-1 ,2)D .[-1,2)10.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>11.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<12.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 二、填空题13.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 14.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.15.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.16.函数()()4log 5f x x =-+________. 17.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____. 18.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.20.已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,则()()2f x f ≤的解集是________. 三、解答题21.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.22.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。

2020-2021学年上海市复旦附中青浦分校高一(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年上海市复旦附中青浦分校高一(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年上海市复旦附中青浦分校高一(上)月考数学试卷(10月份)一、单选题(本大题共4小题,共20.0分)1. 设不等式√f(x)>g(x)的解集为M ,不等式组{g(x)≥0f(x)>g 2(x)的解集为N ,则M 、N 之间的关系为( )A. M =NB. M ⊇NC. M ⊆ND. M 、N 互不包含2. 已知a 1,a 2,b 1,b 2均为非零实数,集合A ={x|a 1x +b 1>0},B ={x|a 2x +b 2>0},则“a 1a 2=b1b 2”是“A =B ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 著名的孪生素数猜想指出:“存在无穷多个素数p ,使得p +2是素数”,用反证法研究该猜想,对于应假设的内容,下列说法正确的是( )A. 只有有限多个素数p ,使得p +2是合数B. .存在无穷多个素数p ,使得p +2是合数C. 对任意正数n ,存在素数p >n ,使得p +2是合数D. 存在正数n ,对任意素数p >n ,p +2是合数4. 设a ∈R ,若不等式|x 2+1x |+|x 2−1x |+ax ≥4x −8恒成立,则实数a 的取值范围是( )A. [−2,12]B. [−2,10]C. [−4,4]D. [−4,12]二、单空题(本大题共12小题,共60.0分)5. 若集合A ={y|y =x 2−1},B ={y|y =−x 2−2x},则A ∩B =______.6. 设集合A ={x|x ∈N|65−x ∈N},则集合A 的子集的个数是 . 7. 若a ,b ∈R ,则“(a −b)a 2>0”是“a >b ”的______条件.8. 设a ,b ,c ∈R ,已知不等式ax 2+bx +c <0解集为(2,3),则不等式cx 2−bx −a >0的解集为______.9. 不等式(2x +1)(x +3)(5−x)>0的解集为______. 10. 不等式(x+7)2x−2≥0的解集为______.11.不等式|2x2−x |≥2xx−2的解集为______.12.不等式(x−1)√x2−x−2≤0的解集为______.13.若不等式x2+mx>x+m对任意m∈(−3,1)恒成立,则实数x的取值范围是______.14.已知集合M={x|ax−5x2−a<0},若3∈M,5∉M,则实数a的取值范围是______.15.已知−1<a<b<2,则2b−a2的范围是______.16.设二次函数f(x)=ax2+bx+c(a,b,c为常数).若不等式f(x)≥2ax+b的解集为R,则b2a2+c2的最大值为______ .三、解答题(本大题共5小题,共60.0分)17.设集合A={x|x2−3x+2=0},B={x|x2+2(a+1)x+(a2−5)=0}(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围;(3)若U=R,A∩(∁U B)=A,求实数a的取值范围.18.设f(x)=(m+1)x2−mx+m−1,m∈R.(1)若方程f(x)=0有实根,求实数m的取值范围;(2)若不等式f(x)>0的解集为⌀,求实数m的取值范围;(3)若不等式f(x)>0对一切实数x恒成立,求实数m的取值范围.19.某品牌饮料原来每瓶成本为10元,售价为15元,月销售8万瓶.(1)据市场调查,若售价每提高1元,月销售量将相应减少2000瓶,要使月总利润不低于原来的月总利润(月总利润=月销售总收入−月总成本),该饮料每瓶售价最多为多少元?(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每瓶售价x(x≥16)元,并投入334(x−16)万元作为营销策略改革费用.据市场调查,每瓶售价每提高1元,月销售量将相应减少0.45(x−15)2万瓶,则当每瓶售价x为多少时,下月的月总利润最大?并求出下月最大总利润.20.已知关于x的不等式(kx−k2−5)(x−4)>0,(k∈R)设Z为整数集.(1)求不等式的解集A;(2)对于上述集合A,设B=A∩Z,探究B能否为有限集?若能,求出使B元素个数最少时的k的所有取值,及此时的集合B,若不能,请说明理由.21.已知U⊆R为一个数集,集合A={s2+3t2|s,t∈U}.(1)设U={1,3,5},求集合A的元素个数;(2)设U=Z,证明:若x∈A,则7x∈A;(3)设U=R,x,y∈A,且x=m2+3n2,y=p2+3q2,若mp−3nq=√3,求x+y+mq+np的最小值.答案和解析1.【答案】B【解析】解:不等式组{g(x)≥0f(x)>g 2(x)等价于{g(x)≥0√f(x)>g(x),因为不等式√f(x)>g(x)的解集为M ,不等式组{g(x)≥0f(x)>g 2(x)的解集为N ,所以M ⊇N . 故选:B .将不等式组等价转化为{g(x)≥0√f(x)>g(x),结合子集的定义,判断即可.本题考查了不等式的解法,解题的关键是将不等式组进行等价转化,考查了逻辑推理能力,属于基础题.2.【答案】B【解析】解:∵a 1a 2=b1b 2∴取a 1=1,a 2=−1,b 1=−1,b 2=1,A ≠B而A =B ⇒a 1a 2=b1b 2∴“a 1a 2=b1b 2”是“A =B ”的必要不充分条件故选B先根据a 1a 2=b1b 2,进行赋值说明此时A ≠B ,然后根据“M ⇒N ,M 是N 的充分不必要条件,N 是M 的必要不充分条件”,进行判定即可.本题主要考查了以不等式为载体考查两集合相等的充要条件,以及赋值法的运用,属于基础题.3.【答案】D【解析】解:∵存在无穷多个素数p ,使得p +2是素数的否定为存在正数n ,对任意素数p >n ,p +2是合数,∴应假设存在正数n ,对任意素数p >n ,p +2是合数. 故选:D .根据已知条件,结合反证法的定义,即可求解.本题主要考查反证法的应用,属于基础题.4.【答案】D【解析】解:|x2+1x |+|x2−1x|+ax≥4x−8恒成立,即为|x2+1x |+|x2−1x|+8≥(4−a)x恒成立,当x>0时,可得4−a≤|x+1x2|+|x−1x2|+8x的最小值,由|x+1x2|+|x−1x2|+8x≥|x+1x2+x−1x2|+8x=2x+8x≥2√2x⋅8x=8,当且仅当x=2取得最小值8,即有4−a≤8,则a≥−4;当x<0时,可得4−a≥−[|x+1x2|+|x−1x2|−8x]的最大值,由|−x+1x2|+|−x−1x2|−8x≥−2x−8x≥2√2x⋅8x=8,当且仅当x=−2取得最大值−8,即有4−a≥−8,则a≤12,综上可得−4≤a≤12.故选:D.由题意可得|x2+1x |+|x2−1x|+8≥(4−a)x恒成立,讨论x>0,x<0,运用基本不等式,可得最值,进而得到所求范围.本题考查不等式恒成立问题的解法,注意运用参数分离和分类讨论思想,以及基本不等式,考查转化思想和运算能力,属于难题.5.【答案】[−1,1]【解析】解:集合A={y|y=x2−1}={y|y≥−1},B={y|y=−x2−2x}={y|y=−(x+1)2+1}={y|y≤1},则A∩B=[−1,1],故答案为:[−1,1].求函数的值域得出集合A、B,再根据交集的定义求A∩B.本题考查了集合的化简与运算问题,是基础题.6.【答案】8【解析】【分析】由题意,可求集合A中有2,3,4三个元素.进而可得正确答案.本题考查集合的子集个数问题,对于集合的子集问题:一般来说,若集合中有n个元素,则集合的子集共有2n个.【解答】∈N,则5−x必为6的正约数,解:由于65−x∴5−x=1,2,3,6,∴x=4,3,2,−1;又x∈N,∴x=4,3,2.故集合A={2,3,4},所以集合A子集个数为8个.故答案为:8.7.【答案】充分不必要【解析】解:∵(a−b)a2>0,又∵a2>0,∴a−b>0,即a>b,故(a−b)a2>0能推出a>b,令a=0,b=−1,满足a>b,但(a−b)a2=0,故a>b不能推出(a−b)a2>0,综上所述,“(a−b)a2>0”是“a>b”的充分不必要条件.故答案为:充分不必要.根据已知条件,结合不等式的性质,即可求解.本题主要考查充分性和必要性,以及不等式的性质,属于基础题.,+∞)8.【答案】(−∞,−1)∪(16【解析】解:∵不等式ax2+bx+c<0解集为(2,3),∴a>0,且{−ba=5 ca=6,∴b=−5a,c=6a,∴不等式cx2−bx−a>0可化为6ax2+5ax−a>0,又∵a>0,∴6x2+5x−1>0,解得x<−1或x>16,即不等式cx2−bx−a>0的解集为(−∞,−1)∪(16,+∞).故答案为:(−∞,−1)∪(16,+∞).根据题意结合韦达定理可知a>0,且b=−5a,c=6a,代入所求不等式,解出x的取值范围即可.本题主要考查了解一元二次不等式,考查了韦达定理的应用,是基础题.9.【答案】(−∞,−3)∪(−12,5)【解析】解:由简单的高次不等式的解法——穿根法可知,不等式(2x+1)(x+3)(5−x)>0的解集为(−∞,−3)∪(−12,5).故答案为:(−∞,−3)∪(−12,5).直接利用简单的高次不等式的解法——穿根法,求解即可.本题考查了简单的高次不等式的解法,考查了逻辑推理能力,属于基础题.10.【答案】{x|x=−7或x>2}【解析】解:不等式(x+7)2x−2≥0等价于{(x+7)2(x−2)≥0x−2≠0,解得x=−7或x>2,所以不等式的解集为{x|x=−7或x>2}.故答案为:{x|x=−7或x>2}.先将分式不等式进行等价转化,然后由简单的高次不等式的解法求解即可.本题考查了分式不等式以及简单的高次不等式的解法,考查了逻辑推理能力,属于基础题.11.【答案】(−∞,2)∪(2,+∞)【解析】解:由|2x2−x |≥2xx−2,得|2xx−2|≥2xx−2, ∴2xx−2∈R ,即x ≠2.∴不等式|2x2−x |≥2xx−2的解集为(−∞,2)∪(2,+∞). 故答案为:(−∞,2)∪(2,+∞).由题意可知2x x−2∈R ,再由分母不为0得答案.本题考查绝对值不等式的解法,考查转化思想方法,是基础题.12.【答案】(−∞,−1]【解析】解:不等式(x −1)√x 2−x −2≤0等价于{x 2−x −2≥0x −1≤0,解得x ≤−1,所以不等式的解集为(−∞,−1]. 故答案为:(−∞,−1].将不等式进行等价转化,得到{x 2−x −2≥0x −1≤0,求解即可.本题考查了不等式的解法,解题的关键是将不等式进行等价转化,考查了逻辑推理能力与化简运算能力,属于基础题.13.【答案】(−∞,−1]∪[3,+∞)【解析】解:由不等式x 2+mx >x +m 对任意m ∈(−3,1)恒成立, 得(x −1)m +x 2−x >0对任意m ∈(−3,1)恒成立,令g(m)=(x −1)m +x 2−x ,得{g(−3)=−3(x −1)+x 2−x ≥0g(1)=x −1+x 2−x ≥0,即{x 2−4x +3≥0x 2−1≥0,解得x ≤−1或x ≥3. ∴实数x 的取值范围是(−∞,−1]∪[3,+∞). 故答案为:(−∞,−1]∪[3,+∞).把已知不等式变形,可得(x −1)m +x 2−x >0对任意m ∈(−3,1)恒成立,令g(m)=(x −1)m +x 2−x ,得{g(−3)≥0g(1)≥0,得到关于x 的不等式组求解.本题考查函数恒成立问题,考查化归与转化思想,更换主元是关键,是中档题.14.【答案】[1,53)∪(9,25]【解析】解:∵集合M ={x|ax−5x 2−a <0}, 得(ax −5)(x 2−a)<0, 当a =0时,显然不成立, 当a >0时,原不等式可化为 (x −5a )(x −√a)(x +√a)<0,若√a <5a 时,只需满足 {√a <3<5a a ≥1, 解得1≤a <53; 若√a >5a ,只需满足 {5a <3<√a √a ≤5, 解得 9<a ≤25,当a <0时,不符合条件, 综上,故答案为[1,53)∪(9,25].根据分式不等式的解法,对实数a 进行分类讨论,然后结合条件3∈M ,5∉M 进行求解. 本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.15.【答案】(−3,4)【解析】解:在平面直角坐标系中画出−1<a <b <2的可行域,如图,令z =2b −a 2,可得b =12a 2+12z ,它表示开口向上的二次函数,对称轴为b 轴,二次函数经过A ,B时,取得最值,A(0,2),B(−1,−1),所以2b −a 2的最大值为:4,最小值为:−3,因为A 、B 不在可行域内,所以2b −a 2的范围是:(−3,4).故答案为:(−3,4).画出−1<a <b <2不表示的可行域,然后利用2b −a 2的几何意义求解范围即可. 本题考查线性规划的实际应用,考查转化思想以及计算能力,是中档题.16.【答案】2√2−2【解析】解:ax 2+(b −2a)x +c −b ≥0(a >0),△=(b −2a)2−4a(c −b)≤0,即b 2+4a 2−4ac ≤0,b 2≤4ac −4a 2,∴b 2a 2+c 2≤4ac−4a 2a 2+c 24ac −4a 2≤b 2,∴c ≥a ,求最大值、不妨令c =ka(k >1)∴4ac−4a 2a 2+c 2=4ka 2−4a 2k 2a 2+a 2=4k−1k 2+1(k >1)令k −1=t ,4ac−4a 2a 2+c 2=4t(t+1)2+1=41t+2t +2≤42√2+2=2√2−2即b 2a 2+c 2≤2√2−2,故答案为:2√2−2.根据不等式恒大于等于0,求出c ≥a ,令c =ka(k >1),再根据基本不等式的性质求出代数式的最大值即可.本题考查了二次函数的性质,考查基本不等式的性质以及转化思想,是一道中档题.17.【答案】解:(1)∵A ∩B ={2},∴2∈B ,代入B 中方程得a 2+4a +3=0,所以a =−1或a =−3(2分)当a=−1时,B={−2,2},满足条件;当a=−3时,B={2},也满足条件综上得a的值为−1或−3;(4分)(2)∵A∪B=A,∴B⊆A(5分)①当△=4(a+1)2−4(a2−5)=8(a+3)<0,即a<−3时,B=⌀满足条件②当△=0即a=−3时,B={2},满足要求(6分)③当△>0,即a>−3时,B=A={1,2}才能满足要求,不可能故a的取值范围是a≤−3.(9分)(3)∵A∩(C U B)=A,∴A⊆(C U B),∴A∩B=⌀(10分)①当△<0,即a<−3时,B=⌀,满足条件②当△=0即a=−3时,B={2},A∩B={2}不适合条件③当△>0,即a>−3时,此时只需1∉B且2∉B将2代入B的方程得a=−1或a=−3将1代入B的方程得a=−1±√3∴a≠−1,a≠−3,a≠−1±√3(12分)综上,a的取值范围是a<−3或−3<a<−1−√3或−1−√3<a<−1或或−1< a<−1+√3或a>−1+√3(14分)【解析】(1)由题目中条件:“A∩B={2}”,知2是方程的一个根,由此可得实数a的值;(2)由题目中条件:“A∪B=A,”,知B⊆A,由此可得实数a的取值范围;(3)由题目中条件:“A∩(C U B)=A,”,知A∩B=⌀,由此可得实数a的取值范围.本题主要综合考查集合的交、并、补以及集合间的包含关系,属于中档题,解题时要善于进行转化.18.【答案】解:(1)若方程f(x)=0有实根,当m+1=0,即m=−1时,f(x)=x−2,f(x)=0有解;当m+1≠0,即m≠−1时,Δ=m2−4(m+1)(m−1)≥0,解得−2√33≤m≤2√33,且m≠−1.综上可得,m的取值范围是[−2√33,2√33];(2)若m +1=0,即m =−1时,f(x)=x −2,f(x)>0的解为x >2,不符题意;若不等式f(x)>0的解集为⌀,只需m +1<0,且Δ=m 2−4(m +1)(m −1)≤0,解得m ≤−2√33,即m 的取值范围是(−∞,−2√33]; (3)若m +1=0,即m =−1时,f(x)=x −2,f(x)>0的解为x >2,不符题意;若不等式f(x)>0对一切实数x 恒成立,只需m +1>0,且Δ=m 2−4(m +1)(m −1)<0,解得m >2√33.即m 的取值范围是(2√33,+∞).【解析】(1)考虑二次项系数是否为0,以及二次方程有实根的条件,解不等式可得所求范围;(2)考虑二次项系数是否为0,结合二次函数的图像和判别式的符号,解不等式可得所求范围;(3)考虑二次项系数是否为0,结合二次函数的图像和判别式的符号,解不等式可得所求范围.本题考查二次函数的图像和性质,以及不等式恒成立问题和方程有解问题,考查分类讨论思想和运算能力,属于中档题.19.【答案】解:(1)设每瓶定价为t 元,依题意,有[8−(t −15)×0.2](t −10)≥5×8,整理得t 2−65t +750≤0,解得15≤t ≤50.因此要使销售的总收入不低于原收入,每瓶定价最多为50元.(2)设每瓶定价为x(x ≥16)元,月总利润为f(x),则f(x)=(x −10)[8−(x −15)0.45(x−15)2]−334(x −16) =(x −10)[8−0.45(x−15)]−334x +132 =−14(x −15+15)−0.45(x−15+15)x−15+ 4.5x−15+52 =−[14(x −15)+2.25x−15]+47.8≤−2√14(x−15)2.25x−15+47.8=46.3当且仅当,当且仅当14(x−15)= 2.25x−15,即(x−15)2=9,∴x−15=3或x−15=−3(舍去),所以x=18,因此当每瓶售价18元时,下月的月总利润最大,最大总利润为46.3万元.【解析】(1)设每瓶定价为t元,依题意列出[8−(t−15)×0.2](t−10)≥5×8,求解即可.(2)设每瓶定价为x(x≥16)元,月总利润为f(x),得到函数的解析式,化简利用基本不等式求解最值即可.本题考查函数问题的实际应用,函数的解析式的求法以及基本不等式求解最值的方法的应用,是中档题.20.【答案】解:(1)当k=0时,A=(−∞,4],当k>0,A=(−∞,4)∪(k+5k,+∞),当k<0时,A=(k+5k,4),(2)由(1)知,当k≥0时,集合B中的元素个数无限,当k<0时,集合B中的元素的个数有限,此时集合B为有限集k<0时,k+5k≤−2√5,当且仅当k=−√5时取等号,又k∈Z,得k+5k∈[−4,4),B={−4,−3,−2,−1,0,1,2,3}.【解析】(1)对k的讨论是本题解题的关键,考虑到方程类型,最高次项系数的正负及根的大小等因素,(2)由(1)的讨论为基础,继续分析B中元素的个数并比较元素最少的情况.本题考查的分类讨论的思想,这也是高中数学中经常考查的思想内容,属于容易题.21.【答案】解:(1)解:∵U ⊆R 为一个数集,集合A ={s 2+3t 2|s,t ∈U}. U ={1,3,5},∴当s =t =1时,s 2+3t 2=1+3=4,当s =1,t =3时,s 2+3t 2=1+27=28,当s =3,t =1时,s 2+3t 2=9+3=12,当s =1,t =5时,s 2+3t 2=1+75=76,当s =5,t =1时,s 2+3t 2=25+3=28,当s =3,t =5时,s 2+3t 2=9+75=84,当s =5,t =3时,s 2+3t 2=25+27=52,当s =t =3时,s 2+3t 2=9+27=36,当s =t =5时,s 2+3t 2=25+75=100,∴A ={4,12,28,36,52,76,84,100},8个.(2)证明:∵U =Z ,x ∈A ,∴x =s 2+3t 2,∴7x =7(s 2+3t 2)=7s 2+21t 2=(2s +3t)2+3(s −2t)2∈A .∴7x ∈A .(3)解:xy =(m 2+3n 2)(p 2+3q 2)=3(mq +np)2+(mp −3nq)2=3(mq +np)2+3, 设mq +np =6,∴y =3b 2+3x ,x +y +mq +np =x +3b 2+3x +b ≥2√3b 2+3+b ,设2√3b 2+3+b =t ,整理得11b 2+2bt +12−t 2=0,判别式法,△=4b 2−44(12−t 2)≥0,得t ≥√11,即(x +y +mq +np)min =√11.∴x +y +mq +np 的最小值为√11.【解析】(1)分别求出s =t =1、s =1,t =3、s =3,t =1、s =1,t =5、s =5,t =1、s =3,t =5、s =5,t =3、s =t =3、s =t =5时,s 2+3t 2的值,由此能求出集合A .(2)由U =Z ,x ∈A ,求出x =s 2+3t 2,从而推导出7x =7(s 2+3t 2)=(2s +3t)2+3(s −2t)2,由此能证明7x ∈A .(3)求出xy =(m 2+3n 2)(p 2+3q 2)=3(mq +np)2+3,设mq +np =6,推导出x +y +mq +np =x +3b 2+3x +b ≥2√3b 2+3+b ,设2√3b 2+3+b =t ,得11b 2+2bt +12−t 2=0,利用判别式法,能求出x +y +mq +np 的最小值.本题考查集合的求法,考查元素是集合中的元素的证明,考查代数式的最小值的求法,考查元素与集合的关系等基础知识,考查运算求解能力,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档