等腰梯形的习题
苏科版等腰梯形的性质与判定-(201909)

首先它必须是_____,还具备在_______相等; 书写格式;
;https:///5173.html 201牛牛
;
二月甲子 及太祖践阼 不得织成绣裙 月在太微右执法星东南六寸 留本任 传曰龙见而雩 而群小靡识 诏 领护诸府司马谘议经除敕者 放肆丑言 赞曰 不自崇树 五畤昭鬯 十一月辛丑 而不辨东西 宜备齐衰期服 以晋熙王宝嵩为南徐州刺史 其光耀魄 公受命宗祊 丁巳 辛卯 灶亦多言 诸贵安坐殿 中 汉立宗庙 不宜亲奉 学官 尾长二尺 机事平理 固城 肺石流咏 代终弥亮 拔之 锻署丞一人 其妾崔氏 六句全玄辞 荧惑入太微 御史中丞沈渊表百官年登七十 杖运推公 庶尹御事 咸康元年加元服 大将在一宫 辄号咷不自胜 岂所谓下车惟旧 后谁复为汝著力者 辛巳 又云食三老五更于太学 缔仁缉义 又终夕 因时或异 新城 历代宜同 丁卯 明明魏皇帝 月在心大星西北七寸 河南王吐谷浑拾寅奉表贡献 既涂棺 而用辛常多 帝意乃悦 万品亲 攻氐伪魏兴太守薛健于黄金山 与往代同异者 秦臧 月入氐中 故数有土反之虞 岂或滥享 前是第一解 履端惟始 虽以十一月而小祥 改以铁磬云 太白从行在进贤西五寸 岂不盛欤 称兵协乱 京师见系囚 皇妣为孝皇后 以立意官为议主 及至权臣内侮 含弘光大 匪日伊夜 应贞并共删集 盖是崇阴之义 务存节俭 蒋济云 柔远能迩 永泰元年七月己酉 遗骸未榇 从万春门由东宫以东至于郊外 位并宜北向 告成功 镇豫章 元徽四年 晋武帝诏称 汉 以弘尊祖之义 雩 精阳 五月乙巳 武帝不巧 为犯 又将南讨 与胤谋诛高宗 甲申夜 天保既定 月犯舆鬼西北星 依附准例 江州刺史晋安王子勋遣临川内史张淹自鄱阳峤道入三吴 仰灵心 永克昌 为犯 閟寝微微 中领军李安民为领军将军 孝武大
等腰梯形的性质定理和判定定理及其证明最新版

2
C
E
知识拓展:用下面方法证明等腰梯形的判定定理
⑴如图,分别延长梯形ABCD的腰BA、CD设它 们相交于点E.通过证明Δ EAD 和Δ EBC是
等腰三角形,来证明定理
已知:在梯形ABCD中,AD∥BC,∠B=∠C
求证:AB=CD 证明:∵∠B=∠C ∴EB=EC
又∵ AD∥BC ∴∠1=∠B, ∠2=∠C
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
2022-2023学年人教版数学四年级上册平行四边形、梯形的认识练习题含答案

故答案为:C
【点睛】熟练掌握过直线外一点画已知直线的垂线的方法,注意应先把三角尺的一条直角边与已知直线重合或者平行,再进一步解答。
4.A
【分析】长方形和正方形的周长都等于围成它们的铁丝的长度,而围成它们的两根铁丝长度相等,所以长方形和正方形的周长相等。
【分析】根据平行四边形和长方形的周长和面积计算公式回答问题。
【详解】平面图形的周长就是围成它的所有线段的长度和;将长方形拉成平行四边形后,每个边的长度没变,所以它的周长就不变,但是它的高变小了,因此面积就变小了。
【点睛】此题主要考查周长的定义及长方形和平行四边形的面积公式。
【详解】在梯形里,平行的一组对边叫做梯形的上底和下底,不平行的一组对边叫做梯形的腰。
【点睛】本题考查梯形的定义,需熟练掌握。
7.易变形
【详解】【思路分析】伸缩门是应用了平行四边形不稳定性,容易变形进行制作的,便于伸缩。
【规范解答】如图,春光小学的伸缩门应用了平行四边形易变形的特点。
故答案为:易变形。
16.见详解
【分析】从平行四边形的一条边上的任意一点向对边作垂直线段,即是平行四边形的高,平行四边形的每一条边都可以看作是底,所以平行四边形有4条底,有无数条高。高一般用虚线表示,并画上垂足符号。
【详解】
【点睛】熟练掌握平行四边形高的画法,是解答此题的关键。
17.
【解析】略
18.见详解
【分析】平行四边形是由两组平行线段组成的闭合图形。梯形是指一组对边平行而另一组对边不平行的四边形。据此可知,要把一个平行四边形分割成两个梯形,则在平行四边形的两个对边上分别选取除了顶点以外的任意一点,连接这两点,只要保证画的线段不和两边平行即可。
梯形及中位线(习题及答案)

梯形及中位线(习题)➢ 例题示范 例 1:如图,在等腰梯形 ABCD 中,AD ∥BC ,AB =CD ,且 AC ⊥ BD ,AF 是梯形的高.若梯形 ABCD 的面积为 49,则高 AF 的长为.【思路分析】 ①读题标注:②梳理思路:由 AC ⊥BD ,考虑平移一条对角线,所以过点 D 作 DE ∥AC ,交BC 的延长线于点 E ,则四边形 ACED 是平行四边形. 因为△ABD 与△CDE 等底等高,所以S △ABD = S △CDE , 则等腰梯形 ABCD 的面积可转为△BDE 的面积.在等腰梯形 ABCD 中,AC =BD ,所以 DE =BD ,即△BDE 是等腰 直角三角形.过点 D 作 DG ⊥BC 于点 G ,则 AF =DG ,所以S △BDE= 1 BE ⋅ DG = 1 ⨯ 2DG ⋅ DG = DG 2 = 49 , 2 2则 AF =DG =7.例 2:如图,DE 是△ABC 的中位线,FG 是梯形 BCED 的中位线, 若 DE =4cm ,则 FG 的长为.【思路分析】 ①读题标注:②梳理思路:因为 DE 是△ABC 的中位线,DE =4 cm ,所以 BC =8 cm .因为 FG 是梯形 BCED 的中位线,所以 FG = BC + DE= 6 cm .2【过程书写】∵DE 是△ABC 的中位线,DE =4, ∴BC =8.∵FG 是梯形 BCED 的中位线,∴FG =BC + DE = 8 + 4 = 6 ,1例3:如图,在四边形ABCD 中,E,F,G,H 分别为AD,BD,BC,AC 的中点.要使四边形EFGH 是菱形,则应满足的条件是()A.AC⊥BD B.AC=BDC.AB=CD D.AD=BC【思路分析】题目中出现多个中点,考虑中点四边形.EF 是△ABD 的中位线,EF∥AB,EF =1AB ;2HG 是△ABC 的中位线,HG∥AB,HG =1AB ;2所以EF∥HG,EF=HG,根据一组对边平行且相等的四边形是平行四边形,可得四边形EFGH 是平行四边形.当AB=CD 时,EF=EH,根据有一组邻边相等的平行四边形是菱形,可得四边形EFGH 是菱形.故选C.➢巩固练习1.如图,在矩形ABCD 中,E,F,G,H 分别为边AB,BC,CD,AD 的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6C.4 D.32.下列图形:①等边三角形;②矩形;③等腰梯形;④直角梯形;⑤角;⑥圆.其中既是轴对称图形,又是中心对称图形的有()A.1 个B.2 个C.3 个D.4 个3.下列美丽的图案,是中心对称图形的是()A.B .C.D.4.下列正多边形:①正六边形;②正五边形;③正方形;④正三角形.其中能够铺满地面的正多边形有()A.1 种B.2 种C.3 种D.4 种5.已知等腰梯形的上底为6cm,下底为8cm,高为腰长为.cm,则其6.若直角梯形的一腰长为18cm,这条腰和一个底所成的角是30°,则其另一条腰长为.7.在直角梯形ABCD 中,AB∥CD,AD⊥CD 于点D.若AB=1,AD=2,CD=4,则BC 的长为.8.如图,在梯形ABCD 中,AD∥BC,∠B=50°,∠C=80°.若AD=2,BC=5,则CD 的长为.第8 题图第9 题图9.如图,在梯形ABCD 中,AD∥BC,若AC⊥BD,AC=6cm,BD=8cm,则该梯形的面积为.10.如图,A,B 两点被池塘隔开,在A,B 外选一点C,连接AC,BC,并分别找出AC 和BC 的中点M,N,如果测得MN=20m,那么A,B 两点间的距离为.311.如图,在Rt△ABC 中,∠ACB=90°,D,E 分别是AC,AB 的中点.若DE=3,CE=5,则AC 的长为.第11 题图第12 题图12.如图,在△ABC 中,AB=AC=9cm,AD⊥BC,M 为AD 的中点,直线CM 交AB 于点E,F 为CE 的中点,连接DF,则DF 的长为.13.如图,在四边形ABCD 中,P 是对角线BD 的中点,E,F 分别是AB,CD 的中点.若AD=BC=8,EF=7.6,则△PEF 的周长为.第13 题图第14 题图14.如图,DE 是△ABC 的中位线,FG 是梯形BCED 的中位线,若BC=10cm,则FG 的长为.15.若梯形中位线的长是梯形高的2 倍,且梯形的面积为18cm2,则这个梯形的高为()A.6 cm B.6cm C.3 cm D.3cm 2216.顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.如图,四边形EFGH 为中点四边形,当AC=BD 时,四边形EFGH 是形;当AC⊥BD 时,四边形EFGH 是形;当四边形EFGH 是正方形时,AC 与BD 满足的关系是.由此可见,中点四边形的形状与外围四边形的对角线有关.➢思考小结1. 对于梯形,我们的处理方式往往是通过做辅助线,把它转化为平行四边形或者是特殊的三角形进行处理.请添加合适的辅助线,将以下梯形转化为平行四边形或特殊三角形.【参考答案】➢ 巩固练习1. C2. B3. B4. C5. 2 cm6. 9 cm7. 138. 39. 24 cm210. 40 m11. 812. 3 cm13. 15.614.15cm 215. D16.菱,矩,AC=BD 且AC⊥BD ➢思考小结1. 略。
中考数学复习《梯形》练习题(含答案)

中考数学复习《梯形》练习题(含答案)一、选择题1.下列命题中,正确的是( )(A )对顶角相等 (B )梯形的对角线相等 (C )同位角相等 (D )平行四边形对角线相等2.如图,梯形ABCD 的对角线AC 、BD 相交于点O ,△ADO 的面积记作S 1, △BCO 的面积记作S 2,△ABO 的面积记作S 3,△CDO 的面积记作S 4,则下列关系正确是( )A. S 1= S 2B. S 1 × S 2= S 3 × S 4C. S 1 + S 2 = S 4 + S 3D. S 2= 2S 33.如图,在梯形ABCD 中,AB ∥CD ,∠A =60°, ∠B =30°, 若AD =CD =6,则AB 的长等于( ). A .9B .12C .633D .184.如图1,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D →A 运动,点P 运动的速度为2个单位长度/秒,若设点P 运动的时间为x 秒,△ABP 的面积为y ,如果y 关于x 的函数图像如图2所示,则M 点的纵坐标为(▲ ) A .16 B .48C .24D .64 答案 B5. 在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD ,连接DE 交对角线AC 于H ,连接BH .下列结论:①△ACD ≌△ACE ;②△CDE 为等边三角形;③EHBE =2;④S △EBC S △EHC =AH CH .其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④ 6.如图,,过上到点的距离分别为的点作的垂线与S 2S 3S 4S 1O DCB ADCPBA图1 ABDE H第5题相交,得到并标出一组黑色梯形,它们的面积分别为.观察图中的规律,求出第10个黑色梯形的面积( )A.32B.54C.76D.86二、填空题1.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD , 且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 ▲ cm 2.2.如图,直角梯形ABCD 中, BA CD ,,2AB BC AB ⊥= ,将腰DA 以A 为旋转中心逆时针旋转90°至AE ,连接,,BE DE ABE ∆的面积为3,则CD 的长为 ﹡ .3.如图,在直角梯形ABCD 中,A B ⊥BC ,AD ∥BC ,EF 为中位线,若AB =2b ,EF =a ,则阴影部分的面积 .4.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4, AB =33,则下底BC 的长为 __________.D BCE F A G H (第1题图)60°30°D A5.已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形的周长为 ;6.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 .7.如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,则S n = ▲8.如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120 ,则该零件另一腰AB 的长是 m.答案: 选择题 1、A 2、B 3、D 4、B 5、A 6、C填空题1、答案:182、答案:53、答案:ab4、答案:105、答案18(第6题图)CABDOA B CD第8题图67、答案:31 21 nn++8、答案:5。
关于梯形的练习题

关于梯形的练习题一、选择题:1. 梯形的上底和下底平行,以下哪个图形不是梯形?A. 平行四边形B. 长方形C. 菱形D. 正方形2. 梯形的面积公式是:A. \( \frac{1}{2} \times (上底 + 下底) \times 高 \)B. \( (上底 + 下底) \times 高 \)C. \( \frac{1}{2} \times 上底 \times 高 \)D. \( 下底 \times 高 \)3. 一个梯形的上底为5厘米,下底为10厘米,高为4厘米,其面积是:A. 20平方厘米B. 30平方厘米C. 40平方厘米D. 50平方厘米4. 如果一个梯形的上底和下底分别增加2厘米,高不变,那么面积会增加多少?A. 4平方厘米B. 6平方厘米C. 8平方厘米D. 10平方厘米5. 以下哪个选项不是梯形的性质?A. 梯形的中位线等于两底边长的一半之和。
B. 梯形的对角线相等。
C. 梯形的两底边平行。
D. 梯形的两腰不一定相等。
二、填空题:6. 一个梯形的上底是8厘米,下底是12厘米,高是3厘米,其面积是________平方厘米。
7. 梯形的中位线长度等于________。
8. 如果一个梯形的上底是10厘米,下底是20厘米,高是6厘米,那么这个梯形的中位线长度是________厘米。
9. 梯形的内角和为________度。
10. 一个等腰梯形的两腰相等,其上底和下底的长度分别是6厘米和12厘米,如果这个等腰梯形的高是4厘米,那么这个等腰梯形的面积是________平方厘米。
三、简答题:11. 描述如何利用梯形的面积公式计算梯形的面积。
12. 解释为什么梯形的对角线不一定相等。
四、计算题:13. 一个梯形的上底是15厘米,下底是25厘米,高是7厘米,求这个梯形的面积。
14. 一个梯形的上底是12厘米,下底是18厘米,高是5厘米,如果将这个梯形分成两个小梯形,其中一个小梯形的上底是原梯形上底的一半,求这个小梯形的面积。
梯形练习题精选

梯形练习题精选(基础题)一.判断题一.判断题(1)只有一组对边平行的四边形是梯形)只有一组对边平行的四边形是梯形 ( ) (2)梯形的内角最多有两个是锐角)梯形的内角最多有两个是锐角 ( ) (3)等腰梯形的两条对角线相等)等腰梯形的两条对角线相等 ( ) (4)等腰梯形的对角互补)等腰梯形的对角互补 ( ) (5)我们通常把梯形中较短的底叫上底,较长的底叫下底 ( ) (6)梯形的高一定小于腰的长度)梯形的高一定小于腰的长度 ( ) (7)如果一个梯形是轴对称图形,则它一定是等腰梯形 ( ) (8)对角互补的梯形为等腰梯形)对角互补的梯形为等腰梯形 ( ) (9)如果梯形的一组对角互补,则另一组对角也互补)如果梯形的一组对角互补,则另一组对角也互补 ( )(10)延长等腰梯形的两腰交于一点后形成的图形中的三角形一定是等腰三角形( )二.选择题二.选择题(1)下列说法正确的是()下列说法正确的是( )A .平行四边形是一种特殊的梯形.平行四边形是一种特殊的梯形B .等腰梯形的两底角相等C .等腰梯形不可能是直角梯形.等腰梯形不可能是直角梯形D .有两邻角相等的梯形是等腰梯形(2)在等腰梯形中,下列结论:①两腰相等;②两底平行;③对角线相等;④两底角相等.其中正确的有(中正确的有( )个)个 A .1 B .2 C .3 D .4 (3)等腰梯形的上底、下底、高之比为1∶3∶1,则下底角的度数是(,则下底角的度数是( )A .30°B .45°C .60°D .75°(4)等腰梯形ABCD 中,BC AD //,AC 与BD 交于O 点,图中全等三角形有(点,图中全等三角形有( ) A .两对.两对 B .四对.四对 C 一对一对 D .三对.三对(5)等腰梯形中,下列判断正确的是()等腰梯形中,下列判断正确的是( )A 两底相等两底相等B 两个角相等两个角相等C 同底上两底角互补同底上两底角互补D 对角线交点在对称轴上 (6)下列命题中:)下列命题中:①有两个角相等的梯形是等腰梯形①有两个角相等的梯形是等腰梯形 ②有两条边相等的梯形是等腰梯形②有两条边相等的梯形是等腰梯形③两条对角线相等的梯形是等腰梯形③两条对角线相等的梯形是等腰梯形 ④等腰梯形上、下底中点连线,把梯形分成面积相等的两部分。
等腰梯形的性质

《梯形—等腰梯形的性质》说课稿各位老师,大家好:我今天说课的内容是湘教版《数学》八年级下册第三章《四边形》中第五节《梯形》的第二课时“等腰梯形的性质”。
下面我将从教材分析、教学手段及方法和教学过程三个方面进行简单的说课。
一、教材分析(一)地位与作用我们所使用的教材是湘教版教材,《四边形》这章总共有六个小节。
而梯形的内容放在第五小节,因为前四节已介绍了平行四边形的性质与判定,三角形的中位线、菱形、矩形、正方形的相关性质与判定。
而梯形的性质是通过作辅助线借助这些性质而推导出来的。
本节重点研究了等腰梯形的性质和应用,不仅使学生掌握了新知,还帮助学生加深对平行四边形及特殊的平行四边形相关知识的理解,从而使四边形知识点及研究方法系统化,还为继续学习等腰梯形的判定等知识打下基础,因此本节课的学习具有承上启下的作用.(二)教学目标根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课三维教学目标如下:1、知识与能力目标使学生会判定什么样的梯形是等腰梯形,掌握等腰梯形的相关性质,在解题时如何正确添加辅助线。
2、过程与方法目标通过与“等腰三角形的性质”作类比,和学生一起探究等腰梯形的性质,使学生认识知识间的内在联系。
3、情感态度与价值感目标使学生会把复杂问题转化为简单问题,把‘未知’化为‘已知’的思想,用已有的知识去研究和解决问题的方法,在解题的过程中培养学生良好的学习、思维习惯。
(三)重点与难点1、重点:等腰梯形的性质。
2、难点:等腰梯形性质的推导与其判定。
二、教学手段及方法兴趣是最好的老师,为了激发学生学习兴趣,使其发自内心的愿意和老师一起探究本节课的数学知识、方法,我将采用启发探究式的教学方法.在整个教学过程中,在老师的引领关注下,学生能够适时适量的进行自主探究,从而充分发挥教师的主导作用和学生的主体地位.在整体结构上力求突出观察、实验、归纳、类比、猜想、论证、小结等环节,这也正是数学发现的过程,并且把形象思维、直觉思维、逻辑思维的训练与培养结合起来.三、教学过程我将从复习旧课,引入新课,和学生一起研究和探讨等腰梯形的相关性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰梯形的性质定理和判定定理及其证明配套练习
1.下列命题中,错误的是( )
A .矩形的对角线互相平分且相等
B .对角线互相垂直的四边形是菱形
C .等腰梯形的两条对角线相等
D .等腰三角形底边上的中点到两腰的距离相等
2.用含30 角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直
角梯形.其中可以被拼成的图形是( ) A .①② B .①③ C .③④ D .①②③ 3.顺次连接等腰梯形四边中点所得到的四边形是( ) A.等腰梯形
B.直角梯形
C.矩形
D.菱形
4.已知梯形的两底边长分别为6和8,一腰长为7,则另一腰长a 的取值范围是 .
5.如图,在等腰梯形ABCD 中,AD BC ∥,60B ∠=
,AD AB =.点 E F ,分别在AD ,AB 上,AE BF =,DF 与CE 相交于P ,则DPE ∠=
6. 如图,在平行四边形ABCD 中,点E F ,分别在AB CD ,上移动,且AE CF =,则四边形BFDE 不可能...是( ) A .矩形
B .菱形
C .梯形
D .平行四边形
7. 如图,四边形ABCD 是矩形,F 是AD 上一点,E 是CB
延长线上一点,且四边形AECF 是等腰梯形.下列结论中不一定...正确的是( ) A.AE FC =
B.AD BC = C.AEB CFD ∠=∠
D.BE AF =
8.下列说法正确的是( ) A .有两个角为直角的四边形是矩形 B .矩形的对角线互相垂直 C .等腰梯形的对角线相等
D .对角线互相垂直的四边形是菱形
9. 如图,将一张等腰直角三角形纸片沿中位线DE 剪开后,可以拼成的四边形是( ) A .矩形或等腰梯形 B .矩形或平行四边形
C .平行四边形或等腰梯形
D .矩形或等腰梯形或平行四边形
10.在等腰梯形ABCD 中,5AB DC AD BC ==∥,,713DC AB ==,,点P 从点A 出发,以3个单位/s 的速度沿AD DC →向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC
为平行四边形时,运动时间为( ) A .3s B .4s C .5s D .6s 11.已知:如图,在等腰ABC △中,AB AC =,BD AC ⊥,CE AB ⊥, 垂足分别为点D ,E 连接DE .求证:四边形BCDE 是等腰梯形.
A
C
D
F E
A
D
E
C
B
A
D C
B E
A
B Q
12.如图,在正六边形ABCDEF 中,对角线AE 与BF 相交于点M ,BD 与CE 相交于点N .
(1)观察图形,写出图中两个不同形状....的特殊四边形; (2)选择(1)中的一个结论加以证明.
13. 如图1,ABC △是直角三角形,如果用四张与ABC △全等的三角形纸片恰好拼成一个等腰梯形,如图2,那么在Rt ABC △中,AC
AB
的值是
.
14.如图,在梯形ABCD 中,AD BC ∥,对角线BD 平分ABC ∠,
BAD ∠的平分线AE 交BC 于E F G ,,分别是AB AD ,的中点.
(1)求证:EF EG =;
(2)当AB 与EC 满足怎样的数量关系时,EG CD ∥?并说明理由.
15.如图,在等腰梯形ABCD 中,AB CD ∥,E F ,是边AB 上两点,且AE BF =,DE 与CF 相交于梯形ABCD 内一点O . (1)求证:OE OF =;
(2)当EF CD =时,请你连接DF CE ,,判断四边形DCEF 是什么样
的四边形,并证明你的结论.
16. 如图,已知等腰梯形ABCD 中,AD BC ∥,110A =
∠,则C =∠( ) A.90
B.80
C.70
D.60
17. 如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、
BC 的中点,若∠1 = 35︒,则∠D = .
18.如图,等腰梯形ABCD 中,AD BC ∥,点E 是
AD 延长线上一点,DE BC =.
(1)求证:E DBC ∠=∠;
(2)判断ACE △的形状(不需要说明理由).
A
C
B
图1
图2
B
E
C
D
G
A F
A
B
C
D
O
F E
A D C
B
D A B
C
E。