《正弦定理》教案设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正弦定理》教学设计

一、教学内容分析

(一)课标分析

对于本节内容,课标要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理,并能解决一些简单的三角形度量问题”,根据课标的这一要求,本节内容的教学应首先着眼于通过对一般三角形中边角的探索,去寻找一般三角形中边、角关系的准确量化关系——正弦定理。

对于正弦定理的发现,首先要引导学生回忆任意三角形中有大边对大角,小边对小角的边角关系,引导学生思考是否能得到这个边。角关系准确量化的表示。对于此问题,首先研究比较特殊的直角三角形,这样就比较自然地引导到锐角三角函数,证明直角三角形中的正弦定理,进而利用锐角三角形中通一条高的不同表示,证明锐角三角形中的正弦定理;对于钝角三角形则课留给学生自己仿造前面的方法探究得到。

(二)教材分析

本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用。本节内容与初中学习的三角形的边和角的基本关系、判断三角形的全等都有密切的联系,解三角形问题与前面所学三角函数也紧密相连,两个定理在日常生活和工业生产中有十分广泛的应用,可以说本节既是初中三角形边角关系的延续,又是三角函数知识在三角形中的一个应用,在必修教材中占有十分重要的位置。

根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。

二、学情分析

对于高一的学生来说,以前,学生已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力。对于有关三角形边角关系的感性认识,即任意三角形中大边对大角,小边对小角的边角关系,并且在初中比较深刻地研究了直角三角形中的边与边得关系,即勾股定理,但对三角形中边与角的关系的准确量化还缺乏认识。虽然学生能利用高中必修1学习的三角函数的定义及变换公式表示直角三角形中边与角的正弦、余弦的关系,但表达出的关系不具有简洁对称性,特别是学生对于一般三角形中的边与角的关系有直观表象上升到抽象公式还有相当大的难度。为此,本节应将正弦定理的形成过程充分底展示给学生,让学生充分地领会从特殊到一般,从直观到抽象的知识形成过程,这也就决定了本节内容的教学要在教师的引导下放手让学生讨论、探究、猜想及论证。带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。

三、教法分析

根据教材的内容和编排的特点,为了更有效地突出重点,突破难点,本节应采用以教师为主导,学生为主体,师生互动的“互助探究”的教学方法,和层层设问“问题驱动”的教学模式。,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,逐步得到深化。

(1)突破重点的手段,抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,使他们知难而进。另外,抓知识的切入点,从学生原有的认知水平和所需的知识特点入手,教师在以学生为主体的前提下给予适当的提示和指导。

(2)突破难点的方法:抓住学生的能力实践,联系方法与技能,使学生较易证明正弦定理,另外通过例题和练习来突破难点。

四、学法指导

指导学生掌握“观察—类比—猜想—证明—应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究中。让学生在问题情境中学习,并观察、类比、思考、探究、概括、动手尝试相结合,体现学生的主体地位,增强学生有特殊到一般的数学思维能力,形成实事求是的科学态度,增强锲而不舍的求学精神。

五、设计思想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

六、教学目标:

知识与技能

1.掌握正弦定理,并能解决一些简单的三角形度量问题;

2.能够运用正弦定理解决一些与测量和几何计算有关的实际问题。

过程与方法

1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

情感、态度与价值观

1.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

2.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

七、教学重点与难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理的猜想提出过程。

八、教学过程:

(一)回忆知识,巩固基础

1.在△ABC 中,A B C π++=,

2222

A B C π++=。 2.在Rt △ABC 中,2C π=,则sin a A c =,sin b B c =. 3.三角形分类:按三个角的特点分为锐角三角形、直角三角形、钝角三角形.按边长特点分为等腰三角形、等边三角形、非等腰三角形.

相关文档
最新文档